首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
s-Triazine is considered a privileged structure, as it is found in several FDA-approved drugs. In the framework of our ongoing medicinal chemistry project based on the use of s-triazine as a scaffold, we synthesized a series of mono- and di-pyrazolyl-s-triazine derivatives and tested them against four human cancer cell lines, namely Human breast carcinoma (MCF 7 and MDA-MB-231), hepatocellular carcinoma (HepG2), colorectal carcinoma (LoVo), and leukemia (K562). The cell viability assay revealed that most of the s-triazine compounds induced cytotoxicity in all four types of human cancer cell lines, however, compounds 4a, and 6g, both of them have a piperidine moiety in their structure were most effective. These two compounds affected the cell viability of cancer cells, with IC50 values within the range between 5 to 9 µM. The cell cycle analysis showed that 4a and 6g induced S and G2/M phase cell cycle arrest in K562 cells. This could be the mechanism by which these molecules induced cytotoxicity in tested cancer cells. The prepared compounds were tested in zebrafish embryos to evaluate in vivo and developmental toxicity of the pyrazolyl-s-triazine derivatives in animals. None of the derivatives were lethal in the concentration range tested.  相似文献   

3.
Immunomodulation activity-guided fractionation of ethanol extract of Brugmansia suaveolens leaves was carried out to isolate a novel compound SUPH036-022A (1) by co-culturing the test fraction/compound activated PBMC with MCF7 and A549 cancer cell lines. Assessment of immune markers in PBMC, and analysis of apoptosis markers and cell cycle was carried out for cancer cells. The structure of the isolated compound was elucidated by spectral analysis. Compound 1 enhanced the secretion of immune markers, IL-2 and IFN-γ, from PBMC. Further, compound 1 treated PBMC increased cell death in MCF7 and A549 cell lines and induced ROS production and mitochondrial membrane perturbation, leading to apoptosis. Flow cytometry analysis revealed; compound 1 stimulated PBMC to cause a five-fold increase in cell cycle perturbations in the sub-G1 stage of cancer cells as compared to the negative control. The compound, in the absence of PBMC, only had a weak cytotoxic activity against these cell lines. Thus, compound 1 is a novel lead for immunomodulation-mediated anticancer activity.  相似文献   

4.
A new class of isoxazole-tethered diarylheptanoids having characteristic 1,3-syn-diol and 1,3-anti-diol chemophoric moieties, e.g. 4ad and 5ac respectively, have been designed and synthesized starting from d-glucose following a stereo-conserved general synthetic strategy. The isoxazole heterocycle was installed using our recently elaborated methodology deploying Magtrieve? as a selective oxidizing agent. Two of these new analogs 4a and 5a exhibited significantly improved in vitro drug-like properties including solubility, metabolic stability, cell permeability and lack of nonspecific cytotoxicity when compared with curcumin-I. In a HEK293 cell-based intracellular calcium [Ca2+]i release assay, 4a and 5a, when tested at 30?μM, inhibited the trypsin agonist induced protease-activated receptor-2 (PAR2) activity by 80% and 70% respectively. IC50 of 4a (SB70) has been determined as 6?μM which is in the same range of current benchmarks for PAR2 antagonists.  相似文献   

5.
Novel N-triazolyl maleimide derivatives were synthesized by azide–alkyne Huisgen cycloaddition (1,3-dipolar cycloaddition) and tested for cytotoxicity against a cell line derived from human melanomas SK-Mel-28 and SK-Mel-103, and human umbilical vein endothelial cell lines (HUVEC). The 4l was chose to be biologically tested due to incorporation of benzyl triazolic to the nitrogen of maleimide has not been tested before, and due the satisfactory yield. The analysis of cell metabolism, using the MTT method, showed that the compound 4l impaired cell metabolism in HUVEC only in high concentration (100 µM). A lower concentration of compound 4l, whether in association or not with paclitaxel, was required to cause toxicity in both SK-Mel-28 and SK-Mel-103 cells in comparison with HUVEC cells. Moreover, the ability of 4l to cause cell death was evaluated by flow cytometry, and the data obtained highlighted the apoptotic action of 4l and paclitaxel co-treatment on Sk-Mel-28 cells only, which corroborated the greater efficacy of maleimide compounds against cancer cells. Together, our data provide promising data on the selectivity of maleimide compounds to cancer cells, and suggest that novel maleimide-substituted compounds may be synthesized and tested on different cancer cell lines, as primary or co-adjuvant agents of cancer cell toxicity.  相似文献   

6.
A series of non-steroidal GPBAR1 (TGR5) agonists was developed from a hit in a high-throughput screening campaign. Lead identification efforts produced biphenyl-4-carboxylic acid derivative (R)-22, which displayed a robust secretion of PYY after oral administration in a degree that can be correlated with the unbound plasma concentration. Further optimisation work focusing on reduction of the lipophilicity provided the 1-phenylpiperidine-4-carboxylic acid derivative (R)-29 (RO5527239), which showed an improved secretion of PYY and GLP-1, translating into a significant reduction of postprandial blood glucose excursion in an oral glucose tolerance test in DIO mice.  相似文献   

7.
The non-selective second messenger-gated cation channel TRPC6 (transient receptor potential canonical 6) is activated by diacylglycerols (DAG) in a PKC-independent manner and plays important roles in a variety of physiological processes and diseases. In order to facilitate novel therapies, the development of potent inhibitors as well as channel-activating agents is of great interest. The screening of a chemical library, comprising about 17,000 small molecule compounds, revealed an agent, which induced increases in intracellular Ca2+ concentrations ([Ca2+]i) in a concentration-dependent manner (EC50 = 2.37 ± 0.25 μM) in stably TRPC6-expressing HEK293 cells. This new compound (C20) selectively acts on TRPC6, unlike OAG (1-oleoyl-1-acetyl-sn-glycerol), which also activates PKC and does not discriminate between TRPC6 and the closely related channels TRPC3 and TRPC7. Further evaluation by Ca2+ assays and electrophysiological studies revealed that C20 rather operated as an enhancer of channel activation than as an activator by itself and led to the assumption that the compound C20 is an allosteric modulator of TRPC6, enabling low basal concentrations of DAG to induce activation of the ion channel. Furthermore, C20 was tested in human platelets that express TRPC6. A combined activation of TRPC6 with C20 and OAG elicited a robust increase in [Ca2+]i in human platelets. This potentiated channel activation was sensitive to TRPC6 channel blockers. To achieve sufficient amounts of C20 for biological studies, we applied a one-pot synthesis strategy. With regard to studies in native systems, the sensitizing ability of C20 can be a valuable pharmacological tool to selectively exaggerate TRPC6-dependent signals.  相似文献   

8.
Collagen secretion by chick embryo fibroblasts was measured by incorporating [14C]proline into proteins and then analyzing the amount of collagen in the cell and medium separately by using purified bacterial collagenase. In order to produce varying levels of hydroxylation, cells were incubated with varying concentrations of ascorbate or with varying concentrations of α,α′-dipyridyl in the presence of saturating ascorbate. Ascorbate stimulated both the hydroxylation of proline in collagen and the secretion of collagen; the concentration of ascorbate required for half-maximal stimulation of both proesses was approximately 4.5 × 10?7, m. Since the cells could concentrate ascorbate 10-fold, this KM for proline hydroxylation is 100-fold lower than values reported for purified prolyl hydroxylase (Abbot, M. T., and Udenfriend, S. (1974) in Molecular Mechanisms of Oxygen Activation (Hayaishi, O., ed.), p. 173, Academic Press New York; Kivirikko K. I., et al. (1968) Biochim. Biophys. Acta, 151, 558–567). Conversely, α,ga′-dipyridyl inhibited both proline hydroxylation and collagen secretion; half-maximal inhibition of both processes was observed at 7 × 10?5, m. The results of the two types of experiments show that the secretion of collagen becomes directly proportional to proline hydroxylation when approximately 30% of the proline residues in collagen have been hydroxylated compared to maximal hydroxylation of 50%. Since the stability of triple-helical collagen at 37 °C has been shown to be dependent on the hydroxyproline content of the molecule (Rosenbloom, J., et al. (1973) Arch. Biochem. Biophys., 158, 478–484), we suggest that the observed proportionality between secretion and hydroxylation is a reflection of the increased amount of stable triple helical collagen at 37 °C. When the cells were incubated with a concentration of ascorbate that was saturating for secretion and hydroxylation, there was no significant activation of prolyl hydroxylase as measured in a cell-free extract. These experiments suggest that ascorbate effects collagen secretion by acting at the site of proline hydroxylation but not by increasing the activity of prolyl hydroxylase.  相似文献   

9.
Four acyclic triterpene derivatives named sapelenins G–J (14), along with eight known compounds, sapelenins A–D, ekeberin D2 (5), (+)-catechin and epicatechin, and anderolide G, were isolated from the stem bark of the Cameroonian medicinal plant, Entandrophragma cylindricum Sprague, on the basis of bioassay-guided fractionation. Their structures were determined by means of high-resolution mass spectrometry and NMR spectroscopic data, as well as by comparison with the literature values of their analogs. The absolute configurations of the compounds (14) were assigned by the modified Mosher’s method in conjunction with NOESY experiments and chemical modifications. The anti-inflammatory activities of the sapelenins were evaluated by assessing their ability to suppress or inhibit the secretion of cytokine interleukin-17 (IL-17) by human peripheral blood mononuclear cells (PBMC) stimulated with phytohemagglutinin (PHA). The cytotoxicity of these compounds on PMBCs was further assessed for correctly interpreting their anti-inflammatory responses. The tested compounds demonstrated moderate to significant anti-inflammatory activities by suppressing the secretion of IL-17 by PHA-stimulated human PBMCs. One of them, sapelenin G (1), showed high potency in suppressing the secretion of IL-17 by PBMCs comparable to reference cyclosporine A, without causing any cytotoxic effects (negligible), and deserves further considerations towards developing an effective anti-inflammatory drug.  相似文献   

10.
Excess aluminum (Al) ions and phosphorus (P) deficiency are the key factors that limit plant growth in acid soils. Secretion of organic acids (OA) from roots has been proposed as an Al-resistance mechanism. Nonetheless, the correlation between Al resistance and this mechanism has not been tested beyond a very small number of Al-resistant and Al-sensitive genotypes. To elucidate the mechanisms responsible for plant adaptability to acid soils, we studied the secretion of OA from roots of Stylosanthes in response to high-Al and low-P stresses using six different genotypes. Relative root inhibition by 50?µM Al ranged from 25–71% and differed significantly among six Stylosanthes genotypes. Al treatment induced the secretion of citrate from the roots of Stylosanthes seedling in a dose- and time-dependent manner. Moreover, the secretion rate was significantly higher in the Al-resistant genotype. On the other hand, inhibition of Al-induced citrate secretion by phenylisothiocyanate or 9-anthracenecarboxylic acid resulted in an increase in Al content in Stylosanthes root apices. P deficiency also induced citrate secretion from Stylosanthes seedling roots. Furthermore, citrate secretion was much more robust with exposure to both excess-Al and P-deficiency stresses than under either stress alone. Unlike Al-induced citrate secretion, which was rapid, low-P-induced secretion was a slow process, with significant increases in secretion only becoming evident after 6 d of treatment with free phosphate. The lag between treatment with Al and citrate secretion was approximately 4 h. These results suggest that the secretion of citrate is a mechanism for resistance to both excess-Al and low-P stresses in Stylosanthes.  相似文献   

11.
Plant fungal pathogens secrete numerous proteins into the apoplast at the plant–fungus contact sites to facilitate colonization. However, only a few secretory proteins were functionally characterized in Magnaporthe oryzae, the fungal pathogen causing rice blast disease worldwide. Asparagine-linked glycosylation 3 (Alg3) is an α-1,3-mannosyltransferase functioning in the N-glycan synthesis of N-glycosylated secretory proteins. Fungal pathogenicity and cell wall integrity are impaired in Δalg3 mutants, but the secreted proteins affected in Δalg3 mutants are largely unknown. In this study, we compared the secretomes of the wild-type strain and the Δalg3 mutant and identified 51 proteins that require Alg3 for proper secretion. These proteins were predicted to be involved in metabolic processes, interspecies interactions, cell wall organization, and response to chemicals. Nine proteins were selected for further validation. We found that these proteins were localized at the apoplastic region surrounding the fungal infection hyphae. Moreover, the N-glycosylation of these proteins was significantly changed in the Δalg3 mutant, leading to the decreased protein secretion and abnormal protein localization. Furthermore, we tested the biological functions of two genes, INV1 (encoding invertase 1, a secreted invertase) and AMCase (encoding acid mammalian chinitase, a secreted chitinase). The fungal virulence was significantly reduced, and the cell wall integrity was altered in the Δinv1 and Δamcase mutant strains. Moreover, the N-glycosylation was essential for the function and secretion of AMCase. Taken together, our study provides new insight into the role of N-glycosylated secretory proteins in fungal virulence and cell wall integrity.  相似文献   

12.
Licorice has been used as an antitussive and expectorant herbal medicine for a long history. This work evaluated the activities of 14 major compounds and crude extracts of licorice, using the classical ammonia-induced cough model and phenol red secretion model in mice. Liquiritin apioside (1), liquiritin (2), and liquiritigenin (3) at 50?mg/kg (i.g.) could significantly decrease cough frequency by 30–78% (p?<?.01). The antitussive effects could be partially antagonized by the pretreatment of methysergide or glibenclamide, but not naloxone. Moreover, compounds 13 showed potent expectorant activities after 3?days treatment (p?<?.05). The water and ethanol extracts of licorice, which contain abundant 1 and 2, could decrease cough frequency at 200?mg/kg by 25–59% (p?<?.05), and enhance the phenol red secretion (p?<?.05), while the ethyl acetate extract showed little effect. These results indicate liquiritin apioside and liquiritin are the major antitussive and expectorant compounds of licorice. Their antitussive effects depend on both peripheral and central mechanisms.  相似文献   

13.
Polygonflavanol A (1), a novel flavonostilbene glycoside with an unusual coupling pattern, together with five known stilbene glycosides (2–6), was isolated from the roots of Polygonum multiflorum. The structures were elucidated on the basis of extensive spectroscopic analysis and chemical evidence. The absolute configuration of 1 was further determined by CD analysis. Most of the compounds could inhibit nitric oxide (NO) secretion of RAW264.7 cells in respond to lipopolysaccharide (LPS) in a dose dependent manner. Among them, compound 2 displayed the highest inhibitory activity.  相似文献   

14.
Barker I. K. and Titchen D. A. 1982. Gastric dysfunction in sheep infected with Trichostrongylus colubriformis, a nematode inhabiting the small intestine. International Journal for Parasitology12: 345–356. Six of 12 lambs infected with Trichostrongylus colubriformis had reduced abomasal acidification (pH 4.0–8.1) in comparison with uninfected pair-fed and replete controls (pH <3.5), though less than 0.8% of the worm burden was in the abomasum. Loss of prominence of parietal cells and encroachment of mucous cells deep into fundic glands was seen by light microscopy. Under the electron microscope, parietal cells had little canalicular or tubulovesicular development, had large vacuoles, many polyribosomes and few mitochondria in comparison with those in controls. In a further 8 sheep prepared with abomasal fistulae and separated fundic pouches and inoculated orally with T. colubriformis, the volume of fundic pouch secretion declined as feed intake dropped and in 7 out of 8 animals H+ concentration in fundic pouch secretion also fell. Infection generally reduced volume and acidity of pouch secretion more than did a pre-inoculation fast. In 5 sheep, abomasal content exceeded pH 4. Inoculation of T. colubriformis by enterotomy and Ostertagia circumcincta per os, in a lamb with a separated fundic pouch, caused depression of volume and acidity of pouch secretion characteristic of T. colubriformis infection, rather than the hypersecretion typical of abomasal infection with Ostertagia. Factors inhibitory to parietal cell differentiation and gastric acid secretion may be released from the small intestine of some sheep in response to changes in the gut induced by the presence of T. colubriformis. Abomasal dysfunction is a manifestation of severe intestinal trichostrongylosis.  相似文献   

15.
A structural class of 2-aminobenzoxazole derivatives possessing biphenyltetrazole was discovered to be potent human ChemR23 inhibitors. We initially tried to improve the potency of compound 1, which was found through in-house screening using the human plasmacytoid dendritic cell (pDC)-like cell line CAL-1. The introduction of a chiral methyl moiety at a benzylic position in a center of compound 1 showed a large impact on the inhibitory activity against calcium signaling of ChemR23 induced by the natural ligand chemerin. As a result of further investigations at the benzylic position, (R)-isomer 6b was found to show a 30-fold increased potency over desmethyl compound 1. In addition, an extensive structure-activity relationship study on the benzoxazole moiety successfully led to a further increase in the potency. The antagonistic effect of the compounds was based on the induction of ChemR23 internalization. In addition, we observed that compound 31, which contained an amide moiety on benzoxazole, inhibited chemotaxis of CAL-1 cells induced by chemerin in vitro. These results suggest that our ChemR23 inhibitors are attractive compounds for the treatment of pDC-related autoimmune diseases, such as systemic lupus erythematosus and psoriasis.  相似文献   

16.
The isatin core structure was found to be a novel chemical scaffold in transthyretin (TTR) fibrillogenesis inhibitor design. Among the series of isatin analogues prepared and tested, the nitro compound 1,3-dihydro-3-[(4-nitrophenyl)imino]-2H-indol-2-one (2r) is as potent as triiodophenol, which is one of the most active known TTR inhibitors. The E/Z stereochemistry of these molecules in solution, elucidated by 1H NMR, does not influence their biological activity. The compounds do not bind to the native tetrameric TTR suggesting that their inhibitory action is independent of the protein binding and stabilization.  相似文献   

17.
A novel series of 5-[2-(2,6-dichlorophenylamino)benzyl]-3-(substituted)-1,3,4-oxadiazol-2(3H)-thione (4ak) derivatives have been synthesized by the Mannich reaction of 5-[2-(2,6-dichlorophenylamino)benzyl]-1,3,4-oxadiazol-2(3H)-thione (3) with an appropriately substituted primary/secondary amines, in the presence of formaldehyde and absolute ethanol. Structures of these novel compounds were characterized on the basis of physicochemical, spectral and elemental analysis. The title compounds (4ak) were screened for in vivo acute anti-inflammatory and analgesic activities at a dose of 10 mg/kg b.w. Compound 4k exhibited the most promising and significant anti-inflammatory profile while compounds 4a, 4d, 4e, 4i, and 4j showed moderate to good inhibitory activity at 2nd and 4th h, respectively. These compounds were also found to have considerable analgesic activity (acetic acid induced writhing model) and antipyretic activity (yeast induced pyrexia model). In addition, the tested compounds were also found to possess less degree of ulcerogenic potential as compared to the standard NSAIDs. Compounds that displayed promising anti-inflammatory profile were further evaluated for their inhibitory activity against cyclooxygenase enzyme (COX-1/COX-2), by colorimetric COX (ovine) inhibitor screening assay method. The results revealed that the compounds 4a, 4e, 4g and 4k exhibited effective inhibition against COX-2. In an attempt to understand the ligand–protein interactions in terms of the binding affinity, docking studies were performed using Molegro Virtual Docker (MVD-2013, 6.0) for those compounds, which showed good anti-inflammatory activity. It was observed that the binding affinities calculated were in agreement with the IC50 values.  相似文献   

18.
Oxidative stress can induce complex alterations of membrane proteins in red blood cells (RBCs) eventually leading to hemolysis. RBCs represent a good model to investigate the damage induced by oxidizing agents. Literature data have reported that chalcogen compounds can present pro-oxidant properties with potent inhibitory effects on cell growth, causing tissue damage and inhibit a variety of enzymes. In this study, human erythrocytes were incubated in vitro with various chalcogen compounds at 37 °C: diphenyl ditelluride (1), dinaphthalen diteluride (2), diphenyl diselenide (3), (S)-tert-butyl 1-diselenide-3-methylbutan-2-ylcarbamate (4), (S)-tert-butyl 1-diselenide-3-phenylpropan-2-ylcarbamate (5), selenium dioxide (6) and sodium selenite (7) in order to investigate their potential in vitro toxicity. After 6 h of incubation, all the tested compounds increased the hemolysis rate, when compared to control and compound (2) had the most potent hemolytic effect. The addition of reduced glutathione (GSH) or glucose to the incubation medium enhanced hemolysis caused by chalcogen compounds. The thiol oxidase activity of these compounds was evaluated by measuring the rate of cysteine (CYS) and dithiotreitol (DTT) oxidation. DTT and cysteine oxidation was increased by all the compounds tested. The results suggest a relationship between the oxidation of intracellular GSH and subsequent generation of free radicals with the hemolysis by chalcogen compounds.  相似文献   

19.
A new series of substituted-N-(3,4-dimethoxyphenyl)-benzoxazole derivatives 13a13p was synthesized and evaluated in vitro for their COX (I and II) inhibitory activity, in vivo anti-inflammatory and ulcerogenic potential. Compounds 13d, 13h, 13k, 13l and 13n exhibited significant COX-2 inhibitory activity and selectivity towards COX-2 over COX-1. These selected compounds were screened for their in vivo anti-inflammatory activity by carrageenan induced rat paw edema method. Among these compounds, 13d was the most promising analogs of the series with percent inhibition of 84.09 and IC50 value of 0.04?µM and 1.02?µM (COX-2 and COX-1) respectively. Furthermore, ulcerogenic study was performed and tested compounds (13d, 13h, 13k, 13l) demonstrated a significant gastric tolerance than ibuprofen. Molecular docking study was also performed with resolved crystal structure of COX-2 to understand the binding mechanisms of newly synthesized inhibitors in the active site of COX-2 enzyme and the results were found to be concordant with the biological evaluation studies of the compounds. These newly synthesized inhibitors also showed acceptable pharmacokinetic profile in the in silico ADME/T analyses.  相似文献   

20.
Cisplatin-induced nephrotoxicity is a serious adverse effect that limits the use of cisplatin in cancer patients. In the present study, we investigated the protective effect of lanostane triterpenoids (110) isolated from the ethanolic extract of Poria cocos Wolf against cisplatin-induced cell death in LLC-PK1 kidney tubular epithelial cells. Treatment of cisplatin induced significant cell death, which was suppressed by treatment with dehydroeburicoic acid monoacetate (1) and 3β-acetoxylanosta-7,9(11),24-trien-21-oic acid (9). Compound 1 exhibited the highest efficacy among the tested compounds and was thus subjected to further mechanistic studies. The increase in the percentage of apoptotic cells induced by cisplatin reduced by 4.3% after co-treatment of cells with compound 1 (50 and 100 μM). Furthermore, phosphorylation of the mitogen-activated protein kinases JNK, ERK, and p38, and caspase-3, which characterize oxidative stress-mediated apoptosis, increased significantly after treatment with cisplatin, and decreased after treatment with compound 1. These results indicate that the renoprotective effects of compound 1 may be mediated by its anti-apoptotic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号