首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rescue of unstable cosmids by in vitro packaging.   总被引:2,自引:2,他引:0       下载免费PDF全文
  相似文献   

2.
D de Mendoza  A L Rosa 《Gene》1985,39(1):55-59
A technique has been developed that permits the packaging of mini-Mu-carrying cosmids into phage lambda heads. This procedure has several advantages over packaging into Mu helper capsids: the amounts of DNA to be packaged can be increased, the packaging efficiency is improved, and the stability of transducing lysates is high.  相似文献   

3.
Summary A general in vivo procedure for cloning Escherichia coli genes into cosmids has been developed. The method we describe here uses a deleted Mu phage (a mini-Mu) to transpose E. coli genes into cosmids during mini-Mu replication. The resulting cosmids clones are packaged in-vivo into phage particles. Plasmids carrying a particular DNA sequence can be selectively recovered after infection of a new host with the in vivo constructed genomic cosmid library. This system was used succesfully to clone several E. coli genes.Dedicated to Dr. Luis F. Leloir on the occasion of his 80th birthday, September 6, 1986  相似文献   

4.
In vivo mutagenesis of bacteriophage Mu transposase.   总被引:4,自引:1,他引:4       下载免费PDF全文
We devised a method for isolating mutations in the bacteriophage Mu A gene which encodes the phage transposase. Nine new conditional defective A mutations were isolated. These, as well as eight previously isolated mutations, were mapped with a set of defined deletions which divided the gene into 13 100- to 200-base-pair segments. Phages carrying these mutations were analyzed for their ability to lysogenize and to transpose in nonpermissive hosts. One Aam mutation, Aam7110, known to retain the capacity to support lysogenization of a sup0 host (M. M. Howe, K. J. O'Day, and D. W. Shultz, Virology 93:303-319, 1979) and to map 91 base pairs from the 3' end of the gene (R. M. Harshey and S. D. Cuneo, J. Genet. 65:159-174, 1987) was shown to be able to complement other A mutations for lysogenization, although it was incapable of catalyzing either the replication of Mu DNA or the massive conservative integration required for phage growth. Four Ats mutations which map at different positions in the gene were able to catalyze lysogenization but not phage growth at the nonpermissive temperature. Phages carrying mutations located at different positions in the Mu B gene (which encodes a product necessary for efficient integration and lytic replication) were all able to lysogenize at the same frequency. These results suggest that the ability of Mu to lysogenize is not strictly correlated with its ability to perform massive conservative and replicative transposition.  相似文献   

5.
The filamentous fungus Aspergillus niger is widely used in biotechnological applications. Strain CBS513.88 is known to harbor 21 copies of the nonautonomous transposon Vader. Upon selection of chlorate-resistant A. niger colonies, one Vader copy was found integrated in the nirA gene. This copy was used for vector construction and development of a transposon-tagging method. Vader showed an excision frequency of about 1 in 2.2 × 10(5) conidiospores. A total of 95 of 97 colonies analyzed exhibited an excision event at the DNA level, and Vader footprints were found. By employing thermal asymmetric interlaced (TAIL)-PCR, the reintegration sites of 21 independent excision events were determined. All reintegration events occurred within or very close to genes. Therefore, this method can be used for transposon mutagenesis in A. niger.  相似文献   

6.
Plasmodium falciparum is the causative agent for the most lethal form of human malaria, killing millions annually. Genetic analyses of P. falciparum have been relatively limited due to the lack of robust techniques to manipulate this parasite. Development of transfection technologies and whole genome analyses have helped in understanding the complex biology of this parasite. Even with this wealth of information functional genomics approaches are still very limited in P. falciparum due to the cumbersome and inefficient methods of genetic manipulation. This review focuses on a recently developed, highly efficient method for transposon-based mutagenesis and transgene expression in P. falciparum that will allow functional genomics studies to be performed proficiently on this deadly malaria parasite. By using a piggyBac-based transposition system, multiple random integrations have been obtained into the genome of the parasite. This technique could hence be employed to set up several biological screens in this lethal protozoan parasite that may lead to identification of novel drug targets and vaccine candidates.  相似文献   

7.
In vivo site-directed mutagenesis using oligonucleotides   总被引:13,自引:0,他引:13  
Functional characterization of the genes of higher eukaryotes has been aided by their expression in model organisms and by analyzing site-specific changes in homologous genes in model systems such as the yeast Saccharomyces cerevisiae. Modifying sequences in yeast or other organisms such that no heterologous material is retained requires in vitro mutagenesis together with subcloning. PCR-based procedures that do not involve cloning are inefficient or require multistep reactions that increase the risk of additional mutations. An alternative approach, demonstrated in yeast, relies on transformation with an oligonucleotide, but the method is restricted to the generation of mutants with a selectable phenotype. Oligonucleotides, when combined with gap repair, have also been used to modify plasmids in yeast; however, this approach is limited by restriction-site availability. We have developed a mutagenesis approach in yeast based on transformation by unpurified oligonucleotides that allows the rapid creation of site-specific DNA mutations in vivo. A two-step, cloning-free process, referred to as delitto perfetto, generates products having only the desired mutation, such as a single or multiple base change, an insertion, a small or a large deletion, or even random mutations. The system provides for multiple rounds of mutation in a window up to 200 base pairs. The process is RAD52 dependent, is not constrained by the distribution of naturally occurring restriction sites, and requires minimal DNA sequencing. Because yeast is commonly used for random and selective cloning of genomic DNA from higher eukaryotes such as yeast artificial chromosomes, the delitto perfetto strategy also provides an efficient way to create precise changes in mammalian or other DNA sequences.  相似文献   

8.
Mice bearing targeted gene mutations that affect insulin receptor (Insr) function have contributed important new information on the pathogenesis of type 2 diabetes. Whereas complete Insr ablation is lethal, conditional mutagenesis in selected tissues has more limited consequences on metabolism. Studies of mice with tissue-specific ablation of Insr have indicated that both canonical (e.g. muscle and adipose tissue) and noncanonical (e.g. liver, pancreatic beta-cells, and brain) insulin target tissues can contribute to insulin resistance, albeit in a pathogenically distinct fashion. Furthermore, experimental crosses of Insr mutants with mice carrying mutations that affect insulin action at more distal steps of the insulin signaling cascade have begun to unravel the genetics of type 2 diabetes. These studies are consistent with an oligogenic inheritance, in which synergistic interactions among few alleles may account for the genetic susceptibility to diabetes. In addition to mutant alleles conferring an increased risk of diabetes, these studies have uncovered mutations that protect against insulin resistance, thus providing proof-of-principle for the notion that certain alleles may confer resistance to diabetes.  相似文献   

9.
10.
11.
The suicide plasmid pfdA31-Tn5 was constructed to mutagenize Erwinia amylovora and Escherichia coli strains by electorporation. This vector carries the bacteriophage fd replication origin, a beta-lactamase gene and the transposon Tn5. For propagation the plasmid depends on host cells producing fd gene-2 protein. Electroporation of E.amylovora or E.coli cells with plasmid pfdA31-Tn5 yielded more than 10(4) transposition events per micrograms DNA. We have produced and characterized transposon mutants of E.amylovora affecting either galactose metabolism or the synthesis of the phytotoxin (L)-2,5-dihydrophenylalanine. A Tn5-insertion in a gene, involved in exopolysaccharide synthesis of E.amylovora strain Ea7/74, was subcloned into vector pfdA31 and used to mutagenize E.amylovora strain Ea1/79 by site-directed recombination.  相似文献   

12.
Francisella tularensis is the intracellular pathogen that causes human tularemia. It is recognized as a potential agent of bioterrorism due to its low infectious dose and multiple routes of entry. We report the development of a Himar1-based random mutagenesis system for F. tularensis (HimarFT). In vivo mutagenesis of F. tularensis live vaccine strain (LVS) with HimarFT occurs at high efficiency. Approximately 12 to 15% of cells transformed with the delivery plasmid result in transposon insertion into the genome. Results from Southern blot analysis of 33 random isolates suggest that single insertions occurred, accompanied by the loss of the plasmid vehicle in most cases. Nucleotide sequence analysis of rescued genomic DNA with HimarFT indicates that the orientation of integration was unbiased and that insertions occurred in open reading frames and intergenic and repetitive regions of the chromosome. To determine the utility of the system, transposon mutagenesis was performed, followed by a screen for growth on Chamberlain's chemically defined medium (CDM) to isolate auxotrophic mutants. Several mutants were isolated that grew on complex but not on the CDM. We genetically complemented two of the mutants for growth on CDM with a newly constructed plasmid containing a nourseothricin resistance marker. In addition, uracil or aromatic amino acid supplementation of CDM supported growth of isolates with insertions in pyrD, carA, or aroE1 supporting the functional assignment of genes within each biosynthetic pathway. A mutant containing an insertion in aroE1 demonstrated delayed replication in macrophages and was restored to the parental growth phenotype when provided with the appropriate plasmid in trans. Our results suggest that a comprehensive library of mutants can be generated in F. tularensis LVS, providing an additional genetic tool to identify virulence determinants required for survival within the host.  相似文献   

13.
Site-directed mutagenesis and deletions were used to study mitochondrial import of a major yeast adenylate kinase, Aky2p. This enzyme lacks a cleavable presequence and occurs in active and apparently unprocessed form both in mitochondria and cytoplasm. Mutations were applied to regions known to be surface-exposed and to diverge between short and long isoforms. In vertebrates, short adenylate kinase isozymes occur exclusively in the cytoplasm, whereas long versions of the enzyme have mitochondrial locations. Mutations in the extra loop of the yeast (long-form) enzyme did not affect mitochondrial import of the protein, whereas variants altered in the central, N- or C-terminal parts frequently displayed increased or, in the case of a deletion of the 8 N-terminal triplets, decreased import efficiencies. Although the N-terminus is important for targeting adenylate kinase to mitochondria, other parameters like internal sequence determinants and folding velocity of the nascent protein may also play a role.  相似文献   

14.
We report here the in vivo expression of the synthetic transposase gene himar1(a) in Streptomyces coelicolor M145 and Streptomyces albus. Using the synthetic himar1(a) gene adapted for Streptomyces codon usage, we showed random insertion of the transposon into the streptomycetes genome. The insertion frequency for the Himar1-derived minitransposons is nearly 100 % of transformed Streptomyces cells, and insertions are stably inherited in the absence of an antibiotic selection. The minitransposons contain different antibiotic resistance selection markers (apramycin, hygromycin, and spectinomycin), site-specific recombinase target sites (rox and/or loxP), I-SceI meganuclease target sites, and an R6Kγ origin of replication for transposon rescue. We identified transposon insertion loci by random sequencing of more than 100 rescue plasmids. The majority of insertions were mapped to putative open-reading frames on the S. coelicolor M145 and S. albus chromosomes. These insertions included several new regulatory genes affecting S. coelicolor M145 growth and actinorhodin biosynthesis.  相似文献   

15.
Transposon-mediated mutability has been used to isolate the isogenic strains of the group B serotype Ia streptococci with the mutations in the genes coding for the production of capsular antigen. The transconjugants have lost the ability to bind type Ia antiserum as demonstrated by immunoblotting technique. The loss of type-specific antigen by the strains has resulted in a dramatic decrease in virulence for mice while the absorbtion indexes of transconjugants increased 2-3 fold. The mutant clones deficient in capsule expression had the increased buoyant density in the percoll gradient as compared with the parent strains of group B. The stable mutants impaired in ability to produce the polysaccharide capsule on the cell surface were obtained as a result of site-specific insertion of transposon Tn916 into the genome of group B serotype I streptococcus.  相似文献   

16.
HO nuclease introduces a specific double-strand break in the mating-type locus (MAT) of Saccharomyces cerevisiae, initiating mating-type interconversion. To define the sequence recognized by HO nuclease, random mutations were produced in a 30-base-pair region homologous to either MAT alpha or MATa by a chemical synthesis procedure. The mutant sites were introduced into S. cerevisiae on a shuttle vector and tested for the ability to stimulate recombination in an assay that mimics mating-type interconversion. The results suggest that a core of 8 noncontiguous bases near the Y-Z junction of MAT is essential for HO nuclease to bind and cleave its recognition site. Other contacts must be required because substrates that contain several mutations outside an intact core reduce or eliminate cleavage in vivo. The results show that HO site recognition is a complex phenomenon, similar to promoter-polymerase interactions.  相似文献   

17.
18.
19.
Cosmid DNA packaging in vivo   总被引:16,自引:0,他引:16  
M Feiss  D A Siegele  C F Rudolph  S Frackman 《Gene》1982,17(2):123-130
The packaging of cosmid DNA into phage particles during phage lambda growth is described. Evidence is presented supporting the work of others that cosmid transducing phages contain linear multimers of cosmid DNA in which the number of cosmid copies is that required to make a packagable DNA length (greater than 0.77 of the lambda DNA length). The yield of cosmid transducing phages declines sharply as the number of cosmid copies required to make a packagable DNA length increases. The cosmid DNA replication that produces the packaging substrate shares with lambda rolling-circle replication a dependence on the lambda gam gene product.  相似文献   

20.
A plasmid which contains a cos site of λ and can be packaged into lambda bacteriophage particles is termed a “cosmid”. Such plasmids can be used as gene cloning vectors in conjunction with an in vitro packaging system. The properties of a new series of cosmids based on the ColE1 replicon are described, including small temperature-sensitive plasmids which have lost mobilisation functions and carry no IS sequences. Amongst these plasmids are vectors for XmaI, BglII, BamHI, HindIII, PstI, KpnI, SalI and EcoRI. It is demonstrated that by using cosmids in particular size ranges these plasmids provide a high efficiency cloning system which yields essentially only hybrid clones without resort to a second selection or screening step, and without prior modification (e.g. phosphatase) treatment of the DNA.Attempts were made to optimise the cloning properties of the cosmid system. An Escherichia coli “gene bank” was obtained with an efficiency of 5·105 clones per μg of E. coli DNA, and in which any particular unselected marker may be found in about one out of every 400 clones.It was demonstrated that deletion of mobilisation functions leads to loss of ability to form relaxation-complex without affecting copy number or segregation properties of the temperature-sensitive derivatives. The vectors are amplifiable in chloramphenicol to make up about 50% of the total cellular DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号