首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The function of the epidermis in auxinmediated elongation growth of maize (Zea mays L.) coleoptile segments was investigated. The following results were obtained: i) In the intact organ, there is a strong tissue tension produced by the expanding force of the inner tissues which is balanced by the contracting force of the outer epidermal wall. The compression imposed by the stretched outer epidermal wall upon the inner tissues gives rise to a wall-pressure difference which can be transformed into a water-potential difference between inner tissues and external medium (water) by removal of the outer epidermal wall. ii) Peeled segments fail to respond to auxin with normal growth. The plastic extensibility of the inner-tissue cell walls (measured with a constant-load extensiometer using living segments) is not influenced by auxin (or abscisic acid) in peeled or nonpeeled segments. It is concluded that auxin induces (and abscisic acid inhibits) elongation of the intact segment by increasing (decreasing) the extensibility specifically in the outer epidermal wall. In addition, tissue tension (and therewith the pressure acting on the outer epidermal wall) is maintained at a constant level over several hours of auxin-mediated growth, indicating that the inner cells also contribute actively to organ elongation. However, this contribution does not involve an increase of cell-wall extensibility, but a continuous shifting of the potential extension threshold (i.e., the length to which the inner tissues would extend by water uptake after peeling) ahead of the actual segment length. Thus, steady growth involves the coordinated action of wall loosening in the epidermis and regeneration of tissue tension by the inner tissues. iii) Electron micrographs show the accumulation of striking osmiophilic material (particles of approx. 0.3 m diameter) specifically at the plasma membrane/cell-wall interface of the outer epidermal wall of auxin-treated segments. iv) Peeled segments fail to respond to auxin with proton excretion. This is in contrast to fusicoccin-induced proton excretion and growth which can also be readily demonstrated in the absence of the epidermis. However, peeled and nonpeeled segments show the same sensitivity to protons with regard to the induction of acid-mediated in-vivo elongation and cell-wall extensibility. The observed threshold at pH 4.5–5.0 is too low to be compatible with a second messenger function of protons also in the growth response of the inner tissues. Organ growth is described in terms of a physical model which takes into account tissue tension and extensibility of the outer epidermal wall as the decisive growth parameters. This model states that the wall pressure increment, produced by tissue tension in the outer epidermal wall, rather than the pressure acting on the inner-tissue walls, is the driving force of growth.Abbreviations and symbols E el, E pl elastic and plastic in-vitro cell-wall extensibility, respectively - E tot E el+E pl - FC fusicoccin - IAA indole-3-acetic acid - IT inner tissue - ITW inner-tissue walls - OEW outer epidermal wall - osmotic pressure - P wall pressure - water potential  相似文献   

2.
U. Kutschera  P. Schopfer 《Planta》1986,169(3):437-442
Plastic and elastic in-vivo extensibilities (Epl and Eel, respectively) of cell walls of growing maize (Zea mays L.) coleoptile segments were measured by stretching living tissue at constant force (creep test) in an extensiometer. The linear displacement transducer used as a measuring device permits the determination of load-induced extensions in the range of 0–1% of the segment's length, leading to a minimal disturbance of the hydraulic parameters of the tissue and allowing the measurement of unidirectional cell-wall creep at virtually unchanged turgor and metabolic activity. A rein-vestigation of the time-course of indole-3-acetic acid-promoted and abscisic acid-inhibited wall loo-sening revealed that the in-vivo creep test yields results very similar to those obtained previously with the in-vitro creep test [Kutschera and Schopfer, 1986, Planta 167, 527–535]. The hormones affect elongation rate and Epl in a closely correlated manner both in step-up as well as step-down growth changes whereas Eel remains unaltered. It is argued that both hormones influence growth by modifying Epl of the outer epidermis and that this effect can be quantitatively measured, in relative units, by either the in-vivo or the in-vitro creep test.Abbreviations ABA ±abscisic acid - Eel, Epl elastic and plastic in-vivo cell-wall extensibility, respectively - Etot Eel+Epl - IAA indole-3-acetic acid; m, cell-wall yielding coefficient  相似文献   

3.
Turgor (p) and osmotic potential (s) in epidermal and mesophyll cells, in-situ xylem water potential (-xyl) and gas exchange were measured during changes of air humidity and light in leaves ofTradescantia virginiana L., Turgor of single cells was determined using the pressure probe. Sap of individual cells was collected with the probe for measuring the freezing-point depression in a nanoliter osmometer. Turgor pressure was by 0.2 to 0.4 MPa larger in mesophyll cells than in epidermal cells. A water-potential gradient, which was dependent on the rate of transpiration, was found between epidermis and mesophyll and between tip and base of the test leaf. Step changes of humidity or light resulted in changes of epidermal and mesophyll turgor (p-epi, p-mes) and could be correlated with the transpiration rate. Osmotic potential was not affected by a step change of humidity or light. For the humidity-step experiments, stomatal conductance (g) increased with increasing epidermal turgor.g/p-epi appeared to be constant over a wide range of epidermal turgor pressures. In light-step experiments this type of response was not found and stomatal conductance could increase while epidermal turgor decreased.Symbols E transpiration - g leaf conductance - w leaf/air vapour concentration difference - -epi water potential of epidermal cells - -mes water potential of mesophyll cells - -xyl water potential of xylem - p-epi turgor pressure of epidermal cells - p-mes turgor pressure of mesophyll cells - s-epi osmotic potential of epidermal cells - s-mes osmotic potential of mesophyll cells  相似文献   

4.
Studies on animal material have revealed that changes in the mitochondrial permeability transition pore (PTP), which cause a reduction in the mitochondrial transmembrane potential (m) followed by release of cytochrome c, belong to the earliest manifestations of some types of apoptosis. We have attempted to monitor the m of mitochondria during programmed cell death (PCD) of the secretory tapetum using JC-1, a fluorochrome dye that detects mitochondrial membrane potential and to relate changes in this potential to mitochondrial ultrastructure. Analysis of tapetal cells isolated from Ornithogalum virens anthers revealed that the m of mitochondria in the tapetal cells alters during development; the change, however, is not uniform in the mitochondrial population within a single tapetal cell. In young tapetal cells, at the tetrad stage, we detected only the red fluorescence of JC-1 aggregates in all tapetal mitochondria, which indicates highly negative m. In an advanced stage of PCD at the late microspore stage, in each tapetal cell we detected both mitochondria with red (as formerly) and mitochondria with green fluorescence. The green fluorescence of JC-1 monomers indicates mitochondria with depolarised membranes. These changes in m are related to observed changes in mitochondria ultrastructure. This is the first documentation of intracellular heterogeneity of m during anther tapetum development. Alteration in m suggests a relationship between mitochondrial function and PCD processes in tapetal cells.  相似文献   

5.
U. Lüttge 《Planta》1986,168(2):287-289
Measurements of water uptake and transpiration, during the dark period of plants having Crassulacean acid metabolism (CAM) allow calculation of leaf-volume changes (V). Nocturnal leaf-volume changes of CAM plants have also been reported in the literature on the basis of waterdisplacement measurements. A third way of estimation is from measurements of turgor changes and cellular water-storage capacity using the pressure probe, cytomorphometry and the Scholander pressure chamber. An extension of the interpretation of results reported in the literature shows that for leaf succulent CAM plants the three different approaches give similar values of V ranging between 2.3 and 10.7% (v/v). It is evident that nocturnal malic-acid accumulation osmotically drives significant water storage in CAM leaf tissue.Abbreviations and symbols Cc water-storage capacity - E transporation (evaporational water loss) - P turgor pressure - U water uptake - V cell volume - cell-wall elastic modulus - osmotic pressure - CAM Crassulacean acid metabolism  相似文献   

6.
Clostridium sporogenes MD1 grew rapidly with peptides and amino acids as an energy source at pH 6.7. However, the proton motive force (p) was only –25 mV, and protonophores did not inhibit growth. When extracellular pH was decreased with HCl, the chemical gradient of protons (ZpH) and the electrical membrane potential () increased. The p was –125 mV at pH 4.7, even though growth was not observed. At pH 6.7, glucose addition did not cause an increase in growth rate, but increased to –70 mV. Protein synthesis inhibitors also significantly increased . Non-growing, arginine-energized cells had a of –80 mV at pH 6.7 or pH 4.7, but was not detected if the F1F0 ATPase was inhibited. Arginine-energized cells initiated growth if other amino acids were added at pH 6.7, and and ATP declined. At pH 4.7, ATP production remained high. However, growth could not be initiated, and neither nor the intracellular ATP concentration declined. Based on these results, it appears that C. sporogenes MD1 does not need a large p to grow, and p appears to serve as a mechanism of ATP dissipation or energy spilling.Mandatory disclaimer: Proprietary or brand names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product, and exclusion of others that may be suitable.  相似文献   

7.
Samples of the Clusiaceae generaClusia, Oedematopus andDystovomita were collected at various sites and different altitudes in northern and south-western Venezuela. Analyses of stable isotopes of carbon and hydrogen and of leaf-nitrogen levels were performed on the dried samples. Correlations among these variables, i.e. carbon isotope discrimination (), hydrogen isotope ratio (D) and N-levels, and with altitude were assessed. In the samples, where values of above 15 indicate predominant performance of C3 photosynthesis, there were slight tendencies of increasing , D and N-levels with increasing altitude and of increasing with increasing N. Although these correlations taken separately were not statistically significant, they support each other and indicate increasing transpiration and increased leaf-nutrient supply at increasing altitude. Performance of crassulacean acid metabolism (CAM) in species ofClusia appears to be restricted to altitudes below 1500 m a.s.l. There was a significant negative correlation of with altitude in the samples, where values of below 10 indicated predominant performance of CAM. This suggests that phases II and IV of CAM are progressively suppressed towards the upper altitudinal limit of CAM inClusia in northern Venezuela. It is concluded that among the large number of environmental factors and combinations thereof, which determine the expression of CAM inClusia and trigger C3-CAM transitions in C3/CAM intermediate species, low availability of water is the most important.  相似文献   

8.
Robert E. Cleland 《Planta》1984,160(6):514-520
The relationship between the plastic-extensibility values (PEx) obtained in the Instron technique and the growth parameter, wall extensibility () has been evaluated for Avena sativa L. coleoptile cell walls. The possibility that PEx is proportional to the growth rate rather than to has been eliminated by showing that turgor-driven changes in the growth rate do not cause comparable changes in PEx. For Avena coleoptiles, PEx appears to be a measure of the average over the previous 60–90 min rather than a measure of the instantaneous of the growth equation. This is indicated by the fact that while PEx and the growth rate start to change simultaneously after addition of indole-3-acetic acid or KCN, the growth rate reaches a new, constant value 60–90 min before a new plateau value of PEx is obtained. Similar results are obrained with soybean (Glycine max L.) hypocotyl walls, indicating that the relationship between PEx and the parameter is a general one, although the period over which is averaged differs from tissue to tissue. In addition, it is shown that PEx can be measured more than once on the same section; a new potential for plastic extension is regenerated whenever the force vectors are changed even slightly. It is concluded that PEx is a measure of those domains in the wall where a wall-loosening event has occurred which has not been eliminated by further wall synthesis or other biochemical events.Abbreviations and symbols DP Instron plastic compliance - IAA indole-3-acetic acid - PEx Instron plastic extensibility - instantaneous wall extensibility  相似文献   

9.
We have taken a systematic genetic approach to study the potential role of glutathione metabolism in aluminum (Al) toxicity and resistance, using disruption mutants available in Saccharomyces cerevisiae. Yeast disruption mutants defective in phospholipid hydroperoxide glutathione peroxidases (PHGPX; phgpx1 , phgpx2 , and phgpx3), were tested for their sensitivity to Al. The triple mutant, phgpx1 /2/3, was more sensitive to Al (55% reduction in growth at 300 M Al) than any single phgpx mutant, indicating that the PHGPX genes may collectively contribute to Al resistance. The hypersensitivity of phgpx3 to Al was overcome by complementation with PHGPX3, and all PHGPX genes showed increased expression in response to Al in the wild-type strain (YPH250), with maximum induction of approximately 2.5-fold for PHGPX3. Both phgpx3 and phgpx1/2/3 mutants were sensitive to oxidative stress (exposure to H2O2 or diamide). Lipid peroxidation was also increased in the phgpx1/2/3 mutant compared to the parental strain. Disruption mutants defective in genes for glutathione S-transferases (GSTs) (gtt1 and gtt2), glutathione biosynthesis (gsh1 and gsh2), glutathione reductase (glr1) and a glutathione transporter (opt1) did not show hypersensitivity to Al relative to the parental strain BY4741. Interestingly, a strain deleted for URE2, a gene which encodes a prion precursor with homology to GSTs, also showed hypersensitivity to Al. The hypersensitivity of the ure2 mutant could be overcome by complementation with URE2. Expression of URE2 in the parental strain increased approximately 2-fold in response to exposure to 100 M Al. Intracellular oxidation levels in the ure2 mutant showed a 2-fold (non-stressed) and 3-fold (when exposed-to 2 mM H2O2) increase compared to BY4741; however, the ure2 mutant showed no change in lipid peroxidation compared to the control. The phgpx1/2/3 and ure2 mutants both showed increased accumulation of Al. These findings suggest the involvement of PHGPX genes and a novel role of URE2 in Al toxicity/resistance in S. cerevisiae.Communicated by D.Y. Thomas  相似文献   

10.
Summary Profilin is a ubiquitous actin-monomer-binding protein. The protistPhysarum polycephalum contains two profilins, ProA and ProP, present in amoebae and plasmodia, respectively. We have used mutantSaccharomyces cerevisiae cells in an attempt to observe distinct functions for the two profilins. Profilin-deficient yeast cells (pfy1) have delocalized actin cortical patches, do not contain visible actin cables, have reduced mating efficiency and do not grow at 37 °C or in the presence of caffeine. Deletion of theSRV2 gene (srv2), coding for the adenylyl cyclase-associated protein, also results in an altered actin distribution and an inability to survive on rich medium. We found that the pfy1 and srv2 mutant phenotypes were corrected equally well by the overexpression of Physarum ProA or yeast Pfy1p profilins. The pfy1 cells overexpressing ProP have improved mating efficiency and a normal distribution of actin cortical patches. These cells, however, have barely detectable actin cables, do not grow at 37 °C, and are sensitive to caffeine. Also, the expression of ProP does not correct the growth defect of the srv2 cells. These results suggest that the two Physarum proteins are not functionally equivalent in yeast cells. No difference was detected in the affinity of ProA and ProP for poly-L-proline, while ProA has a slightly greater affinity than ProP for phosphatidylinositol 4,5-biphosphate.Abbreviations FITC tfluorescein isothiocyanate - PIP2 phosphatidylinositol 4,5-biphosphate - YPD yeast extract peptone dextrose  相似文献   

11.
U. Homeyer  G. Schultz 《Planta》1988,176(3):378-382
The energy-dependent transport of phenylalanine into isolated vacuoles of barley (Hordeum vulgare L.) mesophyll protoplasts has been studied by silicone-layer floatation filtering. The uptake of this aromatic amino acid into the vacuolar compartment is markedly increased by MgATP, showing saturation kinetics; the K m values were 0.5 mM for MgATP and 1.2 mM for phenylalanine. V max for phenylalanine transport was estimated to 140 nmol phenylalanine·(mg·Chl)-1·h-1. The transport shows a distinct pH optimum at 7.3 and is markedly inhibited by 40 mM nitrate. Azide (1 mM) and vanadate (400 M) had no or little effect on rates of transport while p-fluorophenylalanine seemed to be an effective inhibitor, indicating a possible competition at an amino-acid carrier. Ionophores such as valinomycin, nigericin or gramicidin were strong inhibitors of phenylalanine transport, indicating that this process is coupled to both the transmembrane pH gradient (pH) and the transmembrane potential ().Abbreviations and symbols BSA bovine serum albumin - Chl chlorophyll - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - pH transmembrane pH gradient - transmembrane potential  相似文献   

12.
Summary Microelectrode techniques were employed to study the mechanisms of the transepithelial voltage transients (V ms ) observed during transmural current clamps in the isolatedNecturus gallbladder. The results indicate that: a) part of V ms is due to a transepithelial resistance change (R t ), and part to a tissue emf change. b) R t is entirely caused by changes of the resistance of the paracellular pathway. At all current densities employed, the measured changes are probably due to changes in both fluid conductivity and width of the lateral intercellular spaces. At high currents, in addition to the effects on the lateral spaces, the resistance of other elements of the pathway (probably the limiting junction) drops, regardless of the direction of the current. c) The magnitude and polarity of the R t -independent transepithelial and cell membrane potential transients indicate that the largest emf change takes place at the basolateral membrane (E b ), with smaller changes at the luminal membrane (E a ) and the paracellular (shunt) pathway (E s ). It is shown that two-thirds of the transient are caused by E s , and one-third by (E b E a ). E s can be explained by a diffusion potential generated by a current-dependent NaCl concentration gradient across the tissue. E a and E b are caused by [K] changes, mainly at the unstirred layer in contact with the basolateral membrane.  相似文献   

13.
Phosphate uptake inLemna gibba G1: energetics and kinetics   总被引:2,自引:0,他引:2  
Phosphate uptake was studied by determining [32P]phosphate influx and by measurements of the electrical membrane potential in duckweed (Lemna gibba L.). Phosphate-induced membrane depolarization (E m ) was controlled by the intracellular phosphate content, thus maximal E m by 1 mM H2PO 4 - was up to 133 mV after 15d of phosphate starvation. The E m was strongly dependent on the extracellular pH, with a sharp optimum at pH 5.7. It is suggested that phosphate uptake is energized by the electrochemical proton gradient, proceeding by a 2H+/H2PO 4 - contransport mechanism. This is supported also by the fusicoccin stimulation of phosphate influx. Kinetics of phosphate influx and of E m , which represent mere plasmalemma transport, are best described by two Michaelis-Menten terms without any linear components.Abbreviations E m electrical membrane potential difference - E m phosphate-induced, maximal membrane depolarization - FW fresh weight  相似文献   

14.
The suitability of conductivity measurement for monitoring growth in plant cell culture has been tested using suspended cells and genetically-transformed hairy roots of Atropa belladonna, and aggregated cells of Solanum aviculare. Other researchers have proposed that a constant ratio exists between increase in cell concentration (x) and decrease in medium conductivity (C). In all cases studied in this work, x/C was not constant over a wide range of cell densities tested in batch culture. With cell suspensions, x/C decreased continuously during the growth phase from 3.4 to 2.5 g cm l–1 mS–1. For the hairy roots, the ratio between x and C varied by as much as 4-fold during growth. The relationship between conductivity and growth for S. aviculare aggregates was found to vary depending on inoculum density. No simple correlation between conductivity change and cell growth was apparent for the plant-cell systems studied.  相似文献   

15.
A new guillotine thermocouple psychrometer was used to make continuous measurements of water potential before and after the excision of elongating and mature regions of darkgrown soybean (Glycine max L. Merr.) stems. Transpiration could not occur, but growth took place during the measurement if the tissue was intact. Tests showed that the instrument measured the average water potential of the sampled tissue and responded rapidly to changes in water potential. By measuring tissue osmotic potential ( s ), turgor pressure ( p ) could be calculated. In the intact plant, s and p were essentially constant for the entire 22 h measurement, but s was lower and p higher in the elongating region than in the mature region. This caused the water potential in the elongating region to be lower than in the mature region. The mature tissue equilibrated with the water potential of the xylem. Therefore, the difference in water potential between mature and elongating tissue represented a difference between the xylem and the elongating region, reflecting a water potential gradient from the xylem to the epidermis that was involved in supplying water for elongation. When mature tissue was excised with the guillotine, s and p did not change. However, when elongating tissue was excised, water was absorbed from the xylem, whose water potential decreased. This collapsed the gradient and prevented further water uptake. Tissue p then decreased rapidly (5 min) by about 0.1 MPa in the elongating tissue. The p decreased because the cell walls relaxed as extension, caused by p , continued briefly without water uptake. The p decreased until the minimum for wall extension (Y) was reached, whereupon elongation ceased. This was followed by a slow further decrease in Y but no additional elongation. In elongating tissue excised with mature tissue attached, there was almost no effect on water potential or p for several hours. Nevertheless, growth was reduced immediately and continued at a decreasing rate. In this case, the mature tissue supplied water to the elongating tissue and the cell walls did not relax. Based on these measurements, a theory is presented for simultaneously evaluating the effects of water supply and water demand associated with growth. Because wall relaxation measured with the psychrometer provided a new method for determining Y and wall extensibility, all the factors required by the theory could be evaluated for the first time in a single sample. The analysis showed that water uptake and wall extension co-limited elongation in soybean stems under our conditions. This co-limitation explains why elongation responded immediately to a decrease in the water potential of the xylem and why excision with attached mature tissue caused an immediate decrease in growth rate without an immediate change in p Abbreviations and symbols L tissue conductance for water - m wall extensibility - Y average yield threshold (MPa) - o water potential of the xylem - p turgor pressure - s osmotic potential - w water potential of the elon gating tissue  相似文献   

16.
To identify potential diets for rearing captive freshwater mussels, the protein, carbohydrate (CHO), and lipid contents of two green algae, Neochloris oleoabundans, Bracteacoccus grandis, and one diatom, Phaeodactylum tricornutum, were compared at different growth stages. The fatty acid and sterol composition were also identified. Protein was greatest (55–70%) for all species at late log growth stage (LL), and declined in late stationary (LS) growth. CHO was greatest at LS stage for all species (33.9–56.4% dry wt). No significant change in lipid levels occurred with growth stage, but tended to increase in N. oleoabundans. Mean lipid content differed significantly in the order: N. oleoabundans > P. tricornutum > B. grandis. Total fatty acids (TFA) were higher at LS stage compared to other stages in the two green algae, and stationary stage in the diatom. Mean unsaturated fatty acids (UFA) as %TFA was significantly higher in N. oleoabundans than the other species. The green algae contained high percentages of C-18 polyunsaturated fatty acids (PUFAs), while the diatom was abundant in C-16 saturated and mono-unsaturated fatty acids and C-20 PUFA fatty acids. Growth stage had no effect on sterol concentration of any species. B. grandis showed significantly higher sterol levels than the other species except P. tricornutum at S stage. B. grandis was characterized by predominantly 5, C-29 sterols, while N. oleoabundans synthesized 5,7, 5,7,22 , and 7, C-28 sterols. P. tricornutum produced primarily a 5,22, C-28 sterol, and a small amount of a 7,22, C-28 sterol.  相似文献   

17.
Carbon isotope discrimination () has been suggested as a selection criterion to improve transpiration efficiency (W) in bread wheat (Triticum aestivum L.). Cultivars Chinese Spring with low A (high W) and Yecora Rojo with high (low W) were crossed to develop F1, F2, BC1, and BC2 populations for genetic analysis of and other agronomic characters under well-watered (wet) and water-stressed (dry) field conditions. Significant variation was observed among the generations for only under the wet environment. Generation x irrigation interactions were not significant for . Generation means analysis indicated that additive gene action is of primary importance in the expression of under nonstress conditions. Dominance gene action was also detected for , and the direction of dominance was toward higher values of . The broad-sense and the narrow-sense heritabilities for were 61 % and 57% under the wet conditions, but were 48% and 12% under the draughted conditions, respectively. The narrow-sense heritabilities for grain yield, above-ground dry matter, and harvest index were 36%, 39%, and 60% under the wet conditions and 21%, 44%, and 20% under dry conditions, respectively. The significant additive genetic variation and moderate estimate of the narrow-sense heritability observed for indicated that selection under wet environments should be effective in changing in spring bread wheat.  相似文献   

18.
The effects of anions on inorganicpyrophosphate-dependent H+-transport in isolated tonoplast vesicles from oat (Avena sativa L.) roots were determined. Both fluorescent and radioactive probes were used to measure formation of pH gradients and membrane potential in the vesicles. Pyrophosphate hydrolysis by the H+-translocating pyrophosphatase was unaffected by anions. Nonetheless, some anions (Cl-, Br- and NO3-) stimulated H+-transport while others (malate, and iminodiacetate) did not. These differential effects were abolished when the membrane potential was clamped at zero mV using potassium and valinomycin. Stimulation of H+-transport by Cl- showed saturation kinetics whereas that by NO3- consisted of both a saturable component and a linear phase. For Cl- and NO3-, the saturable phase had a K m of about 2 mol·m-3. The anions that stimulated H+-transport also dissipated the membrane potential (.) generated by the pyrophosphatase. It is suggested that the stimulatory anions cross the tonoplast in response to the positive generated by the pyrophosphatase, causing dissipation of and stimulation of pH, as expected by the chemiosmotic hypothesis. The work is discussed in relation to recent studies of the effects of anions on ATP-dependent H+-transport at the tonoplast, and its relevance to anion accumulation in the vacuole in vivo is considered.Abbreviations and symools BTP 1,3-bis[tris(hydroxymethyl)-methylamino]-propane - EGTA ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - Hepes 4-(2-hydroxyethyl)-1-piperazine ethanesulphonic acid - IDA iminodiacetate - membrane potential - pH pH gradient - PPase inorganic pyrophosphatase - PPi morganic pyrophosphate  相似文献   

19.
Plant growth substances (PGSs) were analysed in liquid endosperm of black walnut using HPLC and an ELISA procedure. Of all the PGSs studied, we show no GA3, low levels of cytokinins (io6A, i6Ade, i6Ado) and ABA, and very high level of IAAAbbreviations ABA Abscisic acid: - Ade Adenine: - GA3 Gibberellic acid: - IAA Indole-3-acetic acid: - i6Ade N6(2-1) adenine: - i6Ado N6(2-isopentenyl adenosine: - io6A Zeatin riboside:  相似文献   

20.
Summary The excision of a Ds-like transposable element (Ac) is mediated in trans by the transposable element Ac or its derivatives in Petunia protoplasts cotransfected with two plasmid DNAs. Excision restores the activity of the -glucuronidase (GUS) gene that is otherwise shut off by the presence of Ac in its leader sequence. A transient expression assay (histochemical test) is used to detect the -glucuronidase activity at the protoplast level. The number of blue-stained protoplasts is a measure of the excision frequency. With Ac alone a near-zero background of GUS activity is detected, which is weakly enhanced by the presence, in trans, of either the wild-type Ac or the coding region (ORFa) transcribed from the 2 promoter of Agrobacterium tumefaciens TR-DNA. A strong enhancement is observed when a truncated Ac coding region, also under the control of the 2 promoter, is supplied in trans. The truncated version has ATG10 at codon 103 in frame with ORFa and is preceded by 7 out-of-frame ATGs. The assay is quick and well suited for detection of excision frequencies above the value obtained with the wild-type Ac. The presence of empty donor sites following excision can be demonstrated by PCR amplification and direct sequencing of the appropriate DNA fragment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号