首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Na(+)-K+ ATPase activity of the canine tracheal smooth muscle membrane is responsible for the electrogenic pumping of Na+ and K+ ions. It has been shown that this activity results in muscle relaxation. Based on the results of the current study, we suggest that prolonged electrical stimulation induces increased Na(+)-K+ ATPase activity in isolated tracheal smooth muscle. Tracheal smooth muscle pretreated with prolonged electrical stimulation developed graded mechanical activity when subsequently treated with histamine, serotonin, acetylcholine, or 80 mM K+. This increased isometric tension was interrupted by rhythmic activity, which was elicited by histamine or serotonin but not by acetylcholine or 80 mM K+ stimulation. The spontaneous phasic activity was not inhibited by atropine or propranolol but was totally inhibited by 10(-6) M ouabain. These results suggested that the relaxation phase of rhythmic contraction in response to histamine and serotonin stimulation could be the result of stimulated Na(+)-K+ ATPase activity.  相似文献   

2.
Propranolol, in the presence of calcium, causes marked K efflux from human red blood cells (high K, low Na). The studies reported here indicate this effect of propranolol is specific for K and does not represent a nonspecific permeability increase for intracellular cations to leave the cell. Amphotericin-treated human RBC's (high Na, low K) and dog RBC's (high Na, low K) both gain K and increase in size when incubated in a K-medium containing propranolol and calcium. No effect was noted when cat RBC's (high Na, low K) were similarly treated. Propranolol, independent of added calcium, also inhibited the normally increased Na efflux observed when dog RBC's are suspended in K-medium. These species differences in response to propranolol thus may serve as a focus for elucidating the mechanism by which this drug alters normal membrane physiology. The unique drug effect on Na permeability of canine erythrocytes also may be a useful probe for the study of dog RBC volume regulation.  相似文献   

3.
To assess the possibility of stimulating Ca2+-activated K+ channels, marine fish erythrocytes were incubated at 20-22 degrees C in saline containing a Ca2+-ATPase inhibitor (orthovanadate), a Ca2+ ionophore (A23187), propranolol or Pb2+. Incubation of the cells for up to 2 h under control conditions or in the presence of 5 mM NH4VO3 and 1 mM Ca2+ did not affect the intracellular K+ and Na+ concentrations. About 50% cellular K+ was lost from erythrocytes incubated in the presence of 0.01 mM A23187, 1 mM EGTA and 0.4-1.0 mM Ca2+. There was a significant loss of cellular K+ after the addition of 0.05-0.2 mM propranolol to the incubation medium. The stimulatory effect of propranolol on the K+ efflux was independent of external Ca2+. Blockers of Ca2+ transport, verapamil and Co2+, caused only a small decrease in the K+ loss induced by propranolol. The treatment of erythrocytes with 1-2 microM Pb2+ led to a minor K+ loss, but at a Pb2+ concentration of 20-50 microM, about 70% cellular K+ was lost. The K+ efflux induced by propranolol or Pb2+ was completely blocked by 1 mM quinine. The induced K+ loss from the erythrocytes was accompanied by a slight increase in the intracellular Na+ concentration. These data indicate the possibility of inducing Ca2+- and Pb2+-activated potassium channels in erythrocytes of S. porcus. A distinctive feature of the cells is a high sensitivity to propranolol, which activates K+ channels in the absence of external Ca2+.  相似文献   

4.
1. The (Na+/K+)-ATPase activity of brown fat membranes is increased by norepinephrine, the physiological mediator of thermogenesis in this tissue. 2. This increased ATPase activity was inhibited approximately 50% by either propranolol (a beta-adrenergic blocker) or phentolamine (an alpha-blocker). 3. The alpha-agonist, phenylephrine and the beta-agonist, isoproterenol, also stimulated the ATPase activity. 4. That these latter effects were receptor-specific is supported by the finding that: (a) l(-)isoproterenol stimulation was inhibited by propranolol but not by phentolamine; (b) d(+)isoproterenol had no stimulatory effect on the ATPase activity; and (c) the l(-)phenylephrine-induced increase was inhibited by phentolamine but not by propranolol. 5. (-)norepinephrine, l(-)isoproterenol and l(-)phenylephrine all decreased the apparent Km for K+ of the (Na+/K+)-ATPase but did not alter the apparent Km for ATP or the Vmax of the reaction.  相似文献   

5.
The activation of Ca2+ -dependent K+ channel by propranolol or by ascorbate-phenazine methosulphate stimulates Na+ -dependent transport of alpha-aminoisobutyric acid. This stimulation arises from a membrane hyperpolarization due to the specific increase of membrane K+ conductance. The same treatment does not modify the Na+ -independent uptake of the norbornane amino acid.  相似文献   

6.
(1) (DL)-Propranolol and Ca2+ are shown to alter the transmembrane potential difference of Ehrlich ascites tumor cells as measured by means of the cyanine dye, 3,3'-dipropyl-2,2'-thiodicarbocyanine iodide, whose fluorescent intensity changes as a function of membrane potential. (2) The changes in membrane potential elicited by these agents are dependent of the external K+ concentration in a manner which suggest that the potential changes result from a specific increase in the permeability of the plasma membrane to K+. (3) Na+-dependent amino acid transport in the presence of propranolol can be modulated by varying the external K+ concentration (K+o). The initial rate of uptake is stimulated by propranolol at low K+o and inhibited at high K+o. The change in transport rate is nearly directly proportional to the natural logarithm of [K+]o in the presence of propranolol. (4) ATP depletion of the cells by preincubation with rotenone abolishes the changes in fluorescence and amino acid uptake seen with propranolol as a function of K+o. Restoration of cellular ATP with glucose in presence of Ca2+ restores both fluorescence and amino acid transport changes which occur in response to propranolol. (5) The fluorescence changes and amino acid transport changes in response to propranolol are pH dependent, with little effect seen at pH6. (6) It is concluded that the rate of Na+-dependent amino acid uptake is a function of membrane potential and is dependent on the electrochemical potential difference for Na+.  相似文献   

7.
Duck red cells exhibit specific volume-sensitive ion transport processes that are inhibited by furosemide, but not by ouabain. Swelling cells in a hypotonic synthetic medium activates a chloride-dependent, but sodium-independent, potassium transport. Shrinking cells in a hypertonic synthetic medium stimulates an electrically neutral co-transport of [Na + K + 2 Cl] with an associated 1:1 K/K (or K/Rb) exchange. These shrinkage-induced modes can also be activated in both hypo- and hypertonic solutions by beta-adrenergic catecholamines (e.g., norepinephrine). Freshly drawn cells spontaneously shrink approximately 4-5% when removed from the influence of endogenous plasma catecholamines, either by incubation in a catecholamine-free, plasma-like synthetic medium, or in plasma to which a beta-receptor blocking dose of propranolol has been added. This spontaneous shrinkage resembles the response of hypotonically swollen cells in that it is due to a net loss of KCl with no change in cell sodium. Norepinephrine abolishes the net potassium transport seen in both fresh and hypotonically swollen cells. Moreover, cells swollen in diluted plasma, at physiological pH and extracellular potassium, show no net loss of KCl and water ("volume-regulatory decrease") unless propranolol is added. Examination of the individual cation fluxes in the presence of catecholamines demonstrates that activation of [Na + K + 2Cl] co-transport with its associated K/Rb exchange prevents, or overrides, swelling-induced [K + Cl] co-transport. These results, therefore, cast doubt on whether the swelling-induced [K + Cl] system can serve a volume-regulatory function under in vivo conditions.  相似文献   

8.
This investigation was undertaken to clarify the mechanism of the stimulated--respiration caused by K+ or norepinephrine in brown adipose tissue. 1. The addition of 30 approximately 100 mM K+ stimulated remarkably oxygen uptake in brown adipose tissue, and similarly norepinephrine (0.1 or 1.0 mug/ml) caused a marked stimulation. 2. Even if Na+ in normal Ringer solution was replaced by Choline or Li+, oxygen uptake caused by K+ (30 mM) or norepinephrine (1.0 mug/ml) was unaffected. 3. K+ -induced oxygen uptake was not observed when a Ca2+ -deficient tissue was incubated in Ca2+ -free Ringer, while norepinephrine-induced oxygen uptake clearly observed. And the oxygen uptake of Ca2+ -deficient tissue due to K+ was recovered by the addition of 5 mM Ca2+. 4. Mn2+ (6 mM) or La3+ (10 mM) inhibited significantly oxygen uptake due to K+, but not oxygen uptake due to norepinephrine. 5. K+ -induced oxygen uptake was unaffected by 10(-4) or 10(-3)M ouabain, but norepinephrine-induced oxygen uptake was inhibited considerably by 10(-4)M ouabain. 6. The oxygen uptake due to K+ was unaffected by propranolol (33 muM), whereas that due to norepinephrine was significantly inhibited in the presence of propranolol. 7. In the tissue from reserpine-treated animal, the oxygen uptake caused by K+ was observed. According, from these positive results we are justified to suggest that K+ -induced oxygen uptake is dependent on the presence of Ca2+, and not always caused by catecholamines released secondarily from nerve terminal.  相似文献   

9.
The amount of ouabain bound to an enriched fraction of heart or kidney medulla is reduced by propranolol. The inhibitory effect is greater under conditions in which complex II formation is promoted. Similar concentrations of propranolol are able to produce a reduction in Na+, K+-ATPase activity, by reduction of the number of active sites without changes in ionic affinity. The lack of stereospecificity and the high concentrations (greater than 10(-4)M) required indicate that this effect is independent of beta adrenergic blockade. Effectiveness reduction of cardiac glycosides in the presence of propranolol could be due to inhibition of drug interaction with its receptor.  相似文献   

10.
11.
Regulation of rat brain (Na+ +K+)-ATPase activity by cyclic AMP   总被引:3,自引:0,他引:3  
The interaction between the (Na+ +K+)-ATPase and the adenylate cyclase enzyme systems was examined. Cyclic AMP, but not 5'-AMP, cyclic GMP or 5'-GMP, could inhibit the (Na+ +K+)-ATPase enzyme present in crude rat brain plasma membranes. On the other hand, the cyclic AMP inhibition could not be observed with purified preparations of (Na+ +K+)-ATPase enzyme. Rat brain synaptosomal membranes were prepared and treated with either NaCl or cyclic AMP plus NaCl as described by Corbin, J., Sugden, P., Lincoln, T. and Keely, S. ((1977) J. Biol. Chem. 252, 3854-3861). This resulted in the dissociation and removal of the catalytic subunit of a membrane-bound cyclic AMP-dependent protein kinase. The decrease in cyclic AMP-dependent protein kinase activity was accompanied by an increase in (Na+ +K+)-ATPase activity. Exposure of synaptosomal membranes containing the cyclic AMP-dependent protein kinase holoenzyme to a specific cyclic AMP-dependent protein kinase inhibitor resulted in an increase in (Na+ +K+)-ATPase enzyme activity. Synaptosomal membranes lacking the catalytic subunit of the cyclic-AMP-dependent protein kinase did not show this effect. Reconstitution of the solubilized membrane-bound cyclic AMP-dependent protein kinase, in the presence of a neuronal membrane substrate protein for the activated protein kinase, with a purified preparation of (Na+ +K+)-ATPase, resulted in a decrease in overall (Na+ +K+)-ATPase activity in the presence of cyclic AMP. Reconstitution of the protein kinase alone or the substrate protein alone, with the (Na+ +K+)-ATPase has no effect on (Na+ +K+)-ATPase activity in the absence or presence of cyclic AMP. Preliminary experiments indicate that, when the activated protein kinase and the substrate protein were reconstituted with the (Na+ +K+)-ATPase enzyme, there appeared to be a decrease in the Na+-dependent phosphorylation of the Na+-ATPase enzyme, while the K+-dependent dephosphorylation of the (Na+ +K+)-ATPase was unaffected.  相似文献   

12.
The comparative analysis of the kinetic properties of ouabain-sensitive Na+, K+ -ATPase activity of saponin-perforated blood lymphocytes of donors and patients with rheumatoid arthritis (RA) and ankylosing spondyloarthritis (AS) was carried out. When analyzing the alterations in hydrolase activity of the examined enzyme it was shown that in the blood lymphocytes of patients with RA and AS the primary active transport of Na+ and K+ ions is less intensive in comparison with practically healthy donors, but it is characterized by almost the same capacity as in donors. The affinity constant of Na+, K+ -ATPase for ATP in the blood lymphocytes in patients with RA and AS is greater 3.1 and 2.5 times, respectively, in comparison with healthy donor. It was found that in conditions of rheumatic pathology in immunocompetent cells the inhibition of Na+, K+ -ATPase activity is not related to the reduction of maximum reaction rate, but is related to the decrease of Na+, K+ -ATPase affinity to ATP. However, Mg2+ -binding center of Na+, K+ -ATPase in patients with RA and AS remains native. It was identified that the affinity constant of Na+, K+ -ATPase to Na+ ions in the blood lymphocytes of patients with RA and AS is 2.75 times lower than its value in healthy donors. Na+, K+ -ATPase of the blood lymphocytes of patients with RA and AS retains its native receptor properties and sensitivity to ouabain does not change.  相似文献   

13.
We have prepared human blood lymphocyte membrane vesicles of high purity in sufficient quantity for detailed enzyme analysis. This was made possible by the use of plateletpheresis residues, which contain human lymphocytes in amounts equivalent to thousands of milliliters of blood. The substrate specificity and the kinetics of the cofactor and substrate requirements of the human lymphocyte membrane Na+, K+-ATPase activity were characterized. The Na+, K+-ATPase did not hydrolyze ADP, AMP, ITP, UTP, GTP or TTP. The mean ATPase stimulated by optimal concentrations of Na+ and K+ (Na+, K+-ATPase) was 1.5 nmol of P(i) hydrolyzed, microgram protein-1, 30 min-1 (range 0.9-2.1). This activity was completely inhibited by the cardiac glycoside, ouabain. The K(m) for K+ was approximately 1.0 mM and the K(m) for Na+ was approximately 15 mM. Active Na+ and K+ transport and ouabain-sensitive ATP production increase when lymphocytes are stimulated by PHA. Na+, K+-ATPase activity must increase also to transduce energy for the transport of Na+ and K+. Some studies have reported that PHA stimulates the lymphocyte membrane ATPase directly. We did not observe stimulation of the membrane Na+, K+-ATPase when either lymphocytes or lymphocyte membranes were treated with mitogenic concentrations of PHA. Moreover, PHA did not enhance the reaction velocity of the Na+, K+-ATPase when studied at the K(m) for ATP, Na+, K+ OR Mg++, indicating that it does not alter the affinity of the enzyme for its substrate or cofactors. Thus, our data indicate that the increase in ATPase activity does not occur as a direct result of PHA action on the cell membrane.  相似文献   

14.
We measured the amounts of Rb+ ions (a K+ congener) as well as Na+ and K+ ions bound to the ATPase during the ATPase reaction at pH 7.5 and 0 degrees C. The affinity of the Na+-binding sites for three Na+ ions decreased markedly but that of the K+-binding sites for two K+ or Rb+ ions increased markedly upon formation of an ADP-insensitive phosphorylated intermediate. Furthermore, the present experiment did not give any indication of a change in the Hill coefficient of 2, and showed an increase in the affinity of the K+-binding sites for Rb+ ions of about 28 times upon the formation of an ADP-insensitive EP. The enzyme state with a high affinity for Rb+ was maintained after the disappearance of EP. When the ATPase was treated with N-ethylmaleimide (NEM), almost all the EP formed was ADP-sensitive. The formation of an ADP-sensitive EP with the NEM-treated enzyme induced no change in the affinities of the ATPase for Na+ and Rb+ ions.  相似文献   

15.
A potent inhibitor of (Na+ + K+)-ATPase activity was purified from Sigma equine muscle ATP by cation- and anion-exchange chromatography. The isolated inhibitor was identified by atomic absorption spectroscopy and proton resonance spectroscopy to be an inorganic vanadate. The isolated vanadate and a solution of V2O5 inhibit sarcolemma (Na+ + K+)-ATPase with an I50 of 1 micrometer in the presence of 1 mM ethyleneglycol-bis-(beta-aminoethylether)-N,N'-tetraacetic acid (EGTA), 145 mM NaCl, 6mM MgCl2, 15 mM KCl and 2 mM synthetic ATP. The potency of the isolated vanadate is increased by free Mg2+. The inhibition is half maximally reversed by 250 micrometer epinephrine. Equine muscle ATP was also found to contain a second (Na+ + K+)-ATPase inhibitor which depends on the sulfhydryl-reducing agent dithioerythritol for inhibition. This unknown inhibitor does not depend on free Mg2+ and is half maximally reversed by 2 micrometer epinephrine. Prolonged storage or freeze-thawing of enzyme preparations decreases the susceptibility of the (Na+ + K+)-ATPase to this inhibitor. The adrenergic blocking agents, propranolol and phentolamine, do not block the catecholamine reactivation. The inhibitors in equine muscle ATP also inhibit highly purified (Na+ + K+)-ATPase from shark rectal gland and eel electroplax. The inhibitors in equine muscle ATP have no effect on the other sarcolemmal ATPases, Mg2+-ATPase, Ca2+-ATPase and (Ca2+ + Mg2+)-ATPase.  相似文献   

16.
The (Na+ + K+)ATPase is inhibited by the bee venom polypeptide, melittin. KCl and NaCl protect the enzyme from melittin inhibition. Analysis of the K+ and Na+ protection against melittin inhibition suggested a kinetic model which was consistent with slowly reversible melittin binding, and mutually exclusive binding of melittin with K+ and Na+. Accordingly, in the absence of salt, the KI for melittin inhibition = 1.2 microM, and the protection by KCl occurs with a KA,KCl = 0.6 mM. The protection by NaCl occurs with a KA,NaCl = 15 mM. Melittin inhibition of enzyme activity is due to direct interactions with the (Na+ + K+)ATPase, as demonstrated by photolabeling with [125I]azidosalicylyl melittin, which labeled the alpha subunit, but not the beta subunit of the (Na+ + K+)ATPase. Melittin and KCl reduced the extent of labeling. In non-covalent binding studies using [125I]azidosalicylyl melittin, the stoichiometry of binding was 1.6 melittin per (Na+ + K+)ATPase. Ligand-induced conformational changes of FITC-labeled (Na+ + K+)ATPase were examined in the presence and absence of melittin. K+ alone or melittin alone caused a fluorescence intensity quenching consistent with formation of an E2 form of the enzyme. The NaCl-induced (E2----E1) fluorescence intensity changes were maximal when the enzyme was treated with K+. NaCl-induced fluorescence changes did not occur when the enzyme was treated with melittin in the absence of K+. However, when K+ was present before the addition of melittin, NaCl-induced fluorescence intensity increases were observed, which were dependent upon the concentration of K+ in the preincubation mixture. The results of the labeling and conformational studies support the kinetic model and suggest a mechanism for inhibition of ion pumps by (poly)peptides.  相似文献   

17.
The biological properties of Thromboxane B2 (TXB2) on isolated rat heart were studied. Its actions were compared with U-46619 a Thromboxane A2 mimetic compound and with isoproterenol. TXB2 induced a concentration-dependent increase in contractility, that was non-competitively antagonized by propranolol. In addition TXB2 inhibited Na+ + K+-ATPase activity at the same concentrations that influenced the mechanical activity. Inhibition of beta-adrenoceptors efficiently blocked the inhibitory action of TXB2 upon Na+ + K+-ATPase-activity. Isoproterenol simulated the positive inotropic effect and the inhibitory action of TXB2 on Na+ + K+-ATPase-activity. In contrast, U-46619 did not alter the basal dF/dt, neither the enzyme activity. The foregoing results suggest that TXB2 resembles the biological effect of catecholamines-inducing stimulation of myocardial contractility and inhibition of Na+ + K+-ATPase activity.  相似文献   

18.
The role of an endogenous inhibitor of Na+,K+-ATPase in hypertension observed in one-kidney NaCl-loaded rats treated with deoxycorticosterone (DOC) was examined. Ouabain or digitoxin, an exogenous inhibitor of Na+,K+-ATPase, failed to cause hypertension in one-kidney NaCl-loaded rats without DOC treatment or one-kidney DOC-treated rats without NaCl loading. Moreover, neither ouabain nor digitoxin acted additively with a putative endogenous inhibitor of Na+,K+-ATPase to augment hypertension observed in one-kidney NaCl-loaded rats treated with DOC. The results do not support the hypothesis that an endogenous inhibitor of Na+,K+-ATPase plays an important role in the development or maintenance of hypertension in this animal model.  相似文献   

19.
Kreydiyyeh SI 《Life sciences》2000,67(11):1275-1283
The effect of epinephrine on the activity of the Na+-K+ ATPase was studied in isolated rat jejunal cells. The activity of the pump was assessed by measuring the ouabain inhibitable K+ accumulation by the enterocytes using 86Rb as a tracer. Epinephrine stimulated significantly the Na+-K+ ATPase in crypt cells but not in villus cells. This effect was still apparent in presence of propranolol and prazocin but disappeared in presence of yohimbine. Amiloride did not affect the epinephrine-induced stimulation. Calcium channel blockers and dibutyryl cAMP enhanced the activity of the pump, and exerted respectively overlapping and additive effects with epinephrine, when added simultaneously. The calcium ionophore A23187 inhibited the basal activity of the ATPase and the stimulatory effect of epinephrine disappeared in its presence. These results suggest that epinephrine stimulates the Na+-K+ ATPase in jejunal crypt cells by activating alpha2 receptors and decreasing intracellular calcium, and not by altering cAMP levels.  相似文献   

20.
Stimulation by serum of cell proliferation in G1-arrested culture of Chinese hamster ovary cells CHO-K1 was accompanied by an early (during the first minutes) and delayed (2-10 h) activation of Na+,K+-ATPase and an increase in cell K+ content from 0.5-0.6 to 0.7-0.8 mmol per gram protein. Isoproterenol acted synergistically with serum in eliciting both early and delayed changes in K+ transport and in stimulating G1----S transition. Isoproterenol alone (without serum) induced a transient increase in K+ influx via Na+,K+-ATPase without changing the cell K+ content or having any mitogenic effect. Theophylline enhanced the serum-induced early activation of Na+,K+-ATPase but inhibited both the delayed increase in cell K+ and the G1----S transition. Early serum-induced increase in K+ transport was not affected by cycloheximide, whereas net accumulation of cell K+ was abolished by the drug. It is concluded that the early and the delayed activation of Na+,K+-ATPase induced by mitogens can be dissociated; the early ionic response is related to the primary transduction of membrane signal, whereas the delayed modulation of ion transport via Na+,K+-ATPase has another function and is associated with cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号