首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
完整基因结构的预测是当前生命科学研究的一个重要基础课题,其中一个关键环节是剪接位点和各种可变剪接事件的精确识别.基于转录组测序(RNA-seq)数据,识别剪接位点和可变剪接事件是近几年随着新一代测序技术发展起来的新技术策略和方法.本工作基于黑腹果蝇睾丸RNA-seq数据,使用TopHat软件成功识别出39718个果蝇剪接位点,其中有10584个新剪接位点.同时,基于剪接位点的不同组合,针对各类型可变剪接特征开发出计算识别算法,成功识别了8477个可变剪接事件(其中新识别的可变剪接事件3922个),包括可变供体位点、可变受体位点、内含子保留和外显子缺失4种类型.RT-PCR实验验证了2个果蝇基因上新识别的可变剪接事件,发现了全新的剪接异构体.进一步表明,RNA-seq数据可有效应用于识别剪接位点和可变剪接事件,为深入揭示剪接机制及可变剪接生物学功能提供新思路和新手段.  相似文献   

2.
Mutagenesis provides a powerful way of isolating genetic and physiological processes underlying complex traits, but this approach has rarely been applied to investigating water balance in insects. Here, we describe the isolation of a desiccation-resistant mutant of Drosophila melanogaster. Mutagenesis of a desiccation sensitive line resulted in the isolation of a mutant with two-fold higher resistance. The mutant was partially dominant and mapped to the second chromosome. Mutant flies showed lower rates of water loss, and had a higher water content, but showed no change in body mass, glycogen content, hemolymph volume or water content tolerated at death from desiccation. These physiological differences are contrasted to changes in lines of D. melanogaster mass selected for altered stress resistance. Isolation of this mutant provides an opportunity to identify a gene involved in water balance in insects.  相似文献   

3.
4.
Significant progress has been made in our understanding of the neurogenetics of circadian clocks in fruit flies Drosophila melanogaster. Several pacemaker neurons and clock genes have now been identified and their roles in the cellular and molecular clockwork established. Some recent findings suggest that the basic architecture of the clock is multi-oscillatory; the clock mechanisms in the ventral lateral neurons (LN(v)s) of the fly brain govern locomotor activity and adult emergence rhythms, while the peripheral oscillators located in antennal cells regulate olfactory rhythm. Among circadian phenomena exhibited by Drosophila, the egg-laying rhythm is unique in many ways: (i) this rhythm persists under constant light (LL), while locomotor activity and adult emergence become arrhythmic, (ii) its circadian periodicity is much longer than 24h, and (iii) while egg-laying is rhythmic under constant darkness, the expression of two core clock genes period (per) and timeless (tim), is non-oscillatory in the ovaries. In this paper, we review our current knowledge of the circadian regulation of egg-laying behavior in Drosophila, and provide some possible explanations for its self-sustained nature. We conclude by discussing the existing limitations in our understanding of the regulatory mechanisms and propose few approaches to address them.  相似文献   

5.
Antimicrobial peptides (AMPs) play an important role in the innate immunity of insects. In Drosophila 17 additional immune induced molecules (DIMs) were found in the haemolymph of adult flies upon septic injury. Previous studies using MALDI mass spectrometry combined with Edman degradation, detected AMPs and DIMs of a predominantly large size. By means of 2D-nanoLC ESI MS/MS, 43 DIMs were identified in this study from the haemolymph of Drosophila third instar larvae 12h after challenge with a mixture of Micrococcus luteus and Escherichia coli. Most peptides were derived from known AMP or DIM precursors, but only four peptides were purified and identified before. The majority of the peptides that we detected were smaller in size. Interestingly, two previously unknown peptide precursors were found and hereby related to immune defense. These include CG7738 and CG32185. Many of the identified peptides are post-translationally modified by an N-terminal pyroglutamic acid and/or a C-terminal amide. Haemolymph of control larvae was treated in the same way and revealed only one peptide.  相似文献   

6.
Insect endosymbionts often influence host nutrition but these effects have not been comprehensively investigated in Wolbachia endosymbionts that are widespread in insects. Using strains of Drosophila melanogaster with the wMel Wolbachia infection, we showed that Wolbachia did not influence adult starvation resistance. Wolbachia also had no effect on larval development time or the size of emerging adults from a low nutrition medium. While Wolbachia may influence the expression of heat shock proteins, we found that there was no effect on adult heat resistance when tested in terms of survival or virility following heat stress. The absence of nutrition or stress effects suggests that other processes maintain wMel frequencies in natural populations of Drosophila melanogaster.  相似文献   

7.
We examined the association between body mass and metabolic rate in Drosophila melanogaster under a variety of conditions. These included comparisons of body mass and metabolic rate in flies from different laboratory lines measured at different ages, over different metabolic sampling periods, and comparisons using wet versus dry mass data. In addition, the relationship between body mass and metabolic rate was determined for flies recently collected from wild populations. In no case was there a significant correlation between body mass and metabolic rate. These results indicate that care must be taken when attempting to account for the effects of body mass on metabolic rate. Expressing such data in mass-specific units may be an inappropriate method of attempting to control for the effects of differences in body mass.  相似文献   

8.
Segregation Distorter (SD) is an autosomal meiotic drive gene complex found worldwide in natural populations of Drosophila melanogaster. During spermatogenesis, SD induces dysfunction of SD(+) spermatids so that SD/SD(+) males sire almost exclusively SD-bearing progeny rather than the expected 1:1 Mendelian ratio. SD is thus evolutionarily "selfish," enhancing its own transmission at the expense of its bearers. Here we review the molecular and evolutionary genetics of SD. Genetic analyses show that the SD is a multilocus gene complex involving two key loci-the driver, Segregation distorter (Sd), and the target of drive, Responder (Rsp)-and at least three upward modifiers of distortion. Molecular analyses show that Sd encodes a truncated duplication of the gene RanGAP, whereas Rsp is a large pericentromeric block of satellite DNA. The Sd-RanGAP protein is enzymatically wild type but mislocalized within cells and, for reasons that remain unclear, appears to disrupt the histone-to-protamine transition in drive-sensitive spermatids bearing many Rsp satellite repeats but not drive-insensitive spermatids bearing few or no Rsp satellite repeats. Evolutionary analyses show that the Sd-RanGAP duplication arose recently within the D. melanogaster lineage, exploiting the preexisting and considerably older Rsp satellite locus. Once established, the SD haplotype collected enhancers of distortion and suppressors of recombination. Further dissection of the molecular genetic and cellular basis of SD-mediated distortion seems likely to provide insights into several important areas currently understudied, including the genetic control of spermatogenesis, the maintenance and evolution of satellite DNAs, the possible roles of small interfering RNAs in the germline, and the molecular population genetics of the interaction of genetic linkage and natural selection.  相似文献   

9.
10.
11.
In all eukaryotes, the ribosomal RNA genes are stably inherited redundant elements. In Drosophila melanogaster, the presence of a Ybb(-) chromosome in males, or the maternal presence of the Ribosomal exchange (Rex) element, induces magnification: a heritable increase of rDNA copy number. To date, several alternative classes of mechanisms have been proposed for magnification: in situ replication or extra-chromosomal replication, either of which might act on short or extended strings of rDNA units, or unequal sister chromatid exchange. To eliminate some of these hypotheses, none of which has been clearly proven, we examined molecular-variant composition and compared genetic maps of the rDNA in the bb(2) mutant and in some magnified bb(+) alleles. The genetic markers used are molecular-length variants of IGS sequences and of R1 and R2 mobile elements present in many 28S sequences. Direct comparison of PCR products does not reveal any particularly intensified electrophoretic bands in magnified alleles compared to the nonmagnified bb(2) allele. Hence, the increase of rDNA copy number is diluted among multiple variants. We can therefore reject mechanisms of magnification based on multiple rounds of replication of short strings. Moreover, we find no changes of marker order when pre- and postmagnification maps are compared. Thus, we can further restrict the possible mechanisms to two: replication in situ of an extended string of rDNA units or unequal exchange between sister chromatids.  相似文献   

12.
It remains a central problem in population genetics to infer the past action of natural selection, and these inferences pose a challenge because demographic events will also substantially affect patterns of polymorphism and divergence. Thus it is imperative to explicitly model the underlying demographic history of the population whenever making inferences about natural selection. In light of the considerable interest in adaptation in African populations of Drosophila melanogaster, which are considered ancestral to the species, we generated a large polymorphism data set representing 2.1 Mb from each of 20 individuals from a Ugandan population of D. melanogaster. In contrast to previous inferences of a simple population expansion in eastern Africa, our demographic modeling of this ancestral population reveals a strong signature of a population bottleneck followed by population expansion, which has significant implications for future demographic modeling of derived populations of this species. Taking this more complex underlying demographic history into account, we also estimate a mean X-linked region-wide rate of adaptation of 6 × 10−11/site/generation and a mean selection coefficient of beneficial mutations of 0.0009. These inferences regarding the rate and strength of selection are largely consistent with most other estimates from D. melanogaster and indicate a relatively high rate of adaptation driven by weakly beneficial mutations.  相似文献   

13.
Compensation is a mechanism by which the X-chromosome nucleolus organizer region of Drosophila melanogaster can increase its ribosomal DNA content up to twofold. It occurs in somatic cells under specific genetic conditions and is mediated by a defined genetic site, the compensatory response locus. The In and various type I ribosomal DNA repeat units were separated by restriction endonuclease digestion. Comparison of the percentages of these repeat unit types between compensating and noncompensating genotypes showed the same distribution. Therefore no selective amplification of these repeat unit types occurs during ribosomal DNA compensation. These results demonstrate that two processes of rDNA amplification in somatic cells, compensation and independent rDNA polytenization, are exclusive events.This research was supported by NIH Grant GM 28008.  相似文献   

14.
Age-related changes in carbonylation of mitochondrial proteins were determined in mitochondria from the flight muscles of Drosophila melanogaster. Reactivity with antibodies against (i) adducts of dinitrophenyl hydrazone (DNP), commonly assumed to react broadly with derivatized carbonyl groups, (ii) malondialdehyde (MDA), or (iii) hydroxynonenal (HNE), was compared at five different ages of flies. MDA and HNE are carbonyl-containing products of lipid peroxidation, which can form covalent adducts with proteins. Specific objectives were to address the following inter-related issues: (1) what are the sources of adducts involved in protein carbonylation in mitochondria during aging; (2) is carbonylation by different adducts detectable solely by the DNP antibodies, as assumed widely; (3) can the adducts formed by lipid peroxidation products in vivo, be used as markers for monitoring age-associated changes in oxidative damage to proteins. The total amounts of immunoreactive proteins, detected by all three antibodies, were found to increase with age; however, the immunodensity of individual reactive bands and the magnitude of the increases were variable, and unrelated to the relative abundance of a protein. While some protein bands were strongly immunopositive for all three antibodies, others were quite selective. The amounts of high molecular weight cross-linked proteins (>200kDa) increased with age. In general, the anti-HNE antibody reacted with more protein bands compared to the anti-MDA or -DNP antibody. The results suggest that sources of the carbonyl-containing protein adducts vary and no single antibody reacts with all of them. Overall, the results indicate that HNE shows robust age-associated increases in adductation with mitochondrial proteins, and is a good marker for monitoring protein oxidative damage during aging.  相似文献   

15.
16.
The genotoxicity of bloom head (BHE) and leaf (LE) extracts from artichoke (Cynara scolymus L.), and their ability to modulate the mutagenicity and recombinogenicity of two alkylating agents (ethyl methanesulfonate – EMS and mitomycin C – MMC) and the intercalating agent bleomycin (BLM), were examined using the somatic mutation and recombination test (SMART) in Drosophila melanogaster. Neither the mutagenicity nor the recombinogenicity of BLM or MMC was modified by co- or post-treatment with BHE or LE. In contrast, co-treatment with BHE significantly enhanced the EMS-induced genotoxicity involving mutagenic and/or recombinant events. Co-treatment with LE did not alter the genotoxicity of EMS whereas post-treatment with the highest dose of LE significantly increased this genotoxicity. This enhancement included a synergistic increase restricted to somatic recombination. These results show that artichoke extracts promote homologous recombination in proliferative cells of D. melanogaster.  相似文献   

17.
Homologous recombination affects myriad aspects of genome evolution, from standing levels of nucleotide diversity to the efficacy of natural selection. Rates of crossing over show marked variability at all scales surveyed, including species-, population-, and individual-level differences. Even within genomes, crossovers are nonrandomly distributed in a wide diversity of taxa. Although intra- and intergenomic heterogeneities in crossover distribution have been documented in Drosophila, the scale and degree of crossover rate heterogeneity remain unclear. In addition, the genetic features mediating this heterogeneity are unknown. Here we quantify fine-scale heterogeneity in crossover distribution in a 2.1-Mb region of the Drosophila melanogaster X chromosome by localizing crossover breakpoints in 2500 individuals, each containing a single crossover in this specific X chromosome region. We show 90-fold variation in rates of crossing over at a 5-kb scale, place this variation in the context of several aspects of genome evolution, and identify several genetic features associated with crossover rates. Our results shed new light on the scale and magnitude of crossover rate heterogeneity in D. melanogaster and highlight potential features mediating this heterogeneity.  相似文献   

18.
Thioredoxins (Trx) participate in essential antioxidant and redox-regulatory processes via a pair of conserved cysteine residues. In dipteran insects like Drosophila and Anopheles, which lack a genuine glutathione reductase (GR), thioredoxins fuel the glutathione system with reducing equivalents. Thus, characterizing Trxs from these organisms contributes to our understanding of redox control in GR-free systems and provides information on novel targets for insect control. Cytosolic Trx of Drosophila melanogaster (DmTrx) is the first thioredoxin that was crystallized for X-ray diffraction analysis in the reduced and in the oxidized form. Comparison of the resulting structures shows rearrangements in the active-site regions. Formation of the C32-C35 disulfide bridge leads to a rotation of the side-chain of C32 away from C35 in the reduced form. This is similar to the situation in human Trx and Trx m from spinach chloroplasts but differs from Escherichia coli Trx, where it is C35 that moves upon change of the redox state. In all four crystal forms that were analysed, DmTrx molecules are engaged in a non-covalent dimer interaction. However, as demonstrated by gel-filtration analyses, DmTrx does not dimerize under quasi in vivo conditions and there is no redox control of a putative monomer/dimer equilibrium. The dimer dissociation constants K(d) were found to be 2.2mM for reduced DmTrx and above 10mM for oxidized DmTrx as well as for the protein in the presence of reduced glutathione. In human Trx, oxidative dimerization has been demonstrated in vitro. Therefore, this finding may indicate a difference in redox control of GR-free and GR-containing organisms.  相似文献   

19.
The Drosophila melanogaster ventral nerve cord derives from neural progenitor cells called neuroblasts. Individual neuroblasts have unique gene expression profiles and give rise to distinct clones of neurons and glia. The specification of neuroblast identity provides a cell intrinsic mechanism which ultimately results in the generation of progeny which are different from each other. Segment polarity genes have a dual function in early neurogenesis: within distinct regions of the neuroectoderm, they are required both for neuroblast formation and for the specification of neuroblast identity. Previous studies of segment polarity gene function largely focused on neuroblasts that arise within the posterior part of the segment. Here we show that the segment polarity gene midline is required for neuroblast formation in the anterior-most part of the segment. Moreover, midline contributes to the specification of anterior neuroblast identity by negatively regulating the expression of Wingless and positively regulating the expression of Mirror. In the posterior-most part of the segment, midline and its paralog, H15, have partially redundant functions in the regulation of the NB marker Eagle. Hence, the segment polarity genes midline and H15 play an important role in the development of the ventral nerve cord in the anterior- and posterior-most part of the segment.  相似文献   

20.
John Locke 《Genetica》1993,92(1):33-41
Position effect variegation in Drosophila melanogaster is associated with the inability of certain genes to be correctly expressed in a proportion of cells, giving a mosaic phenotype. The lack of expression is thought to be due to alterations in the gene's chromatin structure due to its proximity to a region of heterochromatin. Because of the difficulties involved, there is little biochemical data to support the intuitively appealing model of heterochromatin spreading used to explain this phenomenon.Differences in restriction fragment length were used to distinguish DNA regions from either normal (non-position affected) or rearranged (position affected) chromosomes so as to examine possible changes in gene copy number and the effects of endogenous nucleases. DNA sequences at the breakpoint of In (1)w m4, which variegates for the white gene, were assayed under conditions where the chromatin conformation was altered using second site modifier mutations (Su(var) or En(var)). No change in the DNA sequerice copy number was observed at either chromosome breakpoint, relative to wild type, when either suppressor or enhancer mutations were present. Therefore copy number change, through differential polyploidization or somatic gene loss, is not affected by Su(var) or En(var) induced changes in the chromatin conformation.Initial experiments showed a gross difference in the sensitivity of DNA to endogenous nucleases that appeared associated with Su(var) and En(var) mutations. En(var) mutation bearing samples appeared delayed in the digestion, relative to Su(var). This differential sensitivity seemed to be genome-wide as there was no detectable difference between either breakpoint of In(1)w m4 or the sequences on the homologous w - chromosome. However, after isogenizing the genetic background, the previously noted difference between the Su(var) and En(var) mutations was eliminated. In studies dealing with nuclease digestion of chromatin, the isogenization of genetic background is essential before meaningful comparisons can be made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号