首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《The Journal of cell biology》1984,98(4):1170-1177
We have studied the Fc receptor-mediated pinocytosis of immunoglobulin G (IgG)-containing immune complexes by mouse macrophages. IgG complexes were formed from affinity-purified rabbit dinitrophenyl IgG and dinitrophenyl modified BSA at molar ratios of 2.5-10:1. Both the specificity of binding and the fate of internalized receptors were analyzed using monoclonal and polyclonal anti-Fc receptor antibodies. Based on the susceptibility of surface-bound ligand to release by proteolysis, we have found that at 37 degrees C, 125I-labeled IgG complexes were rapidly internalized (t1/2 less than 2 min) and delivered to lysosomes; acid-soluble 125I was detectable in the growth medium within 5-10 min of uptake. However, kinetic evidence indicated that Fc receptors were not efficiently re-used for multiple rounds of ligand uptake. Instead, macrophages that were exposed continuously to saturating concentrations of IgG complexes exhibited a selective and largely irreversible removal of Fc receptors from the plasma membrane. This loss of surface receptors correlated with an increased rate of receptor turnover, determined by immune precipitation of Fc receptors from 125I-labeled macrophages. Thus, in contrast to the results obtained in the accompanying paper (I. Mellman, H. Plutner, and P. Ukkonen, 1984, J. Cell Biol. 98:1163-1169) using a monovalent ligand, these data indicate that the interaction of Fc receptors with polyvalent complexes leads to the degradation of both ligand and receptor following their delivery to lysosomes.  相似文献   

2.
Biosynthesis and intracellular transport of the mouse macrophage Fc receptor   总被引:11,自引:0,他引:11  
The membrane insertion, processing, and intracellular transport of the mouse macrophage Fc receptor for IgG1/IgG2b was studied using specific mono- and polyclonal anti-receptor antibodies. By immunoprecipitation from Triton X-114 lysates of radiolabeled J774 cells, we determined that the mature 60-kDa receptor is a transmembrane glycoprotein which is synthesized in the rough endoplasmic reticulum as a 53-kDa precursor. Digestion of the precursor with endo-beta-N-acetylglucosaminidase F demonstrated that the receptor consisted of a 37-kDa polypeptide to which four asparagine-linked oligosaccharides were attached. Proteinase K treatment of isolated microsomes indicated that the receptor also has a putative 15-kDa cytoplasmic domain apparently recognized by at least one anti-Fc receptor monoclonal antibody. An additional 15-kDa domain was found to be inaccessible to proteolysis from either side of the membrane. Pulse-chase experiments using [35S]methionine-, [3H]mannose-, and [3H]galactose-labeled cells showed that processing of the receptor's N-linked oligosaccharides occurred rapidly (t1/2 = 15 min) and resulted in the conversion of at least three of the chains to complex endo-beta-N-acetylglucosaminidase H-resistant forms. O-Linked oligosaccharides were not detected. Fc receptor was detected on the plasma membrane 30 min after its synthesis. Transport of newly synthesized receptors to the plasma membrane was slowed but not blocked by incubation of J774 cells at 20 degrees C or by the carboxylic ionophore monensin, although monensin completely inhibited the galactosylation of the receptor.  相似文献   

3.
Monoclonal and polyclonal antibodies were raised against a placenta plasma membrane protein preparation, which was obtained by fractionation on Blue B dye matrix and by HPLC-anionexchange, and which was shown to contain fibronectin receptors. Immunochemical and functional evidence showed that monoclonal antibody DH12 recognized the beta subunit of the human fibronectin receptor on fibroblasts. This monoclonal antibody reacted with two proteins in Western blots and in double immune precipitations of whole cell preparations. Only the higher Mr protein became labeled by surface iodination of intact fibroblasts. The lower Mr protein is thought to be an intracellular precursor of the beta subunit of the fibronectin receptor.  相似文献   

4.
Phagocytosis requires the internalization of a significant fraction of the plasma membrane and results in the intracellular deposition of large particles. We evaluated the effect of phagocytosis on the cellular distribution of recycling receptors and uptake of ligand to determine whether phagocytosis affects receptor behavior. Phagocytosis of zymosan, latex particles, or IgG-coated red blood cells by rabbit alveolar macrophages did not decrease the number of cell surface receptors for transferrin, alpha 2-macroglobulin X protease complexes, maleylated proteins, or mannosylated proteins. The number of surface receptors for transferrin was also unaltered in J774 cells, a macrophage-like cell line. In both cell types extensive phagocytosis did not affect the rate of receptor-mediated endocytosis or the distribution of receptors between the endosome and the cell surface. However, fluid phase pinocytosis was reduced by phagocytosis. The major reduction appeared to be not in the rate of internalization but rather in the delivery of fluid to the lysosome. These results demonstrate that internalization of a significant amount of the plasma membrane during phagocytosis does not diminish the number of receptors on the cell surface and has no effect on receptor-mediated ligand uptake.  相似文献   

5.
Clustering of macrophage Fc gamma receptors by multimeric immunoglobulin complexes leads to their internalization. Formation of small aggregates leads to endocytosis, whereas large particulate complexes induce phagocytosis. In RAW-264.7 macrophages, Fc gamma receptor endocytosis was found to be dependent on clathrin and dynamin and insensitive to cytochalasin. Clathrin also associates with nascent phagosomes, and earlier observations suggested that it plays an essential role in phagosome formation. However, we find that phagocytosis of IgG-coated large (> or =3 microm) particles was unaffected by inhibition of dynamin or by reducing the expression of clathrin using antisense mRNA but was eliminated by cytochalasin, implying a distinct mechanism dependent on actin assembly. The uptake of smaller particles (< or =1 microm) was only partially blocked by cytochalasin. Remarkably, the cytochalasin-resistant component was also insensitive to dominant-negative dynamin I and to clathrin antisense mRNA, implying the existence of a third internalization mechanism, independent of actin, dynamin, and clathrin. The uptake of small particles occurred by a process distinct from fluid phase pinocytosis, because it was not inhibited by dominant-negative Rab5. The insensitivity of phagocytosis to dominant-negative dynamin I enabled us to test the role of dynamin in phagosomal maturation. Although internalization of receptors from the plasma membrane was virtually eliminated by the K44A and S45N mutants of dynamin I, clearance of transferrin receptors and of CD18 from maturing phagosomes was unaffected by these mutants. This implies that removal of receptors from the phagosomal membrane occurs by a mechanism that is different from the one mediating internalization of the same receptors at the plasma membrane. These results imply that, contrary to prevailing notions, normal dynamin and clathrin function is not required for phagocytosis and reveal the existence of a component of phagocytosis that is independent of actin and Rab5.  相似文献   

6.
Fc receptor-mediated phagocytosis requires CDC42 and Rac1.   总被引:17,自引:0,他引:17       下载免费PDF全文
At the surface of phagocytes, antibody-opsonized particles are recognized by surface receptors for the Fc portion of immunoglobulins (FcRs) that mediate their capture by an actin-driven process called phagocytosis which is poorly defined. We have analyzed the function of the Rho proteins Rac1 and CDC42 in the high affinity receptor for IgE (FcepsilonRI)-mediated phagocytosis using transfected rat basophil leukemia (RBL-2H3) mast cells expressing dominant inhibitory forms of CDC42 and Rac1. Binding of opsonized particles to untransfected RBL-2H3 cells led to the accumulation of F-actin at the site of contact with the particles and further, to particle internalization. This process was inhibited by Clostridium difficile toxin B, a general inhibitor of Rho GTP-binding proteins. Dominant inhibition of Rac1 or CDC42 function severely inhibited particle internalization but not F-actin accumulation. Inhibition of CDC42 function resulted in the appearance of pedestal-like structures with particles at their tips, while particles bound at the surface of the Rac1 mutant cell line were enclosed within thin membrane protrusions that did not fuse. These phenotypic differences indicate that Rac1 and CDC42 have distinct functions and may act cooperatively in the assembly of the phagocytic cup. Inhibition of phagocytosis in the mutant cell lines was accompanied by the persistence of tyrosine-phosphorylated proteins around bound particles. Phagocytic cup closure and particle internalization were also blocked when phosphotyrosine dephosphorylation was inhibited by treatment of RBL-2H3 cells with phenylarsine oxide, an inhibitor of protein phosphotyrosine phosphatases. Altogether, our data show that Rac1 and CDC42 are required to coordinate actin filament organization and membrane extension to form phagocytic cups and to allow particle internalization during FcR-mediated phagocytosis. Our data also suggest that Rac1 and CDC42 are involved in phosphotyrosine dephosphorylation required for particle internalization.  相似文献   

7.
Plasma membrane expression as well as phagocytic capability of the C3b receptor (CR1) are under regulatory control. Phorbol esters are one class of agents which have been shown to influence both of these events. In this study, by using radiolabeled Fab fragments of a monoclonal anti-CR1 antibody to tag the receptor and acid elution of surface-bound Fab, we showed that both phorbol myristate acetate and phorbol dibutyrate induced internalization of the C3b receptor; this occurred in a dose- and time-dependent manner in the absence of occupancy of the receptor by ligand. This was shown to occur in neutrophils, monocytes, and macrophages. We also showed that phorbol esters enhanced CR1-dependent phagocytosis despite the presence of two-thirds fewer receptors present on the plasma membrane. However, fibronectin, another agent that influences phagocytosis, had no effect on receptor internalization. Phorbol ester internalization was temperature-dependent and was inhibitable by cytochalasins B and D. Inhibition of internalization was reversible when cytochalasin B was removed. Phorbol esters also induced increased detergent insolubility of CR1 with kinetics similar to those of receptor internalization. It is possible that association of CR1 with the cytoskeleton is important to the process of "activation" of CR1 in phagocytosis.  相似文献   

8.
We probed the (immunochemical) relationship between the recently discovered growth hormone binding protein in human plasma and the growth hormone receptor using monoclonal and polyclonal antibodies raised against rabbit liver growth hormone receptor. The human binding protein was recognized by these antibodies; its immunological crossreactivity compared to the rabbit receptor was 1-2%. These data suggest a) that the binding protein and the receptor are structurally related and b) that rabbit and human growth hormone receptors share some but not all epitopes.  相似文献   

9.
Antibody-dependent enhancement of virus infection is a process whereby virus-antibody complexes initiate infection of cells via Fc receptor-mediated endocytosis. We sought to investigate antibody-dependent enhancement of feline infectious peritonitis virus infection of primary feline peritoneal macrophages in vitro. Enhancement of infection was assessed, after indirect immunofluorescent-antibody labelling of infected cells, by determining the ratio between the number of cells infected in the presence and absence of virus-specific antibody. Infection enhancement was initially demonstrated by using heat-inactivated, virus-specific feline antiserum. Functional compatibility between murine immunoglobulin molecules and feline Fc receptors was demonstrated by using murine anti-sheep erythrocyte serum and an antibody-coated sheep erythrocyte phagocytosis assay. Thirty-seven murine monoclonal antibodies specific for the nucleocapsid, membrane, or spike proteins of feline infectious peritonitis virus or transmissible gastroenteritis virus were assayed for their ability to enhance the infectivity of feline infectious peritonitis virus. Infection enhancement was mediated by a subset of spike protein-specific monoclonal antibodies. A distinct correlation was seen between the ability of a monoclonal antibody to cause virus neutralization in a routine cell culture neutralization assay and its ability to mediate infection enhancement of macrophages. Infection enhancement was shown to be Fc receptor mediated by blockade of antibody-Fc receptor interaction using staphylococcal protein A. Our results are consistent with the hypothesis that antibody-dependent enhancement of feline infectious peritonitis virus infectivity is mediated by antibody directed against specific sites on the spike protein.  相似文献   

10.
The effect of murine IgG hybridoma antibodies directed against leukocyte antigens on the Fc receptor function of human cells was studied. For this purpose, the specific binding of 125I-labeled monomeric human IgG1 to a macrophage-like cell-line (U-937) was quantitated before and after incubation in the presence of murine monoclonal hybridoma antibodies. Four monoclonal hybridoma antibodies (A1G3, 23D6, 4F2, and 3A 10), each of which binds to different antigens on the surface of U-937 cells, rapidly and potently inhibited the specific binding of labeled IgG1 to these cells. Inasmuch as inhibition was mediated only by IgG antibodies with an intact Fc fragment and antibody activity against surface antigens found on U-937, inhibition appears to have resulted from the formation of a three-component complex composed of antibody bound by its Fab portion to antigen and by its Fc fragment to a Fc receptor. Equilibrium binding studies performed on treated cells confirmed that reduced Fc receptor-mediated binding was due to a reduction in the number of available receptors. Binding studies employing double isotope labeling methods demonstrated that about 0.5 to 1.0 Fc receptor was blocked for each molecule of intact antibody bound to a U-937 cell. Using several techniques, it was shown that most of the monoclonal antibody bound to cells and the Fc receptors blocked by antibody remained on the cell surface despite incubation at 37 degrees C for 3 hr. Thus, the loss of receptor function observed in these experiments was almost exclusively due to reversible receptor blockade rather than receptor internalization or degradation. The antibodies identified in these studies also markedly inhibited Fc receptors on one other human cell line (HL-60) as well as those on normal human peripheral blood monocytes.  相似文献   

11.
G-protein-coupled receptors and transporters in Saccharomyces cerevisiae are modified with ubiquitin in response to ligand biding. In most cases, the proteasome does not recognize these ubiquitinated proteins. Instead, ubiquitination serves to trigger internalization and degradation of plasma membrane proteins in the lysosome-like vacuole. A number of mammalian receptors and at least one ion channel undergo ubiquitination at the plasma membrane, and this modification is required for their downregulation. Some of these cell-surface proteins appear to be degraded by both the proteasome and lysosomal proteases. Recent evidence indicates that other proteins required for receptor internalization might also be regulated by ubiquitination, suggesting that ubiquitin plays diverse roles in regulating plasma membrane protein activity.  相似文献   

12.
Many bacterial surface receptors demonstrate a heterogeneous expression pattern among individual colonies. Methods have been developed to select bacteria expressing high levels of a stable surface receptor. This process is illustrated using a Streptococcus zooepidemicus isolate demonstrating a high level of Fc receptors for rat immunoglobulins. This strain was selected and expanded to obtain a bacterial isolate demonstrating approximately 100 fold greater reactivity with rat immunoglobulins than protein A positive Staphylococcus aureus or 30-40 fold higher reactivity for rat IgG than type III Fc receptor positive streptococcal group G strains. The optimal pH for rat IgG binding and the reactivity with rat IgG subclasses and certain rat monoclonal antibodies is described. The potential application and limitations of the selected rat Fc receptor positive bacterial strain to immunoassays based on the specificity of rat monoclonal and polyclonal antibodies is discussed.  相似文献   

13.
alpha-Bungarotoxin was used to identify an integral membrane protein in the plasma membrane of chick sympathetic neurons. The synthesis, insertion into the plasma membrane, and turnover of the alpha-bungarotoxin receptor were studied using isotopically labeled amino acids (2H, 13C, 15N) to directly label receptor molecules. Neurons incubated in medium containing dense amino acids continued to insert unlabeled receptors from a pool of previously synthesized molecules for 2 h. Density-labeled receptors began to appear in the plasma membrane after this 2-h period. Synthesis of receptors, but not insertion into the surface, was blocked by cycloheximide (100 microgram/ml). Neither colchicine (0.05 microgram/ml) of actinomycin D (5 microgram/ml) has any effect on alpha-bungarotoxin receptor synthesis or insertion. Autoradiographic studied revealed that receptors occur on growth cones, axons, and cell bodies of single neurons and explanted ganglia. The rate of insertion of newly synthesized receptors into the plasma membrane of axons extending from explanted sympathetic ganglia was approximately the same as that into the cell body portion of the ganglion. Cytochalasin B (2 microgram/ml) rapidly distrupted growth cones but had no effect on receptor insertion. These experiments suggested that the growth cone is not the sole or even the primary site for insertion of this membrane protein. The kinetics of turnover of the alpha-bungarotoxin receptor were a first-order exponential with t 1/2 = 11 h. Neurons that had their surface receptors labeled with 125I-alpha-bungarotoxin produced [125I]iodotyrosine. This process was inhibited by low temperature (23 degrees C) and also by a metabolic inhibitor. This is interpreted as evidence that receptors turn over by a mechanism in which they are internalized and then proteolytically degraded.  相似文献   

14.
When located in the endoplasmic reticulum (ER) membrane, B-cell receptor associated protein 31 (BAP31) is involved in the export of secreted proteins from the ER to the plasma membrane. In a previous study, we generated two monoclonal antibodies (mAbs), 297-D4 and 144-A8, that bound to surface molecules on human embryonic stem cells (hESCs), but not to surface molecules on mouse embryonic stem cells (mESCs). Subsequent studies revealed that the mAbs recognized BAP31 on the surface of hESCs. To investigate the membrane topology of BAP31 on the cell surface, we first examined the epitope specificity of 297-D4 and 144-A8, as well as a polyclonal anti-BAP31 antibody (α-BAP31). We generated a series of GST-fused BAP31 mutant proteins in which BAP31 was serially deleted at the C- terminus. GST-fused BAP31 mutant proteins were then screened to identify the epitopes targeted by the antibodies. Both 297-D4 and 144-A8 recognized C-terminal residues 208–217, while α-BAP31 recognized C-terminal residues 165–246, of BAP31 on hESCs, suggesting that the C-terminal domain of BAP31 is exposed on the cell surface. The polyclonal antibody α-BAP31 bound to mESCs, which confirmed that the C-terminal domain of BAP31 is also exposed on the surface of these cells. Our results show for the first time the novel membrane topology of cell surface-expressed BAP31 as the extracellular exposure of the BAP31 C-terminal domain was not predicted from previous studies.  相似文献   

15.
Elimination of defective alpha-factor pheromone receptors.   总被引:1,自引:0,他引:1       下载免费PDF全文
This report compares trafficking routes of a plasma membrane protein that was misfolded either during its synthesis or after it had reached the cell surface. A temperature-sensitive mutant form of the yeast alpha-factor pheromone receptor (ste2-3) was found to provide a model substrate for quality control of plasma membrane proteins. We show for the first time that a misfolded membrane protein is recognized at the cell surface and rapidly removed. When the ste2-3 mutant cells were cultured continuously at 34 degrees C, the mutant receptor protein (Ste2-3p) failed to accumulate at the plasma membrane and was degraded with a half-life of 4 min, compared with a half-life of 33 min for wild-type receptor protein (Ste2p). Degradation of both Ste2-3p and Ste2p required the vacuolar proteolytic activities controlled by the PEP4 gene. At 34 degrees C, Ste2-3p comigrated with glycosylated Ste2p on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating that Ste2-3p enters the secretory pathway. Degradation of Ste2-3p did not require delivery to the plasma membrane as the sec1 mutation failed to block rapid turnover. Truncation of the C-terminal cytoplasmic domain of the mutant receptors did not permit accumulation at the plasma membrane; thus, the endocytic signals contained in this domain are unnecessary for intracellular retention. In the pep4 mutant, Ste2-3p accumulated as series of high-molecular-weight species, suggesting a potential role for ubiquitin in the elimination process. When ste2-3 mutant cells were cultured continuously at 22 degrees C, Ste2-3p accumulated in the plasma membrane. When the 22 degrees C culture was shifted to 34 degrees C, Ste2-3p was removed from the plasma membrane and degraded by a PEP4-dependent mechanism with a 24-min half-life; the wild-type Ste2p displayed a 72-min half-life. Thus, structural defects in Ste2-3p synthesized at 34 degrees C are recognized in transit to the plasma membrane, leading to rapid degradation, and Ste2-3p that is preassembled at the plasma membrane is also removed and degraded following a shift to 34 degrees C.  相似文献   

16.
Mononuclear cells (MNC) treated with anti-CD36 Fab or F(ab')2 fragments and then stimulated with anti-rabbit (F(ab')2 displayed an oxidative burst, suggesting that the crosslinking of CD36 promotes signal transduction in the absence of an Fc receptor involvement. Moreover, intact anti-TSP mediates a weak oxidative burst in MNC, which was strongly enhanced upon pretreatment of monocytes (but not lymphocytes) with TSP. This response, however, was mediated by Fc receptors, not by an involvement of CD36. Other means of crosslinking cell-bound TSP and exposure of MNC to surface-bound TSP failed to promote an oxidative burst. Crosscompetition tests confirmed that the interaction site(s) of TSP with monocytes are distinct from the signal-promoting sites recognized by polyclonal and 3 monoclonal anti-CD36 antibodies.  相似文献   

17.
The turnover of plasma membrane proteins in primary rat hepatocyte cultures was examined by following the loss of polypeptides labeled in situ by lactoperoxidase-catalyzed iodination using 125I and 131I. Most plasma membrane proteins had similar rates of degradation, having a half-life of approximately 85 h. By in situ labeling via lactoperoxidase-catalyzed iodination, as well as metabolically labeling cells with L-[35S]methionine, the asialoglycoprotein receptor, a plasma membrane constituent, was identified and shown to exist in three forms which were structurally related. The turnover of receptor on the cell surface was examined by following the loss of iodinated cell surface receptor, while the turnover of total cellular receptor, including both surface and internally localized receptor was assayed by following the loss of receptor labeled metabolically with [35S]methionine. The turnover rate in both cases was approximately 20 h. Receptor-mediated endocytosis of asialoglycoproteins had no effect on the turnover of the plasma membrane proteins or receptor. Based on estimates of the rate of metabolism of the asialoglycoprotein ligand relative to the turnover rate of the receptor, we conclude each molecule of receptor can deliver about 1,000 molecules of ligand to the lysosome to be degraded.  相似文献   

18.
Endocytosis of the Fc receptor Fc gammaRIIA depends on a functional ubiquitin conjugation system, and the receptor becomes ubiquitylated upon ligand binding. Phosphorylation of tyrosines in Fc gammaRIIA by Src family kinases is thought to be the initiating event in its signaling. However, although the Src family kinase inhibitor PP1 inhibited both ligand-induced phosphorylation of Fc gammaRIIA and phagocytosis in ts20 cells expressing Fc gammaRIIA, it did not inhibit receptor ubiquitylation or endocytosis of soluble ligands. Conversely, genistein and the proteasomal inhibitor MG132 did not inhibit receptor phosphorylation but strongly inhibited both receptor ubiquitylation and endocytosis. A region of the receptor lying within the immunoreceptor tyrosine-based activation motif was found to be necessary for both ubiquitylation and endocytosis. Ubiquitylation occurs at the plasma membrane before internalization. Endocytosis of Fc gammaRIIA is dependent on clathrin but independent of the adaptor protein AP-2. These findings point to a novel mechanism for ubiquitylation and endocytosis of this immunoreceptor.  相似文献   

19.
It was tested whether the exposure to blood platelet thrombospondin (TSP) influences the function of monocytes. TSP-treated monocytes displayed luminol-enhanced chemiluminescence (CL) upon triggering with polyclonal or monoclonal anti-TSP. This response was mediated by an Fc receptor, since F(ab')2 fragments were without effect. Evidence is provided that a CL signal was induced only when antibodies bound to TSP and Fc receptors of the same monocyte. TSP-treated monocytes exerted enhanced CL to aggregated IgG when compared with untreated or albumin-treated cells, suggesting that TSP up-regulated the cells' capacity to mediate Fc receptor-dependent generation of reactive oxygen. A similar enhancement was observed when TSP-treated cells were stimulated with anti-CD36, or with fMLP. Upon stimulation of TSP-pretreated cells with monoclonal anti-fibrinogen (Fg), a much stronger enhancement was noted, which was similar in magnitude to that induced by anti-TSP. The effect of anti-Fg cannot be explained by a trace contamination of TSP with Fg alone. In contrast to receptor-mediated CL, PMA-induced and zymosan-induced CL were influenced little by TSP pretreatment. IgG-mediated phagocytosis was not enhanced in TSP-treated cells. Thus, TSP selectively modulates certain monocyte functions which could be of physiological relevance.  相似文献   

20.
A rat hybridoma producing a high-affinity IgG2a monoclonal antibody (B3B4) directed against against the murine lymphocyte IgE receptor (Fc epsilon R) was established by using purified Fc epsilon R from Fc epsilon R+ murine hybridoma B cells as immunogen. The monoclonal and polyclonal anti-Fc epsilon R inhibited the binding of IgE to the murine lymphocyte Fc epsilon R and were also used to isolate the Fc epsilon R. B3B4 specifically recognized only the 49-Kd Fc epsilon R on murine B lymphocyte as determined by immunoprecipitation and SDS-PAGE analysis. In addition to its reaction with intact Fc epsilon R, B3B4 also recognized Fc epsilon R fragments that were present in the culture media of Fc epsilon R+ hybridoma cells. The predominant fragments isolated were 38 Kd and 28 Kd by SDS-PAGE analysis. When tested for reactivity with other cell types, B3B4 was highly specific for murine B lineage cells in that it did not significantly react with Fc epsilon R on macrophages and T cells and, in addition, did not react with the high affinity mast cell Fc epsilon R. B3B4 completely blocked IgE rosetting, and a reciprocal inhibition of binding was seen in a dose-dependent fashion between IgE and B3B4, indicating a close proximity of the IgE and B3B4 binding sites. Saturation binding analysis indicated that the Fab' fragment of B3B4 bound to twice as many sites/cell as IgE, suggesting that there are two identical B3B4 determinants per 49-Kd Fc epsilon R or that the IgE binding site is formed by the association of at least two 49-Kd Fc epsilon R. However, unlike IgE, neither B3B4 nor F(ab')2-B3B4 nor Fab'-B3B4 were very effective in causing Fc epsilon R upregulation on murine hybridoma B cells; in fact, B3B4 prevented this upregulation when added in combination with IgE. These results suggest that a site-specific interaction provided only by IgE may be essential for ligand-specific upregulation. Both polyclonal and monoclonal antibodies will be useful in further studies concerning the functional relationship between the membrane Fc epsilon R and the soluble Fc epsilon R fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号