首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the efficiency of two hybridization techniques for the analysis of benthic bacterial community composition under varying sediment water content. Microcosms were set up with sediments from four European temporary rivers. Wet sediments were dried, and dry sediments were artificially rewetted. The percentage of bacterial cells detected by fluorescence in situ hybridization with fluorescently monolabeled probes (FISH) significantly increased from dry to wet sediments, showing a positive correlation with the community activity measured via incorporation of (3)H leucine. FISH and signal amplification by catalyzed reporter deposition (CARD-FISH) could significantly better detect cells with low activity in dried sediments. Through the application of an optimized cell permeabilization protocol, the percentage of hybridized cells by CARD-FISH showed comparable values in dry and wet conditions. This approach was unrelated to (3)H leucine incorporation rates. Moreover, the optimized protocol allowed a significantly better visualization of Gram-positive Actinobacteria in the studied samples. CARD-FISH is, therefore, proposed as an effective technique to compare bacterial communities residing in sediments with contrasting water content, irrespective of differences in the activity state of target cells. Considering the increasing frequencies of flood and drought cycles in European temporary rivers, our approach may help to better understand the dynamics of microbial communities in such systems.  相似文献   

2.
The absolute amount of microbial biomass and relative contribution of fungi and bacteria are expected to vary among types of organic matter (OM) within a stream and will vary among streams because of differences in organic matter quality and quantity. Common types of benthic detritus [leaves, small wood, and fine benthic organic matter (FBOM)] were sampled in 9 small (1st-3rd order) streams selected to represent a range of important controlling factors such as surrounding vegetation, detritus standing stocks, and water chemistry. Direct counts of bacteria and measurements of ergosterol (a fungal sterol) were used to describe variation in bacterial and fungal biomass. There were significant differences in bacterial abundance among types of organic matter with higher densities per unit mass of organic matter on fine particles relative to either leaves or wood surfaces. In contrast, ergosterol concentrations were significantly greater on leaves and wood, confirming the predominance of fungal biomass in these larger size classes. In general, bacterial abundance per unit organic matter was less variable than fungal biomass, suggesting bacteria will be a more predictable component of stream microbial communities. For 7 of the 9 streams, the standing stock of fine benthic organic matter was large enough that habitat-weighted reach-scale bacterial biomass was equal to or greater than fungal biomass. The quantities of leaves and small wood varied among streams such that the relative contribution of reach-scale fungal biomass ranged from 10% to as much as 90% of microbial biomass. Ergosterol concentrations were positively associated with substrate C:N ratio while bacterial abundance was negatively correlated with C:N. Both these relationships are confounded by particle size, i.e., leaves and wood had higher C:N than fine benthic organic matter. There was a weak positive relationship between bacterial abundance and streamwater soluble reactive phosphorus concentration, but no apparent pattern between either bacteria or fungi and streamwater dissolved inorganic nitrogen. The variation in microbial biomass per unit organic matter and the relative abundance of different types of organic matter contributed equally to driving differences in total microbial biomass at the reach scale.  相似文献   

3.
AIMS: We compared the applicability of catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH) and FISH to enumerate prokaryotic populations in ultra-oligotrophic alpine groundwaters and bottled mineral water METHODS AND RESULTS: Fluorescent oligonucleotide probes EUB338 and EUB338mix (EUB338/EUB338-II/EUB338-III) were used to enumerate bacteria and probes EURY806 and CREN537 for Euryarchaea and Crenarchaea, respectively. Improved detection of Planctomycetales by probe EUB338-II was tested using a different permeabilization step (proteinase K instead of lysozyme). Total detection efficiency of cells in spring water of four different alpine karst aquifers was on average 83% for CARD-FISH and only 15% for FISH. Applying CARD-FISH on bottled natural mineral waters resulted in an average total hybridization efficiency of 89%, with 78% (range 77-96%) bacteria and 11% (range 3-22%) identified as Archaea. CONCLUSIONS: CARD-FISH resulted in substantially higher recovery efficiency than FISH. Hence, CARD-FISH appears very suitable for the enumeration of specific prokaryotic groups in ground- and drinking water. SIGNIFICANCE AND IMPACT OF THE STUDY: This study represents the first evaluation of CARD-FISH on ultra-oligotrophic ground- and drinking water. Results are relevant for basic research and drinking water distributors. Archaea can comprise a significant fraction of the prokaryotic community in bottled mineral water.  相似文献   

4.
Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes is a method that is widely used to detect and quantify microorganisms in environmental samples and medical specimens by fluorescence microscopy. Difficulties with FISH arise if the rRNA content of the probe target organisms is low, causing dim fluorescence signals that are not detectable against the background fluorescence. This limitation is ameliorated by technical modifications such as catalyzed reporter deposition (CARD)-FISH, but the minimal numbers of rRNA copies needed to obtain a visible signal of a microbial cell after FISH or CARD-FISH have not been determined previously. In this study, a novel competitive FISH approach was developed and used to determine, based on a thermodynamic model of probe competition, the numbers of 16S rRNA copies per cell required to detect bacteria by FISH and CARD-FISH with oligonucleotide probes in mixed pure cultures and in activated sludge. The detection limits of conventional FISH with Cy3-labeled probe EUB338-I were found to be 370 ± 45 16S rRNA molecules per cell for Escherichia coli hybridized on glass microscope slides and 1,400 ± 170 16S rRNA copies per E. coli cell in activated sludge. For CARD-FISH the values ranged from 8.9 ± 1.5 to 14 ± 2 and from 36 ± 6 to 54 ± 7 16S rRNA molecules per cell, respectively, indicating that the sensitivity of CARD-FISH was 26- to 41-fold higher than that of conventional FISH. These results suggest that optimized FISH protocols using oligonucleotide probes could be suitable for more recent applications of FISH (for example, to detect mRNA in situ in microbial cells).  相似文献   

5.
Modified protocols of fluorescence in situ hybridization (FISH) and catalyze reporter deposition fluorescence in situ hybridization (CARD-FISH) were developed in order to detect bacteria in situ in calcified stromatolite biofilms. Smooth, well-preserved thin sections of calcified biofilms (~5 microm thin, vertical sectioning of ~1 cm deep) were obtained by cryo-sectioning using the adhesive tape-stabilization technique. A modified hybridization buffer was applied during hybridization to prevent calcite dissolution as well as false binding of oligonucleotide probes to the charged mineral surfaces. Particularly, bright and specific CARD-FISH signals allowed the detection of bacteria in intensively calcified biofilms even at low magnification, which is suitable for investigating millimeter- to centimeter-scale vertical distribution patterns of bacteria.  相似文献   

6.
We describe an approach to sort cells from coastal North Sea bacterioplankton by flow cytometry after in situ hybridization with rRNA-targeted horseradish peroxidase-labeled oligonucleotide probes and catalyzed fluorescent reporter deposition (CARD-FISH). In a sample from spring 2003 >90% of the cells were detected by CARD-FISH with a bacterial probe (EUB338). Approximately 30% of the microbial assemblage was affiliated with the Cytophaga-Flavobacterium lineage of the Bacteroidetes (CFB group) (probe CF319a), and almost 10% was targeted by a probe for the beta-proteobacteria (probe BET42a). A protocol was optimized to detach cells hybridized with EUB338, BET42a, and CF319a from membrane filters (recovery rate, 70%) and to sort the cells by flow cytometry. The purity of sorted cells was >95%. 16S rRNA gene clone libraries were constructed from hybridized and sorted cells (S-EUB, S-BET, and S-CF libraries) and from unhybridized and unsorted cells (UNHYB library). Sequences related to the CFB group were significantly more frequent in the S-CF library (66%) than in the UNHYB library (13%). No enrichment of beta-proteobacterial sequence types was found in the S-BET library, but novel sequences related to Nitrosospira were found exclusively in this library. These bacteria, together with members of marine clade OM43, represented >90% of the beta-proteobacteria in the water sample, as determined by CARD-FISH with specific probes. This illustrates that a combination of CARD-FISH and flow sorting might be a powerful approach to study the diversity and potentially the activity and the genomes of different bacterial populations in aquatic habitats.  相似文献   

7.
We tested a previously described protocol for fluorescence in situ hybridization of marine bacterioplankton with horseradish peroxidase-labeled rRNA-targeted oligonucleotide probes and catalyzed reporter deposition (CARD-FISH) in plankton samples from different lakes. The fraction of Bacteria detected by CARD-FISH was significantly lower than after FISH with fluorescently monolabeled probes. In particular, the abundances of aquatic Actinobacteria were significantly underestimated. We thus developed a combined fixation and permeabilization protocol for CARD-FISH of freshwater samples. Enzymatic pretreatment of fixed cells was optimized for the controlled digestion of gram-positive cell walls without causing overall cell loss. Incubations with high concentrations of lysozyme (10 mg ml(-1)) followed by achromopeptidase (60 U ml(-1)) successfully permeabilized cell walls of Actinobacteria for subsequent CARD-FISH both in enrichment cultures and environmental samples. Between 72 and >99% (mean, 86%) of all Bacteria could be visualized with the improved assay in surface waters of four lakes. For freshwater samples, our method is thus superior to the CARD-FISH protocol for marine Bacteria (mean, 55%) and to FISH with directly fluorochrome labeled probes (mean, 67%). Actinobacterial abundances in the studied systems, as detected by the optimized protocol, ranged from 32 to >55% (mean, 45%). Our findings confirm that members of this lineage are among the numerically most important Bacteria of freshwater picoplankton.  相似文献   

8.
Fluorescence in situ hybridization (FISH) with horseradish peroxidase (HRP)-labeled oligonucleotide probes and tyramide signal amplification, also known as catalyzed reporter deposition (CARD), is currently not generally applicable to heterotrophic bacteria in marine samples. Penetration of the HRP molecule into bacterial cells requires permeabilization procedures that cause high and most probably species-selective cell loss. Here we present an improved protocol for CARD-FISH of marine planktonic and benthic microbial assemblages. After concentration of samples onto membrane filters and subsequent embedding of filters in low-gelling-point agarose, no decrease in bacterial cell numbers was observed during 90 min of lysozyme incubation (10 mg ml−1 at 37°C). The detection rates of coastal North Sea bacterioplankton by CARD-FISH with a general bacterial probe (EUB338-HRP) were significantly higher (mean, 94% of total cell counts; range, 85 to 100%) than that with a monolabeled probe (EUB338-mono; mean, 48%; range, 19 to 66%). Virtually no unspecific staining was observed after CARD-FISH with an antisense EUB338-HRP. Members of the marine SAR86 clade were undetectable by FISH with a monolabeled probe; however, a substantial population was visualized by CARD-FISH (mean, 7%; range, 3 to 13%). Detection rates of EUB338-HRP in Wadden Sea sediments (mean, 81%; range, 53 to 100%) were almost twice as high as the detection rates of EUB338-mono (mean, 44%; range, 25 to 71%). The enhanced fluorescence intensities and signal-to-background ratios make CARD-FISH superior to FISH with directly labeled oligonucleotides for the staining of bacteria with low rRNA content in the marine environment.  相似文献   

9.
Fluorescence in situ hybridization (FISH) with horseradish peroxidase (HRP)-labeled oligonucleotide probes and tyramide signal amplification, also known as catalyzed reporter deposition (CARD), is currently not generally applicable to heterotrophic bacteria in marine samples. Penetration of the HRP molecule into bacterial cells requires permeabilization procedures that cause high and most probably species-selective cell loss. Here we present an improved protocol for CARD-FISH of marine planktonic and benthic microbial assemblages. After concentration of samples onto membrane filters and subsequent embedding of filters in low-gelling-point agarose, no decrease in bacterial cell numbers was observed during 90 min of lysozyme incubation (10 mg ml(-1) at 37 degrees C). The detection rates of coastal North Sea bacterioplankton by CARD-FISH with a general bacterial probe (EUB338-HRP) were significantly higher (mean, 94% of total cell counts; range, 85 to 100%) than that with a monolabeled probe (EUB338-mono; mean, 48%; range, 19 to 66%). Virtually no unspecific staining was observed after CARD-FISH with an antisense EUB338-HRP. Members of the marine SAR86 clade were undetectable by FISH with a monolabeled probe; however, a substantial population was visualized by CARD-FISH (mean, 7%; range, 3 to 13%). Detection rates of EUB338-HRP in Wadden Sea sediments (mean, 81%; range, 53 to 100%) were almost twice as high as the detection rates of EUB338-mono (mean, 44%; range, 25 to 71%). The enhanced fluorescence intensities and signal-to-background ratios make CARD-FISH superior to FISH with directly labeled oligonucleotides for the staining of bacteria with low rRNA content in the marine environment.  相似文献   

10.
The abundance, identity and activity of uncultured Bacteria and Actinobacteria present in a drinking water reservoir (North Pine Dam, Brisbane, Australia) were determined using a combination of fluorescence in situ hybridization (FISH) alone or with catalysed reporter deposition (CARD-FISH) with microautoradiography. The CARD-FISH technique was modified relative to previous described procedures and performed directly on gelatine cover slips in order to allow simultaneous combination with microautoradiography. Almost twofold higher numbers of microorganisms could be identified as either Bacteria or Actinobacteria using the CARD-FISH technique as compared with the traditional FISH technique. A combination of FISH or CARD-FISH with microautoradiography showed generally higher activity among the Actinobacteria than among all Bacteria. Another important observation was that many cells within the FISH-negative populations of both Actinobacteria and Bacteria were actively assimilating thymidine. Thus, great care should be taken when extrapolating the active fraction of a prokaryotic community to be equivalent to the FISH-detectable population in such environments. Bacterial groups within Actinobacteria produce the odours geosmin and 2-methylisoborneol, which lower the quality of surface water when used for drinking. The results indicate that combined microautoradiography and CARD-FISH may serve as an effective tool when studying identity and activity of microorganisms within freshwater environments.  相似文献   

11.
以16S rRNA 为靶序列的寡核苷酸探针荧光原位杂交技术已广泛应用于分析复杂环境中的微生物群落构成,包括监测和鉴定病原微生物以及未被培养微生物.通过对临床样品中微生物细胞的检测能提供微生物在人体中的种类、数量和空间分布等信息.其结果快速准确,较之传统的病原微生物诊断方法具有明显的优越性,在临床应用中有广泛的前景.  相似文献   

12.
FISH荧光原位杂交技术在污水生物脱氮研究中的应用   总被引:3,自引:0,他引:3  
简要介绍了荧光原位杂交(FISH)的基本原理,着重讨论近年来该技术在污水生物脱氮研究中的应用现状和特点。研究表明:FISH技术能够准确地表现污水处理反应器中脱氮菌群落的类型和结构形态。但在关于SRT、DO、C/N比等工艺参数的变化对脱氮反应器中微生物类型、数量和结构的影响等方面的研究还有待深入。FISH技术与PCR—DGGE和16SrRNA/rDNA序列分析等技术相结合是对污水处理构筑物中生物脱氮群落深入研究的发展方向。  相似文献   

13.
催化报告沉积荧光原位杂交技术(Catalyzed reporter deposition-fluorescence in situ hybridization,CARDFISH)是基于传统的FISH技术发展而来,由于其较高的灵敏度及稳定性,可以检测微生物的rRNA、mRNA和DNA上的目标基因等,获得环境微生物的群落及功能信息,现已成为微生物生态学研究领域中的重要技术手段。近些年,CARD-FISH与同位素示踪技术、纳米二次离子质谱技术(Nano SIMS)、扫描电子显微镜(SEM)、流式细胞仪等技术方法的联合使用,不仅可以研究复杂环境中微生物的物种组成、数量及其高分辨形态学信息,而且可以获得微生物在单细胞水平的生理代谢信息及其活性,对在单细胞水平认识原位环境微生物的生理生态功能具有重要意义。本文重点介绍了CARD-FISH的技术路线和要点,并探讨CARD-FISH与相关技术联用在环境微生物生态学研究中的应用及进展。  相似文献   

14.
The enumeration of Archaea in deep-sea sediment samples is still limited, although different methodological procedures have been applied. Among these, catalysed reporter deposition-fluorescence in situ hybridisation (CARD-FISH) technique is a promising tool for estimation of archaeal abundance in deep-sea sediment samples. Comparing different permeabilisation treatments, the best results obtained both on archaeal pure cultures and on natural assemblages were with hydrochloric acid (0.1 M) and proteinase K (0.004 U/ml) treatments. The application of CARD-FISH on deep-sea sediments revealed that Archaea reach up to 41% of total prokaryotic cells. Specific probes for planktonic Archaea showed that marine Crenarchaea dominated archaeal seafloor communities. No clear bathymetric trends were observed for archaeal abundances and the morphology of continental margin (slope vs. canyon) seems not to have a direct influence on archaeal relative abundances. The site-specific sediment habitat—both abiotic environmental setting and sedimentary organic matter quality—explain up to 65% of variance of archaeal, crenarchaeal and euryarchaeal relative abundance, suggesting a wide ecophysiological adaptation to deep-sea benthic ecosystems. The findings demonstrate that Archaea are an important component of benthic microbial assemblages so far neglected, and hence they lay the groundwork for more focused research on their ecological importance in the functioning of deep-sea benthic ecosystems.  相似文献   

15.
We tested a previously described protocol for fluorescence in situ hybridization of marine bacterioplankton with horseradish peroxidase-labeled rRNA-targeted oligonucleotide probes and catalyzed reporter deposition (CARD-FISH) in plankton samples from different lakes. The fraction of Bacteria detected by CARD-FISH was significantly lower than after FISH with fluorescently monolabeled probes. In particular, the abundances of aquatic Actinobacteria were significantly underestimated. We thus developed a combined fixation and permeabilization protocol for CARD-FISH of freshwater samples. Enzymatic pretreatment of fixed cells was optimized for the controlled digestion of gram-positive cell walls without causing overall cell loss. Incubations with high concentrations of lysozyme (10 mg ml−1) followed by achromopeptidase (60 U ml−1) successfully permeabilized cell walls of Actinobacteria for subsequent CARD-FISH both in enrichment cultures and environmental samples. Between 72 and >99% (mean, 86%) of all Bacteria could be visualized with the improved assay in surface waters of four lakes. For freshwater samples, our method is thus superior to the CARD-FISH protocol for marine Bacteria (mean, 55%) and to FISH with directly fluorochrome labeled probes (mean, 67%). Actinobacterial abundances in the studied systems, as detected by the optimized protocol, ranged from 32 to >55% (mean, 45%). Our findings confirm that members of this lineage are among the numerically most important Bacteria of freshwater picoplankton.  相似文献   

16.
Complex probes used in fluorescence in situ hybridization (FISH) usually contain repetitive DNA sequences. For chromosome painting, in situ suppression of these repetitive DNA sequences has been well established. Standard painting protocols require large amounts of an unlabeled 'blocking agent', for instance Cot-1 DNA. Recently, it has become possible to remove repetitive DNA sequences from library probes by means of magnetic purification and affinity PCR. Such a 'repeat depleted library probe' was hybridized to the q-arm of chromosome 15 of human metaphase spreads and interphase cell nuclei without any preannealing by Cot-1 DNA. Apart from this, 'standard' FISH conditions were used. After in situ hybridization, microscope images were obtained comparable to those achieved with the #15q library probe prior to depletion. The images were recorded by a true color CCD camera. By digital image analysis using 'line scan' and 'area scan' procedures, the painting efficiency expressed in terms of relative fluorescence signal intensity was quantitatively evaluated. The painting efficiency using the repeat depleted probe of chromosome 15q was compared to the painting efficiency after standard FISH. The results indicate that both types of probes are compatible to a high FISH efficiency. Using equivalent probe concentrations, no significant differences were found for FISH with standard painting probes and repeat depleted painting probes.  相似文献   

17.
Three 16S rRNA-targeted oligonucleotide probes, namely, PSMg437 targeting several members of the genus Pseudomonas, Hlm474 targeting several members of the genus Halomonas, and Clw844 targeting several members of the genus Colwellia, were designed. The microbial community structure and nitrogen removal ability of nitrate-containing saline wastewater treatment systems with anaerobic packed bed and fluidized bed were monitored. Direct cell counting using fluorescence in situ hybridization (FISH) images revealed that various phylogenetic groups were evenly distributed in the anaerobic packed bed whereas members of the genus Halomonas were dominant particularly in the anaerobic fluidized bed. These results suggest that the microbial communities produced by different flow conditions correlated with denitrification ability in saline industrial wastewater treatment systems.  相似文献   

18.
We describe an approach to sort cells from coastal North Sea bacterioplankton by flow cytometry after in situ hybridization with rRNA-targeted horseradish peroxidase-labeled oligonucleotide probes and catalyzed fluorescent reporter deposition (CARD-FISH). In a sample from spring 2003 >90% of the cells were detected by CARD-FISH with a bacterial probe (EUB338). Approximately 30% of the microbial assemblage was affiliated with the Cytophaga-Flavobacterium lineage of the Bacteroidetes (CFB group) (probe CF319a), and almost 10% was targeted by a probe for the β-proteobacteria (probe BET42a). A protocol was optimized to detach cells hybridized with EUB338, BET42a, and CF319a from membrane filters (recovery rate, 70%) and to sort the cells by flow cytometry. The purity of sorted cells was >95%. 16S rRNA gene clone libraries were constructed from hybridized and sorted cells (S-EUB, S-BET, and S-CF libraries) and from unhybridized and unsorted cells (UNHYB library). Sequences related to the CFB group were significantly more frequent in the S-CF library (66%) than in the UNHYB library (13%). No enrichment of β-proteobacterial sequence types was found in the S-BET library, but novel sequences related to Nitrosospira were found exclusively in this library. These bacteria, together with members of marine clade OM43, represented >90% of the β-proteobacteria in the water sample, as determined by CARD-FISH with specific probes. This illustrates that a combination of CARD-FISH and flow sorting might be a powerful approach to study the diversity and potentially the activity and the genomes of different bacterial populations in aquatic habitats.  相似文献   

19.
The microbial communities of three different habitat types and from two sediment depths in the River Elbe were investigated by fluorescence in situ hybridization at various levels of complexity. Differences in the microbial community composition of free-flowing river water, water within the hyporheic interstitial and sediment-associated bacteria were quantitatively analyzed using domain- and group-specific oligonucleotide probes. Qualitative data on the presence/absence of specific bacterial taxa were gathered using genus- and species-specific probes. The complete data set was statistically processed by univariate statistical approaches, and two-dimensional ordinations of nonmetric multidimensional scaling. The analysis showed: (1) that the resolution of microbial community structures at microenvironments, habitats and locations can be regulated by targeted application of oligonucleotides on phylogenetic levels ranging from domains to species, and (2) that an extensive qualitative presence/absence analysis of multiparallel hybridization assays enables a fine-scale apportionment of spatial differences in microbial community structures that is robust against apparent limitations of fluorescence in situ hybridization such as false positive hybridization signals or inaccessibility of in situ oligonucleotide probes. A general model for the correlation of the phylogenetic depth of focus and the relative spatial resolution of microbial communities by fluorescence in situ hybridization is presented.  相似文献   

20.
Members of the genus Dehalococcoides are well-known for their capacity to reductively dechlorinate chlorinated organic pollutants. The availability of quantitative and sensitive detection methods is of major interest for research on the ecology of those environmentally important micro-organisms. In this paper we describe the development of a Catalyzed Reporter Deposition-Fluorescent In Situ Hybridization (CARD-FISH) for detection of Dehalococcoides cells in enrichment cultures using two oligonucleotide sequences which target two different lineages of Dehalococcoides as probes. Both sequences were previously applied in conventional FISH as probes. Conjugation of the probe to horseradish peroxidase (HRP) did not change the specificity of the probes and bright fluorescent signals were obtained. Despite the use of higher concentrations of probe and the application of longer exposure times in the conventional FISH procedure, CARD-FISH resulted in more intense signals. The CARD-FISH method was applied to a vinyl chloride (VC)-reductively-dechlorinating enrichment culture. Only the probe targeting the CBDB1 lineage of Dehalococcoides reacted with the sample which was in agreement with previous nucleic acid based analysis. The culture consisted of 51%+/-8% of Dehalococcoides cells. Furthermore, the CARD-FISH probes for detecting Dehalococcoides were combined with FISH probes for simultaneous detection of either Bacteria or Archaea which should allow rapid insight into the relative dynamics of the different members of dechlorinating communities as a response to environmental changes. Overall, CARD-FISH proved to be a rapid, reliable and convenient method to detect and quantify Dehalococcoides cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号