首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The characteristics of opioid receptors were studied by the binding of (3H)naloxone in ischemic lumbar spinal cord segments of newborn pigs. Ischemia was elicited by ligating the aorta for 30 min. The number of millimicron opioid receptors decreased, from 117 +/- 18 to 89 +/- 11 fmol/mg protein, while the Kd value was not significantly altered. It is concluded that even a relatively brief interruption of the oxygen supply may cause severe damage in the lumbar spinal cord of the newborn pig, affecting the opioid neurotransmission. The animal model employed here might be suitable for studying the effects of hypoxia in newborns and children during chest operations involving the descending aorta.  相似文献   

2.
In central nervous system, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) hydrolyse acetylcholine. Diminished cholinesterase activity is known to alter several mental and psychomotor functions. The symptoms of cholinergic crisis and those observed during acute attacks of acute intermittent porphyria are very similar. The aim of this study was to investigate if there could be a link between the action of some porphyrinogenic drugs on brain and the alteration of the cholinergic system. To this end, AChE and BuChE activities were assayed in whole and different brain areas. Muscarinic acetylcholine receptor (mAChR) levels were also measured. Results obtained indicate that the porphyrinogenic drugs tested affect central cholinergic transmission. Quantification of mAChR gave quite different levels depending on the xenobiotic. Veronal administration inhibited 50% BuChE activity in whole brain, cortex and hippocampus; concomitantly cortex mAChR was 30% reduced. Acute and chronic isoflurane anaesthesia diminished BuChE activity by 70-90% in whole brain instead cerebellum and hippocampus mAChR levels were only altered by chronic enflurane anaesthesia. Differential inhibition of cholinesterases in the brain regions and their consequent effects may be of importance to the knowledge of the mechanisms of neurotoxicity of porphyrinogenic drugs.  相似文献   

3.
Choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) activity measured in the ventral and dorsal part of the dog spinal cord (L6-S2) and in the stumps of the sciatic nerve 5, 10, 15 and 21 days after its transection were compared with the corresponding activities in the intact contralateral nerve and in sham-operated animals. AChE was also examined histochemically. Changes in the enzyme activities in the central nerve stump were correlated with activity changes in the spinal cord. In the central nerve stump, a marked (25%) increase in AChE activity was found on the fifth day after transection, but by the 21st day it fell below control value levels; up to the 15th day it showed good correlation with AChE activity in the ventral spinal cord. Histochemically, pronounced reduction of enzymatic activity was found in the ipsilateral part of the spinal cord. On the 15th day, ChAT activity in the ventral spinal cord was also significantly decreased and the accumulation of the enzyme in the central nerve stump was negligible. On the contrary, at the last 21-day interval examined, a significant increase in ChAT activity and a nonsignificant increase in AChE activity was found in the spinal cord, but their activities in the central nerve stump were decreased. In the degenerated peripheral nerve stump ChAT activity dropped by an average of 99% and AChE activity by 48% during the first 15 days after transection but, on the 21st day, AChE activity was 22% higher than at the preceding interval.  相似文献   

4.
In order to obtain further evidence of putative neurotransmitters in primary sensory neurons and interneurons in the dorsal spinal cord, we have studied the effects of unilateral section of dorsal roots and unilateral occlusion of the dorsal spinal artery on cholinergic enzyme activity and on selected amino acid levels in the spinal cord. One week after sectioning dorsal roots from caudal cervical (C7) to cranial thoracic (T2) levels, the specific activity of choline acetyltransferase (ChAT) was significantly decreased and acetylcholinesterase (AChE) showed a tendency to decrease in the dorsal quadrant on the operated side of the spinal cord. Dorsal root sectioning had little effect on the levels of free glutamic acid or other amino acids in the dorsal spinal cord. These results suggest that primary sensory neurons may include some cholinergic axons, and that levels of putative amino acid transmitters are not regulated by materials supplied by axonal transport from the dorsal root ganglia. By contrast, one week following unilateral occlusion of the dorsal spinal artery, the activities of ChAT and AChE were unchanged in the operated quadrant of the spinal cord, while decreases of Asp, Glu, and GABA, and an increase in Tau were detected. These findings are consistent with the proposals that such amino acids, but not ACh, may function as neurotransmitter candidates in interneurons of the dorsal spinal cord.Abbreviation used ACh acetylcholine - AChE acetylcholinesterase - Asp aspartic acid - ChAT choline acetyltransferase - GABA -aminobutyric acid - Glu glutamic acid - Gly glycine - SP substance P - Tau taurine  相似文献   

5.
Cholinesterases (ChEs) including acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) are abundant in the nervous system and other tissues. Here we describe two different aspects of ChEs and the cholinergic system. The first aspect concerns the role of cholinergic transmission in central pattern generation in the neonatal rat spinal cord and the second one describes the involvement of ChEs in the pathologies of dystrophin-deficient mutant (mdx) mice, the animal model of Duchenne muscular dystrophy. Thus, this study is divided into two distinct parts. In the first part we show that AChE is abundant in ventral horn neurons, central canal-adjacent and partition neurons in all the observed segments (L2, L5, S1, and S2). AChE was also found in the intermediolateral and sacral parasympathetic nuclei of L2 and S1, respectively. Blocking the AChE by edrophonium produced non-stationary bursting in spinal cord preparations of developing rats. Cross-wavelet/coherence analyses of the data revealed epochs of locomotor-like activity (left-right and flexor-extensor alternation) followed by other rhythmic or non-rhythmic bursting patterns. Addition of exogenous ACh stabilized the rhythm and increased the incidence of locomotor-like pattern in the preparations. Thus, the cholinergic system in the spinal cord is capable of producing and modulating functional rhythmic bursts. Moreover, bath-applied edrophonium and exogenous ACh were found as potent means of modulation of the locomotor rhythm produced by stimulation of sacrocaudal afferents (SCAs). We show that a subclass of sacral neurons with contralateral funicular projections to the thoracolumbar cord is associated with the cholinergic system. This group of neurons may play a major role in the observed enhancement of the SCA-induced motor rhythm. In the second part we show that adult mdx-muscles are malformed with distorted neuromuscular junctions (nmjs) and impaired regulation of acetylcholine receptors. Examination of circulating ChE levels revealed that in mdx-sera, while AChE activity was elevated, BuChE activity was markedly lower than in wild-type (wt) sera. Thus, BuChE to AChE ratio in mouse sera decreased from 6:1 in wt control to 3:1 in mdx. Because serum ChE levels may be modulated by gonadal steroids, it is possible that lack of dystrophin in mdx-mice may affect this regulation. Further studies are in progress to determine the potential endocrine regulation of ChEs in circulation and at the nmjs of mdx- and wt-mice. These studies will help clarify whether the hormonal regulation is impaired in the mdx mutant, and whether changes in circulating ChE reflect or influence the functional deficits observed in excitable tissues of diseased states.  相似文献   

6.
Acetylcholinesterase (AChE) produced by spinal cord motoneurons accumulates within axo–dendritic spinal cord synapses. It is also secreted from motoneuron cell bodies, through their axons, into the region of neuromuscular junctions, where it terminates cholinergic neurotransmission. Here we show that transgenic mice expressing human AChE in their spinal cord motoneurons display primarily normal axo–dendritic spinal cord cholinergic synapses in spite of the clear excess of transgenic over host AChE within these synapses. This is in contrast to our recent observation that a modest excess of AChE drastically a}ects the structure and long– term functioning of neuromuscular junctions in these mice although they express human AChE in their spinal cord, but not muscle. Enlarged muscle endplates with either exaggerated or drastically shortened post–synaptic folds then lead to a progressive neuromotor decline and massive amyotrophy (Andres et al., 1997). These findings demonstrate that excess neuronal AChE may cause distinct effects on spinal cord and neuromuscular synapses and attribute the late–onset neuromotor deterioration observed in AChE transgenic mice to neuromuscular junction abnormalities. © 1998 Elsevier Science Ltd. All rights reserved.  相似文献   

7.
Activities of choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) in the ventral spinal cord, ventral spinal roots and in the central and peripheral stumps of the sciatic nerve transected under conditions of partial ischemia (produced by aortic ligation just below the renal arteries) were compared to those obtained under intact blood supply in time intervals 5, 10, or 15 days after surgery. The significant increase of ChAT activity in the central part of the sciatic nerve following 15 days of partial ischemia correlated with less significant elevation of ChAT in the ventral spinal cord. The changes of AChE activity were not significant during partial ischemia. ChAT in the peripheral stump of the sciatic nerve following 5 days of partial ischemia was preserved by 40% and AChE by 20% more than under normal blood supply. On the contrary, in the next 5 days interval losses of enzymes activity in the degenerating nerve were greater. ChAT was almost totally inactivated whereas 50% of AChE activity was preserved until the end of period examined.  相似文献   

8.
The transport characteristics of choline acetyltransferase (ChAT; EC 2.3.1.6), acetylcholinesterase (AChE; EC 3.1.1.7), and the muscarinic acetylcholine receptors (mAChR) were studied in perineurally sutured, regenerating rat sciatic nerve. At different times after repair, the sciatic nerve was ligated for 24 h, and the activities of the cholinergic marker proteins, as well as the binding capacity, were measured proximally and distally from the ligature. The number of bidirectionally transported receptors increased linearly up to 5 months postoperatively (6.1-33.6% and 5.6-25.6% of the control level proximal and distal to the ligature, respectively). The quantity of anterogradely transported ChAT reached a plateau 3 months postoperatively (74.9% of the control level), whereas the retrogradely transported enzyme was then only 34.7% of the control value. The activity of AChE increased linearly during nerve regeneration, and exceeded the control level after 4 months (121.0% and 63.7% proximally and distally, respectively). The data indicate that the altered bidirectional transport of cholinergic marker proteins may be monitored quantitatively during nerve regeneration. This method might be suitable for studies of the nerve regeneration process.  相似文献   

9.
缺血预处理对缺血再灌注后兔脊髓磷酸腺苷代谢的影响   总被引:5,自引:0,他引:5  
目的:研究缺血参处理对缺血再灌注后兔脊髓磷酸腺苷代谢的影响。方法:往置入腹主动脉的Swan-Ganz导管气囊内注气造成兔腰髓缺血模型。将实验兔分为假手术组、缺血组和预处理组。应用反相高效液相色谱方法(reverse phase HPLC),对缺血再灌注后不同时间点腰髓组织中磷酸腺苷(ATP、ADP、AMP)的含量进行检测。结果:和假手术组相比,缺血组兔再灌后各时间点腰髓组织ATP含量有明显下降(P<0.01)。与缺血组相应时间点相比,预处理组兔再灌注后腰髓组织ATP含量明显提高(P<0.01)。结论:缺血预处理显著提高缺血再灌注后兔脊髓组织ATP含量,这可能是缺血预处理对脊髓缺血再灌注损伤产生保护作用的机制之一。  相似文献   

10.
The effect of severe incomplete ischemia, induced by abdominal aorta ligation for 40 minutes, and subsequent recirculation for one and four days on accumulation of free fatty acids was studies in the lumbar and cervical part of rabbit spinal cord. Changes in free fatty acid levels were determined separately in gracile fascicle (Fg), dorsal part (Dp, without Fg) and ventral part (Vp) of both spinal cord regions. In lumbar spinal cord increases in free fatty acid levels, especially that of arachidonate, were observed in Fg, Dp and Vp a the end of the ischemic period. During recirculation all values were similar to nonischemic controls. In cervical spinal cord a slight increase in free fatty acid levels was found in Fg after four days of recirculation, and in Dp arachidonate and stearate levels were most markedly elevated after one day of recirculation. No changes at any interval were found in Vp of cervical spinal cord. The present results indicate that the experimental insult induced typical ischemic injury to spinal cord tissue demonstrated by fatty acid liberation from membrane lipids. This injury may affect neurotransmission and other processes and free fatty acids themselves impair tissue metabolism (inhibition of oxidative phosphorylation, edema precipitation, synthesis of eicosanoids) and thus restrict the possibilities to enhance recovery in the recirculation period.  相似文献   

11.
The two parameters of the active [methyl-3H]choline uptake into isolated rat forebrain microvessels, Km and Vmax, were determined for 1-, 3-, 10-, and 24-month-old Charles River male rats and compared with the activities of the enzymes choline acetyltransferase (ChAT), acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) in these microvessels over the same time course. The value of Km remained constant over the entire period, but that of Vmax increased from 8.5 +/- 1.0 to 80.6 +/- 16.4 nmol g-1 (mean +/- SEM) over the first 3 months of life. Over the same period, the increase in ChAT activity, from an initial value of 7.1 +/- 1.6 to 10.2 +/- 0.3 nmol g-1 min-1, was not proportional to that of choline uptake. Levels of BuChE activity (0.9-1.3 mumol g-1 min-1) were almost unchanged throughout the entire 24-month period, but those of AChE showed a steady and significant increase from 1 to 24 months, remaining relatively high at senescence (4.7 mumol g-1 min-1), when choline uptake had decreased to one-third of its optimal value. Selective inhibition of AChE with 1,5-bis(4-allyldimethylammonium-phenyl)pentan-3-one dibromide (0.5 microM) in unruptured capillaries from 3-month-old rats resulted in a decrease in Vmax of choline uptake from approximately 81 to 59 nmol g-1 min-1 or with 9-amino-1,2,3,4-tetrahydroacridine (10 microM) in capillaries from 2-month-old rats from approximately 30 to 15 nmol g-1 min-1. Selective inhibition of BuChE with tetraisopropyl pyrophosphoramide (100 microM) resulted in an increase in Vmax from approximately 81 to 96 nmol g-1 min-1. It is possible that the two vascular enzyme systems are coupled to a hypothetical endothelial choline transporter, but with an action opposite to each other.  相似文献   

12.
Abstract: The study of Arrhenius plots for acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activity from the rat brain and spinal cord revealed that in contrast to AChE, which exhibited biphasic Arrhenius plots with a distinct break (transition temperature) at about 16–18°C, BuChE showed no evidence of discontinuity and a higher activation energy in the physiological range of temperature. The results indicate lack of lipid-protein interaction in the case of BuChE of the CNS tissue. It is inferred that BuChE, in contrast to AChE, is not bound in any significant way to cellular membranes of the CNS tissue.  相似文献   

13.
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities were measured in 13 sequential 2 ml aliquots of cerebrospinal fluid (CSF) obtained by lumbar puncture from 7 young and 7 elderly healthy normal subjects. The slopes of the rostrocaudal gradients of AChE and BChE were calculated and compared to those of total protein concentration and the major dopaminergic metabolite homovanillic acid (HVA), for which a pronounced rostrocaudal gradient (with highest concentrations of HVA in more rostral CSF) is consistent with HVA originating primarily from the brain. AChE activity was higher in more caudal fractions of young, but not elderly subjects and there was a significant difference between the mean AChE gradient slopes in the young and old groups. These results suggest that the spinal cord makes an important contribution to AChE activity in lumbar CSF. Furthermore, the absence of a negative AChE gradient in elderly subjects may be the result of a greater rate of entry of cerebral AChE into CSF, possibly as a consequence of an increased ventricular surface area and shorter diffusion distances in atrophic elderly brains. In contrast to AChE, BChE activity and total protein concentrations were higher in more caudal CSF fractions of not only young but also old subjects. In addition, there was a significant correlation between the gradient slopes of BChE activity and total protein concentrations, suggesting that the majority of BChE activity in lumbar CSF derives from the same source as the majority of total protein, namely plasma. The diffuse (i.e. brain and spinal cord) origin of AChE in lumbar CSF would explain the relatively modest changes in lumbar CSF AChE activity in diseases involving certain central cholinergic systems, most notably Alzheimer's disease.  相似文献   

14.
15.
Hormonal modulation of neuronal cells behaviour in vitro   总被引:1,自引:0,他引:1  
In this study we have investigated the effect of insulin and/or of nerve growth factor (NGF) on enzyme activities of cholinergic neurotransmission, in cultured embryonic rat mesencephali. Our data show that choline-O-acetyltransferase (ChAT) and acetylcholinesterase (AChE) activity display a prominent change in the embryonic brain tissues as a function of time in vitro. The change depends on the age of embryos from which the brain cell cultures have been set up. Namely, ChAT activity increases in the cultures taken from 13-17-day-old embryos as a function of time in vitro. AChE activity shows a striking decrease if the cultures have been set up from the older embryos (17-day-old), while AChE activity increases in the cultures prepared from 13-day-old embryos continuously. Insulin (amount ranging 10-27 micrograms/ml) causes a significant inhibition in the ChAT activity in comparison with the increased enzyme activity measured in control cultures (insulin ranging from 1 to 100 ng). AChE activity of 13-day-old embryos was not influenced by insulin (20-27 micrograms/ml) but the same amount of insulin prevents the decrease of AChE activity in cultured brain cells originating from 17-day-old-embryos. Biochemical studies of NGF treated cultures (30 ng/ml) revealed that nerve growth factor resulted in 5-12-fold increase in specific activity of the cholinergic enzyme, choline acetyltransferase (ChAT). NGF did not influence the AChE activity in cultured brain cells (13-17-day-old).  相似文献   

16.
17.
We report an analysis of the solubility and hydrophobic properties of the globular forms of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) from various Torpedo tissues. We distinguish globular nonamphiphilic forms (Gna) from globular amphiphilic forms (Ga). The Ga forms bind micelles of detergent, as indicated by the following properties. They are converted by mild proteolysis into nonamphiphilic derivatives. Their Stokes radius in the presence of Triton X-100 is approximately 2 nm greater than that of their lytic derivatives. The G2a forms fall in two classes. Class I contains molecules that aggregate in the absence of detergent, when mixed with an AChE-depleted Triton X-100 extract from electric organ. AChE G2a forms from electric organs, nerves, skeletal muscle, and erythrocyte membranes correspond to this type, which is also detectable in detergent-soluble (DS) extracts of electric lobes and spinal cord. Class II forms never aggregate but only present a slight shift in sedimentation coefficient, in the presence or absence of detergent. This class contains the AChE G2a forms of plasma and of the low-salt-soluble (LSS) fractions from spinal cord and electric lobes. The heart possesses a BuChE G2a form of class II in LSS extracts, as well as a similar G1a form. G4a forms of AChE, which are solubilized only in the presence of detergent and aggregate in the absence of detergent, represent a large proportion of cholinesterase in DS extracts of nerves and spinal cord, together with a smaller component of G4a BuChE. These forms may be converted to nonamphiphilic derivatives by Pronase. Nonaggregating G4a forms exist at low levels in the plasma (BuChE) and in LSS extracts of nerves (BuChE) and spinal cord (AChE).  相似文献   

18.
Evidence thatl-glutamate is a neurotransmitter of corticofugal fibers was sought by measuring changes in several biochemical markers of neurotransmitter function in discrete regions of spinal cord after ablation of sensorimotor cortex in monkeys. One and five weeks after unilateral cortical ablation, samples from six areas of spinal cord (ventral, lateral and dorsal regions of the left and right sides) were analysed for choline acetyltransferase (ChAT) activity and contents of amino acid transmitter candidates-glutamic acid (Glu), aspartic acid (Asp), glycine (Gly), taurine (Tau) and -aminobutyric acid (GABA). During one to five weeks after unilateral cortical ablation of the monkey, prolonged hemiplegia in the contralateral side was observed. Histological examination of the spinal cord 5 weeks after unilateral (left) cortical ablation showed no apparent change in either control (ipsilateral, left) or affected (contralateral, right) sides of the cord as examined by the Klüver-Barrera method. The ChAT activity as a cholinergic marker was scarcely changed in any region of either left (control) or right (affected) side of the spinal cord at one and five weeks after unilateral (left side) ablation of the motor cortex. Amino acid levels in each region of the spinal cord were not significantly changed one week after unilateral ablation of the motor cortex. However, a significant decrease of Glu content was observed in the lateral column of the affected (right) side compared to the control (left) side of cervical and lumbar cord five weeks after cortical ablation of the left motor area. No concomitant alterations of other amino acids were detected. These data strongly suggest thatl-Glu is a neurotransmitter for corticofugal pyramidal tract fibers to anterior horn secondary neurons related to motor control activity in monkey spinal cord.  相似文献   

19.
Acetylcholine (ACh), the classical neurotransmitter, also affects a variety of nonexcitable cells, such as endothelia, microglia, astrocytes and lymphocytes in both the nervous system and secondary lymphoid organs. Most of these cells are very distant from cholinergic synapses. The action of ACh on these distant cells is unlikely to occur through diffusion, given that ACh is very short-lived in the presence of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), two extremely efficient ACh-degrading enzymes abundantly present in extracellular fluids. In this study, we show compelling evidence for presence of a high concentration and activity of the ACh-synthesizing enzyme, choline-acetyltransferase (ChAT) in human cerebrospinal fluid (CSF) and plasma. We show that ChAT levels are physiologically balanced to the levels of its counteracting enzymes, AChE and BuChE in the human plasma and CSF. Equilibrium analyses show that soluble ChAT maintains a steady-state ACh level in the presence of physiological levels of fully active ACh-degrading enzymes. We show that ChAT is secreted by cultured human-brain astrocytes, and that activated spleen lymphocytes release ChAT itself rather than ACh. We further report differential CSF levels of ChAT in relation to Alzheimer’s disease risk genotypes, as well as in patients with multiple sclerosis, a chronic neuroinflammatory disease, compared to controls. Interestingly, soluble CSF ChAT levels show strong correlation with soluble complement factor levels, supporting a role in inflammatory regulation. This study provides a plausible explanation for the long-distance action of ACh through continuous renewal of ACh in extracellular fluids by the soluble ChAT and thereby maintenance of steady-state equilibrium between hydrolysis and synthesis of this ubiquitous cholinergic signal substance in the brain and peripheral compartments. These findings may have important implications for the role of cholinergic signaling in states of inflammation in general and in neurodegenerative disease, such as Alzheimer’s disease and multiple sclerosis in particular.  相似文献   

20.
Choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) activity were determined in 23 selected parts of the dog CNS and 4 parts of the peripheral nervous system. Maximum ChAT activity was found in the caudate nucleus and the ventral roots of the spinal cord. High activity was also present in the thalamus, the pons, the cerebral cortex, the medulla oblongata, the ventral spinal horns and the sciatic nerve. The lowest activity was measured in the cerebellum, the dorsal cord roots and the spinal ganglia. Maximum AChE activity was found in the caudate nucleus and the cerebellum. Relatively high activity was also present in the thalamus, the pons, the medulla oblongata, the grey matter of the spinal cord and the spinal ganglia. The lowest AChE activity was measured in the ventral and dorsal spinal roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号