首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Heterotrimeric G proteins have been implicated in a wide range of plant processes. These include responses to hormones, drought, and pathogens, and developmental events such as lateral root formation, hypocotyl elongation, hook opening, leaf expansion, and silique development. Results and concepts emerging from recent phenotypic analyses of G-protein component mutants in Arabidopsis and rice are adding to our understanding of G-protein mechanisms and functions in higher plants.  相似文献   

2.
Regulators of G protein signaling (RGS) stimulate the GTPase activity of G protein Galpha subunits and probably play additional roles. Some RGS proteins contain a Ggamma subunit-like (GGL) domain, which mediates a specific interaction with Gbeta5. The role of such interactions in RGS function is unclear. RGS proteins can accelerate the kinetics of coupling of G protein-coupled receptors to G-protein-gated inwardly rectifying K(+) (GIRK) channels. Therefore, we coupled m2-muscarinic acetylcholine receptors to GIRK channels in Xenopus oocytes to evaluate the effect of Gbeta5 on RGS function. Co-expression of either RGS7 or RGS9 modestly accelerated GIRK channel kinetics. When Gbeta5 was co-expressed with either RGS7 or RGS9, the acceleration of GIRK channel kinetics was strongly increased over that produced by RGS7 or RGS9 alone. RGS function was not enhanced by co-expression of Gbeta1, and co-expression of Gbeta5 alone had no effect on GIRK channel kinetics. Gbeta5 did not modulate the function either of RGS4, an RGS protein that lacks a GGL domain, or of a functional RGS7 construct in which the GGL domain was omitted. Enhancement of RGS7 function by Gbeta5 was not a consequence of an increase in the amount of plasma membrane or cytosolic RGS7 protein.  相似文献   

3.
Arabidopsis thaliana AtNUDT7 Nudix pyrophosphatase hydrolyzes NADH and ADP-ribose in vitro and is an important factor in the cellular response to diverse biotic and abiotic stresses. Several studies have shown that loss-of-function Atnudt7 mutant plants display many profound phenotypes. However the molecular mechanism of AtNUDT7 function remains elusive. To gain a better understanding of this hydrolase cellular role, proteins interacting with AtNUDT7 were identified. Using AtNUDT7 as a bait in an in vitro binding assay of proteins derived from cultured Arabidopsis cell extracts we identified the regulatory protein RACK1A as an AtNUDT7-interactor. RACK1A-AtNUDT7 interaction was confirmed in a yeast two-hybrid assay and in a pull-down assay and in Bimolecular Fluorescence Complementation (BiFC) analysis of the proteins transiently expressed in Arabidopsis protoplasts. However, no influence of RACK1A on AtNUDT7 hydrolase catalytic activity was observed. In vitro interaction between RACK1A and the AGG1 and AGG2 gamma subunits of the signal transducing heterotrimeric G protein was also detected and confirmed in BiFC assays. Moreover, association between AtNUDT7 and both AGG1 and AGG2 subunits was observed in Arabidopsis protoplasts, although binding of these proteins could not be detected in vitro. Based on the observed interactions we conclude that the AtNUDT7 Nudix hydrolase forms complexes in vitro and in vivo with regulatory proteins involved in signal transduction. Moreover, we provide the initial evidence that both signal transducing gamma subunits bind the regulatory RACK1A protein.  相似文献   

4.
Activator of G protein signalling 1 (AGS1) is a Ras-like protein that affects signalling through heterotrimeric G proteins. Previous in vitro studies suggest that AGS1 can bind to G(alpha)-GDP subunits and promote nucleotide exchange, leading to activation of intracellular signalling pathways. This model is consistent with in vivo evidence demonstrating that AGS1 activates both G(alpha)- and G(betagamma)-dependent pathways in the absence of ligand. However, it does not easily explain how AGS1 blocks G(betagamma)-dependent, but not G(alpha)-dependent, signalling following receptor activation. We have used yeast two hybrid analysis and co-immunoprecipitation studies in mammalian cells to demonstrate a direct interaction between AGS1 and the G(beta1) subunit of heterotrimeric G proteins. The interaction is specific for G(beta1) and involves the cationic region of AGS1 and the C-terminal region of G(beta1). Possible implications of this novel interaction for the activity of AGS1 are discussed.  相似文献   

5.
Chen H  Michel T 《Biochemistry》2006,45(26):8023-8033
Activation of insulin receptors stimulates the phosphoinositide 3-kinase (PI3-K)/Akt signaling pathway in vascular endothelial cells. Heterotrimeric G proteins appear to modulate some of the cellular responses that are initiated by receptor tyrosine kinases, but the roles of specific G protein subunits in signaling are less clearly defined. We found that insulin treatment of cultured bovine aortic endothelial cells (BAEC) activates the alpha isoform of PI3-K (PI3-Kalpha) and discovered that purified G protein Gbeta1gamma2 inhibits PI3-Kalpha enzyme activity. Transfection of BAEC with a duplex siRNA targeting bovine Gbeta1 leads to a 90% knockdown in Gbeta1 protein levels, with no effect on expression of other G protein subunits. siRNA-mediated Gbeta1 knockdown markedly and specifically potentiates insulin-dependent activation of kinase Akt, likely reflecting the removal of the inhibitory effect of Gbetagamma on PI3-Kalpha activity. Insulin-induced tyrosine phosphorylation of insulin receptors is unaffected by Gbeta1 siRNA. By contrast, Gbeta1 knockdown leads to a significant decrease in the level of serine phosphorylation of the insulin receptor substrate IRS-1. We explored the effects of siRNA on several serine/threonine protein kinases that have been implicated in insulin signaling. Gbeta1 siRNA significantly attenuates phosphorylation of the 70 kDa ribosomal protein S6 kinase (p70S6K) in the basal state and following insulin treatment. We also found that IGF-1-initiated activation of Akt is significantly enhanced after siRNA-mediated Gbeta1 knockdown, while IGF-1-induced p70S6K activation is markedly suppressed following transfection of Gbeta1 siRNA. We propose that Gbeta1 participates in the activation of p70S6K, which in turn promotes the serine phosphorylation and inhibition of IRS-1. Taken together, these studies suggest that Gbeta1 plays an important role in insulin and IGF-1 signaling in endothelial cells, both by inhibiting the activity of PI3-Kalpha and by stimulating pathways that lead to activation of protein kinase p70S6K and to the serine phosphorylation of IRS-1.  相似文献   

6.
Gbetagamma subunits interact directly and activate G protein-gated Inwardly Rectifying K(+) (GIRK) channels. Little is known about the identity of functionally important interactions between Gbetagamma and GIRK channels. We tested the effects of all mammalian Gbeta subunits on channel activity and showed that whereas Gbeta1-4 subunits activate heteromeric GIRK channels independently of receptor activation, Gbeta5 does not. Gbeta1 and Gbeta5 both bind the N and C termini of the GIRK1 and GIRK4 channel subunits. Chimeric analysis between the Gbeta1 and Gbeta5 proteins revealed a 90-amino acid stretch that spans blades two and three of the seven-propeller structure and is required for channel activation. Within this region, eight non-conserved amino acids were critical for the activity of Gbeta1, as mutation of each residue to its counterpart in Gbeta5 significantly reduced the ability of Gbeta1 to stimulate channel activity. In particular, mutation of residues Ser-67 and Thr-128 to the corresponding Gbeta5 residues completely abolished Gbeta1 stimulation of GIRK channel activity. Mapping these functionally important residues on the three-dimensional structure of Gbeta1 shows that Ser-67, Ser-98, and Thr-128 are the only surface accessible residues. Galpha(i)1 interacts with Ser-98 but not with Ser-67 and Thr-128 in the heterotrimeric Galphabetagamma structure. Further characterization of the three mutant proteins showed that they fold properly and interact with Ggamma2. Of the three identified functionally important residues, the Ser-67 and Thr-128 Gbeta mutants significantly inhibited basal currents of a channel point mutant that displays Gbetagamma-mediated basal but not agonist-induced currents. Our findings indicate that the presence of Gbeta residues that do not interact with Galpha are involved in Gbetagamma interactions in the absence of agonist stimulation.  相似文献   

7.
The V2 vasopressin receptor (V2R) activates the mitogen activated protein kinases (MAPK) ERK1/2 through a mechanism involving the scaffolding protein beta arrestin. Here we report that this activating pathway is independent of G alpha s, G alpha i, G alpha q or G betagamma and that the V2R-mediated activation of G alpha s inhibits ERK1/2 activity in a cAMP/PKA-dependent manner. In the HEK293 cells studied, the beta arrestin-promoted activation was found to dominate over the PKA-mediated inhibition of the pathway, leading to a strong vasopressin-stimulated ERK1/2 activation. Despite the strong MAPK activation and in contrast with other GPCR, V2R did not induce any significant increase in DNA synthesis, consistent with the notion that the stable interaction between V2R and beta arrestin prevents signal propagation to the nucleus. Beta arrestin was found to be essential for the ERK1/2 activation, indicating that the recruitment of the scaffolding protein is necessary and sufficient to initiate the signal in the absence of any other stimulatory cues. Based on the use of selective pharmacological inhibitors, dominant negative mutants and siRNA, we conclude that the beta arrestin-dependent activation of ERK1/2 by the V2R involves c-Src and a metalloproteinase-dependent trans-activation event. These findings demonstrate that beta arrestin is a genuine signalling initiator that can, on its own, engage a MAPK activation machinery upon stimulation of a GPCR by its natural ligand.  相似文献   

8.
The asymmetric division of Drosophila neuroblasts involves the basal localization of cell fate determinants and the generation of an asymmetric, apicobasally oriented mitotic spindle that leads to the formation of two daughter cells of unequal size. These features are thought to be controlled by an apically localized protein complex comprising of two signaling pathways: Bazooka/Drosophila atypical PKC/Inscuteable/DmPar6 and Partner of inscuteable (Pins)/Galphai; in addition, Gbeta13F is also required. However, the role of Galphai and the hierarchical relationship between the G protein subunits and apical components are not well defined. Here we describe the isolation of Galphai mutants and show that Galphai and Gbeta13F play distinct roles. Galphai is required for Pins to localize to the cortex, and the effects of loss of Galphai or pins are highly similar, supporting the idea that Pins/Galphai act together to mediate various aspects of neuroblast asymmetric division. In contrast, Gbeta13F appears to regulate the asymmetric localization/stability of all apical components, and Gbeta13F loss of function exhibits phenotypes resembling those seen when both apical pathways have been compromised, suggesting that it acts upstream of the apical pathways. Importantly, our results have also revealed a novel aspect of apical complex function, that is, the two apical pathways act redundantly to suppress the formation of basal astral microtubules in neuroblasts.  相似文献   

9.
10.
G-protein coupled receptors activate heterotrimeric G proteins at the plasma membrane in which most of their effectors are intrinsically located or transiently associated as the external signal is being transduced. This paradigm has been extended to the intracellular compartments by studies in yeast showing that trafficking of Gα activates phosphatidylinositol 3-kinase (PI3K) at endosomal compartments, suggesting that vesicle trafficking regulates potential actions of Gα and possibly Gβγ at the level of endosomes. Here, we show that Gβγ interacts with Rab11a and that the two proteins colocalize at early and recycling endosomes in response to activation of lysophosphatidic acid (LPA) receptors. This agonist-dependent association of Gβγ to Rab11a-positive endosomes contributes to the recruitment of PI3K and phosphorylation of AKT at this intracellular compartment. These events are sensitive to the expression of a dominant-negative Rab11a mutant or treatment with wortmannin, suggesting that Rab11a-dependent Gβγ trafficking promotes the activation of the PI3K/AKT signaling pathway associated with endosomal compartments. In addition, RNA interference-mediated Rab11a depletion, or expression of a dominant-negative Rab11a mutant attenuated LPA-dependent cell survival and proliferation, suggesting that endosomal activation of the PI3K/AKT signaling pathway in response to Gβγ trafficking, via its interaction with Rab11, is a relevant step in the mechanism controlling these fundamental events.  相似文献   

11.
The retroviral protease is a key enzyme in a viral multienzyme complex that initiates an ordered sequence of events leading to virus assembly and propagation. Viral peptides are initially synthesized as polyprotein precursors; these precursors undergo a number of proteolytic cleavages executed by the protease in a specific and presumably ordered manner. To determine the role of individual protease cleavage sites in Ty1, a retrotransposon from Saccharomyces cerevisiae, the cleavage sites were systematically mutagenized. Altering the cleavage sites of the yeast Ty1 retrotransposon produces mutants with distinct retrotransposition phenotypes. Blocking the Gag/PR site also blocks cleavage at the other two cleavage sites, PR/IN and IN/RT. In contrast, mutational block of the PR/IN or IN/RT sites does not prevent cleavage at the other two sites. Retrotransposons with mutations in each of these sites have transposition defects. Mutations in the PR/IN and IN/RT sites, but not in the Gag/PR site, can be complemented in trans by endogenous Ty1 copies. Hence, the digestion of the Gag/PR site and release of the protease N terminus is a prerequisite for processing at the remaining sites; cleavage of PR/IN is not required for the cleavage of IN/RT, and vice versa. Of the three cleavage sites in the Gag-Pol precursor, the Gag/PR site is processed first. Thus, Ty1 Gag-Pol processing proceeds by an ordered pathway.  相似文献   

12.
Syntrophins are components of the dystrophin-glycoprotein complex of the plasma membrane in muscular and neuronal cells, and recruit signaling proteins such as neuronal nitric oxide synthase via their multiple protein-protein interaction motifs. In this study, we found that alpha1-syntrophin binds to various subtypes of guanine nucleotide-binding protein alpha subunits (Galpha). A pull-down analysis using full-length recombinant alpha1-syntrophin and MS analysis showed that alpha1-syntrophin was coprecipitated with several isoforms of Galpha proteins in addition to known binding partners such as dystrobrevin and neuronal nitric oxide synthase. Further analysis using recombinant Galpha isoforms showed that alpha1-syntrophin associates with at least Galphai, Galphao, Galphas and Galphaq subtypes. The region of alpha1-syntrophin required for its interaction with Galphas was determined as the N-terminal half of the first pleckstrin homology domain. In addition, the syntrophin unique domain of alpha1-syntrophin was suggested to contribute to this interaction. In COS-7 cells, downregulation of alpha1-syntrophin by RNAi resulted in enhanced cAMP production and cAMP response element-binding protein phosphorylation induced by isoproterenol treatment. These results suggest that alpha1-syntrophin provides a scaffold for the Galpha family of heterotrimeric G proteins in the brain to regulate the efficiency of signal transduction evoked by G-protein-coupled receptors.  相似文献   

13.
The M13 procoat protein serves as the paradigm for the Sec-independent membrane insertion pathway. This protein is inserted into the inner membrane of Escherichia coli with two hydrophobic regions and a central periplasmic loop region of 20 amino acid residues. Extension of the periplasmic loop region renders M13 procoat membrane insertion Sec-dependent. Loop regions with 118 or more residues required SecA and SecYEG and were efficiently translocated in vivo. Two mutants having loop regions of 80 and 100 residues, respectively, interacted with SecA but failed to activate the membrane translocation ATPase of SecA in vitro. Similarly, a procoat mutant with two additional glutamyl residues in the loop region showed binding to SecA but did not stimulate the ATPase. The three mutants were also defective for precursor-stimulated binding of SecA to the membrane surface. Remarkably, the mutant proteins act as competitive inhibitors of the Sec translocase. This suggests that the region to be translocated is sensed by SecA but the activation of the SecA translocation ATPase is only successful for substrates with a minimum length of the translocated region.  相似文献   

14.
Urig S  Lieske J  Fritz-Wolf K  Irmler A  Becker K 《FEBS letters》2006,580(15):3595-3600
The substrate spectrum of human thioredoxin reductase (hTrxR) is attributed to its C-terminal extension of 16 amino acids carrying a selenocysteine residue. The concept of an evolutionary link between thioredoxin reductase and glutathione reductase (GR) is presently discussed and supported by the fact that almost all residues at catalytic and substrate recognition sites are identical. Here, we addressed the question if a deletion of the C-terminal part of TrxR leads to recognition of glutathione disulfide (GSSG), the substrate of GR. We introduced mutations at the putative substrate binding site to enhance GSSG binding and turnover. However, none of these enzyme species accepted GSSG as substrate better than the full length cysteine mutant of TrxR, excluding a role of the C-terminal extension in preventing GSSG binding. Furthermore, we show that GSSG binding at the N-terminal active site of TrxR is electrostatically disfavoured.  相似文献   

15.
16.
Signal transducing heterotrimeric G proteins are responsible for coupling a large number of cell surface receptors to the appropriate effector(s). Of the three subunits, 16 alpha, 4 beta, and 5 gamma subunits have been characterized, indicating a potential for over 300 unique combinations of heterotrimeric G proteins. To begin deciphering the unique G protein combinations that couple specific receptors with effectors, we examined the subcellular localization of the gamma subunits. Using anti-peptide antibodies specific for each of the known gamma subunits, neonatal cardiac fibroblasts were screened by standard immunocytochemistry. The anti-gamma 5 subunit antibody yielded a highly distinctive pattern of intensely fluorescent regions near the periphery of the cell that tended to protrude into the cell in a fibrous pattern. Dual staining with anti-vinculin antibody showed co-localization of the gamma 5 subunit with vinculin. In addition, the gamma 5 subunit staining extended a short distance out from the vinculin pattern along the protruding stress fiber, as revealed by double staining with phalloidin. These data indicated that the gamma 5 subunit was localized to areas of focal adhesion. Dual staining of rat aortic smooth muscle cells and Schwann cells also indicated co-localization of the gamma 5 subunit and vinculin, suggesting that the association of the gamma 5 subunit with areas of focal adhesion was wide-spread.  相似文献   

17.
The receptor-interacting protein-associated ICH-1/CED-3 homologous protein with a death domain (RAIDD/CRADD) functions as a dual adaptor and is a constituent of different multi-protein complexes implicated in the regulation of inflammation and cell death. Within the PIDDosome complex, RAIDD connects the cell death-related protease, Caspase-2, with the p53-induced protein with a death domain 1 (PIDD1). As such, RAIDD has been implicated in DNA-damage-induced apoptosis as well as in tumorigenesis. As loss of Caspase-2 leads to an acceleration of tumor onset in the Eμ-Myc mouse lymphoma model, whereas loss of Pidd1 actually delays onset of this disease, we set out to interrogate the role of Raidd in cancer in more detail. Our data obtained analyzing Eμ-Myc/Raidd−/− mice indicate that Raidd is unable to protect from c-Myc-driven lymphomagenesis. Similarly, we failed to observe a modulatory effect of Raidd deficiency on DNA-damage-driven cancer. The role of Caspase-2 as a tumor suppressor and that of Pidd1 as a tumor promoter can therefore be uncoupled from their ability to interact with the Raidd scaffold, pointing toward the existence of alternative signaling modules engaging these two proteins in this context.A number of mechanisms have evolved to trace and remove potentially dangerous cells. Deregulation of the induction of apoptosis upon oncogenic stress, for example, can facilitate the accumulation of cells prone to undergo malignant transformation. Cell death by apoptosis depends on the cascade-like activation of proteases of the Caspase family.1 Among these, the evolutionarily most conserved protease, Caspase-2, turns out to be a potent tumor suppressor in mice2, 3, 4, 5, 6, 7 and correlative expression data support a conserved role in human cancer.8, 9, 10, 11, 12, 13Early studies suggested that Caspase-2 interacts with other proteins for its activation (e.g., after genotoxic stress), but the protease seems also able to auto-activate cell death on its own when present in sufficiently high concentration.14, 15, 16, 17, 18 The most prominent Caspase-2-containing protein complex was dubbed the ‘PIDDosome'' and described to contain the p53-induced protein with a death domain (PIDD1) and receptor-interacting protein-associated ICH-1/CED-3 homologous protein with a death domain (RAIDD, also known as CRADD).19 Although the molecular details of the pro-apoptotic potential of Caspase-2 are still discussed and alternative roles in the DNA-damage response, cell cycle arrest or sensor of metabolic stress are mechanistically poorly understood, Caspase-2 clearly limits tumorigenesis in different settings. These include aberrant expression of c-Myc in B cells3, 4 or deletion of the DNA-damage response regulator, ataxia telangiectasia mutated kinase (ATM), both driving lymphomagenesis6 as well as overexpression of the Her2/ErbB2 oncogene in breast5 or that of mutated KRAS in the lung epithelium, driving carcinoma formation.7 One of these studies, addressing also the role of Pidd1 in c-Myc-driven lymphomagenesis, revealed an unexpected oncogenic role for Pidd1, thereby questioning the physiological relevance of the PIDDosome complex in Caspase-2-mediated cell death and tumor suppression.4, 20 However, the exact role of the scaffold protein Raidd within these processes remains unaddressed so far.Raidd, a bipartite adapter containing a death domain (DD) and a caspase-recruitment domain (CARD) was first described to bind to the DD-containing kinase RIPK1 and the C. elegans caspase CED-3,21 supporting a role in cell death initiation. Subsequently, the interaction of Caspase-2 and Raidd was biochemically proven22 and proposed to be required for Caspase-2 autoprocessing preceding its activation.19 More recent studies propose an anti-inflammatory role for Raidd through suppression of nuclear factor kappa-light-chain enhancer (NF-κB) activation and cytokine production upon T-cell receptor stimulation by negatively interfering with the Carma1/Malt1/Bcl-10 signaling complex.23, 24First evidence for a potential role of RAIDD in human cancer was discovered in a biochemical screen using mantle cell lymphomas, which detected a downregulation of RAIDD by microarray analysis,10 whereas others reported on RAIDD-linked multidrug resistance in osteosarcoma cells.25 Furthermore, tumor cell apoptosis induced by inhibitors of histone de-acetylases in treatment-resistant adult T-cell leukemia lines reportedly required Caspase-2 and Raidd.26 It is also reported that the Caspase-2/Raidd axis is necessary after ER stress, for example, in the course of infection with the oncolytic maraba virus.27Taken together, these studies support a role for RAIDD in drug-induced cancer cell death as well as in tumor suppression, most likely linked to its role as a direct activator of Caspase-2. Alternatively, RAIDD may negatively interfere with PIDD- or BCL10-regulated NF-κB signaling23, 24, 28 and thereby suppress pro-tumorigenic inflammation. To address the role of Raidd in tumorigenesis in more detail, we exploited different mouse models where we induced thymic lymphomas by γ-irradiation, fibrosarcomas by 3-methylcholanthrene (3-MC) injection or B-cell lymphomas by aberrant expression of the c-Myc proto-oncogene. Our results suggest that Raidd is not a suppressor of tumors in the mouse models tested.  相似文献   

18.
Our earlier studies of rat brain phospholipase D1 (rPLD1) showed that the enzyme could be activated in cells by alpha subunits of the heterotrimeric G proteins G(13) and G(q). Recently, we showed that rPLD1 is modified by Ser/Thr phosphorylation and palmitoylation. In this study, we first investigated the roles of these post-translational modifications on the activation of rPLD1 by constitutively active Galpha(13)Q226L and Galpha(q)Q209L. Mutations of Cys(240) and Cys(241) of rPLD1, which abolish both post-translational modifications, did not affect the ability of either Galpha(13)Q226L or Galpha(q)Q209L to activate rPLD1. However, the RhoA-insensitive mutants, rPLD1(K946A,K962A) and rPLD1(K962Q), were not activated by Galpha(13)Q226L, although these mutant enzymes responded to phorbol ester and Galpha(q)Q209L. On the contrary, the PKC-insensitive mutant rPLD1(DeltaN168), which lacks the first 168 amino acids of rPLD1, responded to Galpha(13)Q226L but not to Galpha(q)Q209L. In addition, we found that rPLD2 was strongly activated by Galpha(q)Q209L and phorbol ester. However, surprisingly, the enzymatic activity of rPLD2 was suppressed by Galpha(13)Q226L and constitutively active V14RhoA in COS-7 cells. Abolition of the post-translational modifications of rPLD2 did not alter the effects of Galpha(q)Q209L or Galpha(13)Q226L. The suppressive effect of Galpha(13)Q226L on rPLD2 was reversed by dominant negative N19RhoA and the C3 exoenzyme of Clostridium botulinum, further supporting a role for RhoA. In summary, Galpha(13) activation of rPLD1 in COS-7 cells is mediated by Rho, while Galpha(q) activation requires PKC. rPLD2 is activated by Galpha(q), but is inhibited by Galpha(13). Neither Ser/Thr phosphorylation nor palmitoylation is required for these effects.  相似文献   

19.
20.
We assessed the ability of human uncoupling protein 2 (UCP2) to uncouple mitochondrial oxidative phosphorylation when expressed in yeast at physiological and supraphysiological levels. We used three different inducible UCP2 expression constructs to achieve mitochondrial UCP2 expression levels in yeast of 33, 283, and 4100 ng of UCP2/mg of mitochondrial protein. Yeast mitochondria expressing UCP2 at 33 or 283 ng/mg showed no increase in proton conductance, even in the presence of various putative effectors, including palmitate and all-trans-retinoic acid. Only when UCP2 expression in yeast mitochondria was increased to 4 microg/mg, more than an order of magnitude greater than the highest known physiological concentration, was proton conductance increased. This increased proton conductance was not abolished by GDP. At this high level of UCP2 expression, an inhibition of substrate oxidation was observed, which cannot be readily explained by an uncoupling activity of UCP2. Quantitatively, even the uncoupling seen at 4 microgram/mg was insufficient to account for the basal proton conductance of mammalian mitochondria. These observations suggest that uncoupling of yeast mitochondria by UCP2 is an overexpression artifact leading to compromised mitochondrial integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号