首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Antarctic ecosystems are dominated by micro‐organisms, and viruses play particularly important roles in the food webs. Since the first report in 2009 (López‐Bueno et al. 2009 ), ‘omic’‐based studies have greatly enlightened our understanding of Antarctic aquatic microbial diversity and ecosystem function (Wilkins et al. 2013 ; Cavicchioli 2015 ). This has included the discovery of many new eukaryotic viruses (López‐Bueno et al. 2009 ), virophage predators of algal viruses (Yau et al. 2011 ), bacteria with resistance to phage (Lauro et al. 2011 ) and mechanisms of haloarchaeal evasion, defence and adaptation to viruses (Tschitschko et al. 2015 ). In this issue of Molecular Ecology, López‐Bueno et al. ( 2015 ) report the first discovery of RNA viruses from an Antarctic aquatic environment. High sequence coverage enabled genome variation to be assessed for four positive‐sense single‐stranded RNA viruses from the order Picornavirales. By examining the populations present in the water column and in the lake's catchment area, populations of ‘quasispecies’ were able to be linked to local environmental factors. In view of the importance of viruses in Antarctic ecosystems but lack of data describing them, this study represents a significant advance in the field.  相似文献   

2.
Recent advances in sequencing technology and efficiency enable new and improved methods to investigate how populations diverge and species evolve. Fungi have relatively small and simple genomes and can often be cultured in the laboratory. Fungal populations can thus be sequenced for a relatively low cost, which makes them ideal for population genomic analyses. In several recent population genomic studies, wild populations of fungal model organisms and human pathogens have been analysed, for example Neurospora crassa (Ellison et al. 2011 ), Saccharomyces uvarum (Almeida et al. 2014 ), Coccidioides spp. (Neafsey et al. 2010 ) and Cryptococcus gatti (Engelthaler et al. 2014 ). In this issue of Molecular Ecology, Branco et al. ( 2015 ) apply population genomic tools to understand population divergence and adaptation in a symbiotic (mycorrhizal) fungus. This study exemplifies the possibilities of diving deeper into the genomic features involved in population divergence and speciation, also for nonmodel organisms, and how molecular and analytical tools will improve our understanding of the patterns and mechanisms that underlie adaptation to habitats, population divergence and dispersal limitation of fungi.  相似文献   

3.
The white‐nose syndrome (WNS), caused by the fungal pathogen Pseudogymnoascus destructans, is threatening the cave‐dwelling bat fauna of North America by killing individuals by the thousands in hibernacula each winter since its appearance in New York State less than ten years ago. Epidemiological models predict that WNS will reach the western coast of the USA by 2035, potentially eliminating most populations of susceptible bat species in its path (Frick et al. 2015; O'Regan et al. 2015). These models were built and validated using distributional data from the early years of the epidemic, which spread throughout eastern North America following a route driven by cave density and winter severity (Maher et al. 2012). In this issue of Molecular Ecology, Wilder et al. (2015) refine these findings by showing that connectivity among host populations, as assessed by population genetic markers, is crucial in determining the spread of the pathogen. Because host connectivity is much reduced in the hitherto disease free western half of North America, Wilder et al. make the reassuring prediction that the disease will spread more slowly west of the Great Plains.  相似文献   

4.
I am writing in response to an article by Bolton, Rollins and Griffith (2015) entitled ‘The danger within: the role of genetic, behavioural and ecological factors in population persistence of colour polymorphic species’ that was recently published as an Opinion under the NEWS AND VIEWS section in Molecular Ecology. Bolton et al. (Molecular Ecology, 2015, 24 , 2907) argue that colour polymorphism may reduce population fitness and increase extinction risk and emphasize that this is contrary to predictions put forward by Forsman et al. (Ecology, 89 , 2008, 34) and Wennersten & Forsman (Biological Reviews 87 , 2012, 756) that the existence of multiple colour morphs with co‐adapted gene complexes and associated trait values may increase the ecological and evolutionary success of polymorphic populations and species. Bolton et al. (Molecular Ecology, 2015, 24 , 2907) further state that there is no clear evidence from studies of ‘true polymorphic species’ that polymorphism promotes population persistence. In response, I (i) challenge their classifications of polymorphisms and revisit the traditional definitions recognizing the dynamic nature of polymorphisms, (ii) review empirical studies that have examined whether and how polymorphism is associated with extinction risk, (iii) discuss the roles of trait correlations between colour pattern and other phenotypic dimensions for population fitness and (iv) highlight that the causes and mechanisms that influence the composition and maintenance of polymorphisms are different from the consequences of the polymorphic condition and how it may impact on aspects of ecological success and long‐term persistence of populations and species.  相似文献   

5.
We are writing in response to the population and phylogenomics meeting review by Andrews & Luikart ( 2014 ) entitled ‘Recent novel approaches for population genomics data analysis’. Restriction‐site‐associated DNA (RAD) sequencing has become a powerful and useful approach in molecular ecology, with several different published methods now available to molecular ecologists, none of which can be considered the best option in all situations. A&L report that the original RAD protocol of Miller et al. ( 2007 ) and Baird et al. ( 2008 ) is superior to all other RAD variants because putative PCR duplicates can be identified (see Baxter et al. 2011 ), thereby reducing the impact of PCR artefacts on allele frequency estimates (Andrews & Luikart 2014 ). In response, we (i) challenge the assertion that the original RAD protocol minimizes the impact of PCR artefacts relative to that of other RAD protocols, (ii) present additional biases in RADseq that are at least as important as PCR artefacts in selecting a RAD protocol and (iii) highlight the strengths and weaknesses of four different approaches to RADseq which are a representative sample of all RAD variants: the original RAD protocol (mbRAD, Miller et al. 2007 ; Baird et al. 2008 ), double digest RAD (ddRAD, Peterson et al. 2012 ), ezRAD (Toonen et al. 2013 ) and 2bRAD (Wang et al. 2012 ). With an understanding of the strengths and weaknesses of different RAD protocols, researchers can make a more informed decision when selecting a RAD protocol.  相似文献   

6.
Animals maintain complex microbial communities within their guts that fill important roles in the health and development of the host. To what degree a host's genetic background influences the establishment and maintenance of its gut microbial communities is still an open question. We know from studies in mice and humans that external factors, such as diet and environmental sources of microbes, and host immune factors play an important role in shaping the microbial communities (Costello et al. 2012 ). In this issue of Molecular Ecology, Bolnick et al. ( 2014a ) sample the gut microbial community from 150 genetically diverse stickleback isolated from a single lake to provide evidence that another part of the adaptive immune response, the major histocompatibility complex class II (MHCII) receptors of antigen‐presenting cells, may play a role in shaping the gut microbiota of the threespine stickleback, Gasterosteus aculeatus (Bolnick et al. 2014a ). Bolnick et al. ( 2014a ) provide insight into natural, interindividual variation in the diversity of both stickleback MHCII alleles and their gut microbial communities and correlate changes in the diversity of MHCII receptor alleles with changes in the microbiota.  相似文献   

7.
In a recent article (Dormann et al., 2012, Journal of Biogeography, 39, 2119–2131), we compared different approaches to species distribution modelling and depicted modelling approaches along an axis from purely ‘correlative’ to ‘forward process‐based’ models. In their correspondence, Kriticos et al. (2013, Journal of Biogeography, doi: 10.1111/j.1365‐2699.2012.02791.x ) challenge this view, claiming that our continuum representation neglects differences among models and does not consider the ability of fitted process‐based models to combine the advantages of both process‐based and correlative modelling approaches. Here we clarify that the continuum view resulted from recognition of the manifold differences between models. We also reinforce the point that the current trend towards combining different modelling approaches may lead not only to the desired combination of the advantages but also to the accumulation of the disadvantages of those approaches. This point has not been made sufficiently clear previously.  相似文献   

8.
《Journal of neurochemistry》2017,141(3):473-474
‘CXCL12/CXCR4 chemokine signaling in spinal glia induces pain hypersensitivity through MAPKs‐mediated neuroinflammation in bone cancer rats’ by Hu X.‐M., Liu Y.‐N., Zhang H.‐L., Cao S.‐B., Zhang T., Chen L.‐P. and Shen W. The above article from Journal of Neurochemistry, published online on 26 January 2015 and in volume 132, issue 4, pages 452–463 (available through www.onlinelibrary.wiley.com ), and its subsequent Corrigendum, published online on 5 February 2015 and in volume 132, issue 4, p. 487, have been retracted by agreement between the Journal's Editor‐in‐Chief, Jörg Schulz, corresponding author Wen Shen on behalf of the authors, and John Wiley & Sons Ltd. The retraction has been agreed as the same GFAP immunostaining image was used to represent different experimental conditions in two different publications (Shen et al. [2014] in the Journal of Neuroinflammation and Hu et al. [2015] in the Journal of Neurochemistry), with apparent brightness changes between the images. Shen et al. (2014) show in the outer right panel of Figure 4a, as well as in Fig. 8A for the GFAP/sham condition, a GFAP immunostaining after treatment with TCI + Fluorocitrate. The same image, at a lower intensity, is used in Hu et al. (2015) in the first panel of figure 5b as a sham control. The shape of the tissue margins of the spinal cord section as well as several landmark epitopes that point towards identical images are encircled:

Shen et al. 2014 Figure 4a  相似文献   


9.
Tropical butterflies in the genus Heliconius have long been models in the study of the stages of speciation. Heliconius are unpalatable to predators, and many species are notable for multiple geographic populations with striking warning colour pattern differences associated with Müllerian mimicry. A speciation continuum is evident in Heliconius hybrid zones. Examples range from hybrid zones across which (a) there is little genetic differentiation other than at mimicry loci, but where hybrids are common, (b) to ‘bimodal‘ hybrid zones with strong genetic divergence and few hybrids, (c) through to ‘good’ sympatric species, with hybridization extremely rare or absent. Now, in this issue of Molecular Ecology, Arias et al. ( 2012 ) have found an intermediate case in Colombian Heliconius cydno showing evidence for assortative mating and molecular differences, but where hybrids are abundant.  相似文献   

10.
One of the fundamental challenges of conservation biology is gathering data on species distribution and abundance. And unless conservationists know where a species is found and in which numbers, it is very difficult to apply effective conservation efforts. In today's age of increasingly powerful monitoring tools, instant communication and online databases, one might be forgiven for thinking that such knowledge is easy to come by. However, of the approximately 5,400 terrestrial mammals on the IUCN Red List, no fewer than 789 (ca. 14%) are listed as ‘Data Deficient’ (IUCN 2012) – IUCN's term for ‘haven't got a clue’. Until recently, the only way to gather information of numbers and distribution of terrestrial mammals (and many other vertebrates) was through observational‐based approaches such as visual records, the presence of tracks or spoor or even identification from bushmeat or hunters' trophies pinned to the walls in local villages. While recent technological developments have considerably improved the efficacy of such approaches, for example, using remote‐sensing devices such as audio‐ or camera‐traps or even remote drones (Koh & Wich 2012), there has been a growing realization of the power of molecular methods that identify mammals based on trace evidence. Suitable substrates include the obvious, such as faecal and hair samples (e.g. Vigilant et al. 2009), to the less obvious, including environmental DNA extracted from sediments, soil or water samples (e.g. Taberlet et al. 2012), and as recently demonstrated, the dietary content of blood‐sucking invertebrates (Gariepy et al. 2012; Schnell et al. 2012). In this issue of Molecular Ecology, Calvignac‐Spencer et al. (2013) present a potentially powerful development in this regard; diet analysis of carrion flies. With their near global distribution, and as most field biologists know, irritatingly high frequency in most terrestrial areas of conservation concern (which directly translates into ease of sampling them), the authors present extremely encouraging results that indicate how carnivorous flies may soon represent a strong weapon in the conservation arsenal.  相似文献   

11.
Sex chromosomes are a very peculiar part of the genome that have evolved independently in many groups of animals and plants (Bull 1983 ). Major research efforts have so far been focused on large heteromorphic sex chromosomes in a few animal and plant species (Chibalina & Filatov 2011 ; Zhou & Bachtrog 2012 ; Bellott et al. 2014 ; Hough et al. 2014 ; Zhou et al. 2014 ), while homomorphic (cytologically indistinguishable) sex chromosomes have largely been neglected. However, this situation is starting to change. In this issue, Geraldes et al. ( 2015 ) describe a small (~100 kb long) sex‐determining region on the homomorphic sex chromosomes of poplars (Populus trichocarpa and related species, Fig.  1 ). All species in Populus and its sister genus Salix are dioecious, suggesting that dioecy and the sex chromosomes, if any, should be relatively old. Contrary to this expectation, Geraldes et al. ( 2015 ) demonstrate that the sex‐determining region in poplars is of very recent origin and probably evolved within the genus Populus only a few million years ago.  相似文献   

12.
Understanding the genetic structure of species is essential for conservation. It is only with this information that managers, academics, user groups and land‐use planners can understand the spatial scale of migration and local adaptation, source‐sink dynamics and effective population size. Such information is essential for a multitude of applications including delineating management units, balancing management priorities, discovering cryptic species and implementing captive breeding programmes. Species can range from locally adapted by hundreds of metres (Pavey et al. 2010 ) to complete species panmixia (Côté et al. 2013 ). Even more remarkable is that this essential information can be obtained without fully sequenced or annotated genomes, but from mere (putatively) nonfunctional variants. First with allozymes, then microsatellites and now SNPs, this neutral genetic variation carries a wealth of information about migration and drift. For many of us, it may be somewhat difficult to remember our understanding of species conservation before the widespread usage of these useful tools. However most species on earth have yet to give us that ‘peek under the curtain’. With the current diversity on earth estimated to be nearly 9 million species (Mora et al. 2011 ), we have a long way to go for a comprehensive meta‐phylogeographic understanding. A method presented in this issue by Campbell and colleagues (Campbell et al. 2015 ) is a tool that will accelerate the pace in this area. Genotyping‐in‐thousands (GT‐seq) leverages recent advancements in sequencing technology to save many hours and dollars over previous methods to generate this important neutral genetic information.  相似文献   

13.
Perhaps Darwin would agree that speciation is no longer the mystery of mysteries that it used to be. It is now generally accepted that evolution by natural selection can contribute to ecological adaptation, resulting in the evolution of reproductive barriers and, hence, to the evolution of new species (Schluter & Conte 2009 ; Meyer 2011 ; Nosil 2012 ). From genes that encode silencing proteins that cause infertility in hybrid mice (Mihola et al. 2009 ), to segregation distorters linked to speciation in fruit flies (Phadnis & Orr 2009 ), or pollinator‐mediated selection on flower colour alleles driving reinforcement in Texan wildflowers (Hopkins & Rausher 2012 ), characterization of the genes that drive speciation is providing clues to the origin of species (Nosil & Schluter 2011 ). It is becoming apparent that, while recent work continues to overturn historical ideas about sympatric speciation (e.g. Barluenga et al. 2006 ), ecological circumstances strongly influence patterns of genomic divergence, and ultimately the establishment of reproductive isolation when gene flow is present (Elmer & Meyer 2011 ). Less clear, however, are the genetic mechanisms that cause speciation, particularly when ongoing gene flow is occurring. Now, in this issue, Franchini et al. ( 2014 ) employ a classic genetic mapping approach augmented with new genomic tools to elucidate the genomic architecture of ecologically divergent body shapes in a pair of sympatric crater lake cichlid fishes. From over 450 segregating SNPs in an F2 cross, 72 SNPs were linked to 11 QTL associated with external morphology measured by means of traditional and geometric morphometrics. Annotation of two highly supported QTL further pointed to genes that might contribute to ecological divergence in body shape in Midas cichlids, overall supporting the hypothesis that genomic regions of large phenotypic effect may be contributing to early‐stage divergence in Midas cichlids.  相似文献   

14.
Many eukaryotic genomes contain a large fraction of gene duplicates (or paralogs) as a result of ancient or recent whole‐genome duplications (Ohno 1970 ; Jaillon et al. 2004 ; Kellis et al. 2004 ). Identifying paralogs with NGS data is a pervasive problem in both ancient polyploids and neopolyploids. Likewise, paralogs are often treated as a nuisance that has to be detected and removed (Everett et al. 2012 ). In this issue of Molecular Ecology Resources, Waples et al. ( 2015 ) show that exclusion might not be necessary and how we may miss out on important genomic information in doing so. They present a novel statistical approach to detect paralogs based on the segregation of RAD loci in haploid offspring and test their method by constructing linkage maps with and without these duplicated loci in chum salmon, Oncorhynchus keta (Fig.  1 ). Their linkage map including the resolved paralogs shows that these are mostly located in the distal regions of several linkage groups. Particularly intriguing is their finding that these homoeologous regions appear impoverished in transposable elements (TE). Given the role that TE play in genome remodelling, it is noteworthy that these elements are of low abundance in regions showing residual tetrasomic inheritance. This raises the question whether re‐diploidization is constrained in these regions and whether they might have a role to play in salmonid speciation. This study provides an original approach to identifying duplicated loci in species with a pedigree, as well as providing a dense linkage map for chum salmon, and interesting insights into the retention of gene duplicates in an ancient polyploid.  相似文献   

15.
The balance between proliferation and differentiation is a fundamental aspect of multicellular life. Perhaps nowhere is this delicate balance more palpable than in the multiciliated cells (MCCs) that line the respiratory tract, the ependyma, and the oviduct. These cells contain dozens to hundreds of motile cilia that beat in a concerted fashion to generate directed fluid flow over the tissue surface. Although MCCs have exited the cell cycle, remarkably, they retain the ability to duplicate their centrioles and to mature those centrioles into ciliary basal bodies—two features, which are known to be normally under strict cell cycle control (Firat‐Karalar & Stearns, 2014 ). How post‐mitotic MCCs retain this ability, remains unclear. In the past several months, four research articles, including one from Terré et al in this issue of The EMBO Journal, have described a vital role for the geminin coiled‐coil domain‐containing protein (Gemc1) in the MCC gene expression program in multiple tissues and organisms, that bring us closer to understanding this question (Kyrousi et al, 2015 ; Zhou et al, 2015 ; Arbi et al, 2016 ; Terré et al, 2016 ).  相似文献   

16.
A megacheiran arthropod, Enalikter aphson, was recently described by Siveter et al. (2014) from the mid‐Silurian (late Wenlock) of Herefordshire. Previously, megacheirans had only been recognized from the Cambrian. Struck et al. (2015) considered the body plan of Enalikter to be incompatible with this affinity, arguing that many of the arthropod features were either not present or misinterpreted. Instead, they compared Enalikter to polychaete annelids, identifying characters from numerous polychaete lineages which they considered to be present in Enalikter. A reply to this critique by Siveter et al. (2015) reaffirmed arthropod affinities for Enalikter by presenting additional evidence for key arthropod features, such as arthropodized appendages. Here, we augment Siveter et al. by critically addressing the putative annelid characters of Enalikter presented by Struck et al. and additionally explore the morphological and phylogenetic implications of their hypothesis. We conclude that similarities between Enalikter and polychaetes are superficial and that character combinations proposed by Struck et al. are not present in any annelid, living or extinct. This taxon highlights the importance of using a phylogenetic framework for interpreting fossils that present unusual morphologies, such that proposed shared characters are hypotheses of homology rather than merely phenotypic similarities. Crucially, we argue that autapomorphic characters of subgroups of large taxa (like families or classes within phyla) should not be used to diagnose problematic fossils.  相似文献   

17.
The ability to withstand viral predation is critical for survival of most microbes. Accordingly, a plethora of phage resistance systems has been identified in bacterial genomes (Labrie et al, 2010 ), including restriction‐modification systems (R‐M) (Tock & Dryden, 2005 ), abortive infection (Abi) (Chopin et al, 2005 ), Argonaute‐based interference (Swarts et al, 2014 ), as well as clustered regularly interspaced short palindromic repeats (CRISPR) and associated protein (Cas) adaptive immune system (CRISPR‐Cas) (Barrangou & Marraffini, 2014 ; Van der Oost et al, 2014 ). Predictably, the dark matter of bacterial genomes contains a wealth of genetic gold. A study published in this issue of The EMBO Journal by Goldfarb et al ( 2015 ) unveils bacteriophage exclusion (BREX) as a novel, widespread bacteriophage resistance system that provides innate immunity against virulent and temperate phage in bacteria.  相似文献   

18.
In this issue, Flaxman et al. ( 2014 ) report the results of sophisticated whole‐genome simulations of speciation with gene flow, enhancing our understanding of the process by building on previous single‐locus, multilocus and analytical works. Their findings provide us with new insights about how genomes can diverge and the importance of statistical and chromosomal linkage in facilitating reproductive isolation. The authors characterize the conditions under which, even with high gene flow and weak divergent selection, reproductive isolation between populations can occur due to the emergent stochastic process of genomewide congealing, where numerous statistically or physically linked loci of small effect allow selection to limit effective migration rates. The initial congealing event can occur within a broad range conditions, and once initiated, the self‐reinforcing process leads to rapid divergence and ultimately two reproductively isolated populations. Flaxman et al.'s ( 2014 ) work is a valuable contribution to our understanding of speciation with gene flow and in making a more predictive field of evolutionary genomics and speciation.  相似文献   

19.
Host‐associated microbes are ubiquitous. Every multicellular eukaryote, and even many unicellular eukaryotes (protists), hosts a diverse community of microbes. High‐throughput sequencing (HTS) tools have illuminated the vast diversity of host‐associated microbes and shown that they have widespread influence on host biology, ecology and evolution (McFall‐Ngai et al. 2013 ). Bacteria receive most of the attention, but protists are also important components of microbial communities associated with humans (Parfrey et al. 2011 ) and other hosts. As HTS tools are increasingly used to study eukaryotes, the presence of numerous and diverse host‐associated eukaryotes is emerging as a common theme across ecosystems. Indeed, HTS studies demonstrate that host‐associated lineages account for between 2 and 12% of overall eukaryotic sequences detected in soil, marine and freshwater data sets, with much higher relative abundances observed in some samples (Ramirez et al. 2014 ; Simon et al. 2015 ; de Vargas et al. 2015 ). Previous studies in soil detected large numbers of predominantly parasitic lineages such as Apicomplexa, but did not delve into their origin [e.g. (Ramirez et al. 2014 )]. In this issue of Molecular Ecology, Geisen et al. ( 2015 ) use mock communities to show that many of the eukaryotic organisms detected by environmental sequencing in soils are potentially associated with animal hosts rather than free‐living. By isolating the host‐associated fraction of soil microbial communities, Geisen and colleagues help explain the surprisingly high diversity of parasitic eukaryotic lineages often detected in soil/terrestrial studies using high‐throughput sequencing (HTS) and reinforce the ubiquity of these host‐associated microbes. It is clear that we can no longer assume that organisms detected in bulk environmental sequencing are free‐living, but instead need to design studies that specifically enumerate the diversity and function of host‐associated eukaryotes. Doing so will allow the field to determine the role host‐associated eukaryotes play in soils and other environments and to evaluate hypotheses on assembly of host‐associated communities, disease ecology and more.  相似文献   

20.
Puritz et al. provide a review of several RADseq methodological approaches in response to our ‘Population Genomic Data Analysis’ workshop (Sept 2013) review (Andrews & Luikart 2014). We agree with Puritz et al. on the importance for researchers to thoroughly understand RADseq library preparation and data analysis when choosing an approach for answering their research questions. Some of us are currently using multiple RADseq protocols, and we agree that the different methods may offer advantages in different cases. Our workshop review did not intend to provide a thorough review of RADseq because the workshop covered a broad range of topics within the field of population genomics. Similarly, neither the response of Puritz et al. nor our comments here provide sufficient space to thoroughly review RADseq. Nonetheless, here we address some key points that we find unclear or potentially misleading in their evaluation of techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号