首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The generation of genome‐scale data is critical for a wide range of questions in basic biology using model organisms, but also in questions of applied biology in nonmodel organisms (agriculture, natural resources, conservation and public health biology). Using a genome‐scale approach on a diverse group of nonmodel organisms and with the goal of lowering costs of the method, we modified a multiplexed, high‐throughput genomic scan technique utilizing two restriction enzymes. We analysed several pairs of restriction enzymes and completed double‐digestion RAD sequencing libraries for nine different species and five genera of insects and fish. We found one particular enzyme pair produced consistently higher number of sequence‐able fragments across all nine species. Building libraries off this enzyme pair, we found a range of usable SNPs between 4000 and 37 000 SNPS per species and we found a greater number of usable SNPs using reference genomes than de novo pipelines in STACKS. We also found fewer reads in the Read 2 fragments from the paired‐end Illumina Hiseq run. Overall, the results of this study provide empirical evidence of the utility of this method for producing consistent data for diverse nonmodel species and suggest specific considerations for sequencing analysis strategies.  相似文献   

2.
Information on genetic relationships among individuals is essential to many studies of the behaviour and ecology of wild organisms. Parentage and relatedness assays based on large numbers of single nucleotide polymorphism (SNP) loci hold substantial advantages over the microsatellite markers traditionally used for these purposes. We present a double‐digest restriction site‐associated DNA sequencing (ddRAD‐seq) analysis pipeline that, as such, simultaneously achieves the SNP discovery and genotyping steps and which is optimized to return a statistically powerful set of SNP markers (typically 150–600 after stringent filtering) from large numbers of individuals (up to 240 per run). We explore the trade‐offs inherent in this approach through a set of experiments in a species with a complex social system, the variegated fairy‐wren (Malurus lamberti) and further validate it in a phylogenetically broad set of other bird species. Through direct comparisons with a parallel data set from a robust panel of highly variable microsatellite markers, we show that this ddRAD‐seq approach results in substantially improved power to discriminate among potential relatives and considerably more precise estimates of relatedness coefficients. The pipeline is designed to be universally applicable to all bird species (and with minor modifications to many other taxa), to be cost‐ and time‐efficient, and to be replicable across independent runs such that genotype data from different study periods can be combined and analysed as field samples are accumulated.  相似文献   

3.
Comparative studies can provide powerful insights into processes that affect population divergence and thereby help to elucidate the mechanisms by which contemporary populations may respond to environmental change. Furthermore, approaches such as genotyping by sequencing (GBS) provide unprecedented power for resolving genetic differences among species and populations. We therefore used GBS to provide a genomewide perspective on the comparative population structure of two palm genera, Washingtonia and Brahea, on the Baja California peninsula, a region of high landscape and ecological complexity. First, we used phylogenetic analysis to address taxonomic uncertainties among five currently recognized species. We resolved three main clades, the first corresponding to W. robusta and W. filifera, the second to B. brandegeei and B. armata, and the third to B. edulis from Guadalupe Island. Focusing on the first two clades, we then delved deeper by investigating the underlying population structure. Striking differences were found, with GBS uncovering four distinct Washingtonia populations and identifying a suite of loci associated with temperature, consistent with ecologically mediated divergence. By contrast, individual mountain ranges could be resolved in Brahea and few loci were associated with environmental variables, implying a more prominent role of neutral divergence. Finally, evidence was found for long‐distance dispersal events in Washingtonia but not Brahea, in line with knowledge of the dispersal mechanisms of these palms including the possibility of human‐mediated dispersal. Overall, our study demonstrates the power of GBS together with a comparative approach to elucidate markedly different patterns of genomewide divergence mediated by multiple effectors.  相似文献   

4.
Wheat breeders and academics alike use single nucleotide polymorphisms (SNP s) as molecular markers to characterize regions of interest within the hexaploid wheat genome. A number of SNP ‐based genotyping platforms are available, and their utility depends upon factors such as the available technologies, number of data points required, budgets and the technical expertise required. Unfortunately, markers can rarely be exchanged between existing and newly developed platforms, meaning that previously generated data cannot be compared, or combined, with more recently generated data sets. We predict that genotyping by sequencing will become the predominant genotyping technology within the next 5–10 years. With this in mind, to ensure that data generated from current genotyping platforms continues to be of use, we have designed and utilized SNP ‐based capture probes from several thousand existing and publicly available probes from Axiom® and KASP ? genotyping platforms. We have validated our capture probes in a targeted genotyping by sequencing protocol using 31 previously genotyped UK elite hexaploid wheat accessions. Data comparisons between targeted genotyping by sequencing, Axiom® array genotyping and KASP ? genotyping assays, identified a set of 3256 probes which reliably bring together targeted genotyping by sequencing data with the previously available marker data set. As such, these probes are likely to be of considerable value to the wheat community. The probe details, full probe sequences and a custom built analysis pipeline may be freely downloaded from the CerealsDB website (http://www.cerealsdb.uk.net/cerealgenomics/CerealsDB /sequence_capture.php).  相似文献   

5.
Targeted selection and inbreeding have resulted in a lack of genetic diversity in elite hexaploid bread wheat accessions. Reduced diversity can be a limiting factor in the breeding of high yielding varieties and crucially can mean reduced resilience in the face of changing climate and resource pressures. Recent technological advances have enabled the development of molecular markers for use in the assessment and utilization of genetic diversity in hexaploid wheat. Starting with a large collection of 819 571 previously characterized wheat markers, here we describe the identification of 35 143 single nucleotide polymorphism‐based markers, which are highly suited to the genotyping of elite hexaploid wheat accessions. To assess their suitability, the markers have been validated using a commercial high‐density Affymetrix Axiom® genotyping array (the Wheat Breeders’ Array), in a high‐throughput 384 microplate configuration, to characterize a diverse global collection of wheat accessions including landraces and elite lines derived from commercial breeding communities. We demonstrate that the Wheat Breeders’ Array is also suitable for generating high‐density genetic maps of previously uncharacterized populations and for characterizing novel genetic diversity produced by mutagenesis. To facilitate the use of the array by the wheat community, the markers, the associated sequence and the genotype information have been made available through the interactive web site ‘CerealsDB’.  相似文献   

6.
7.
There has been remarkably little attention to using the high resolution provided by genotyping‐by‐sequencing (i.e., RADseq and similar methods) for assessing relatedness in wildlife populations. A major hurdle is the genotyping error, especially allelic dropout, often found in this type of data that could lead to downward‐biased, yet precise, estimates of relatedness. Here, we assess the applicability of genotyping‐by‐sequencing for relatedness inferences given its relatively high genotyping error rate. Individuals of known relatedness were simulated under genotyping error, allelic dropout and missing data scenarios based on an empirical ddRAD data set, and their true relatedness was compared to that estimated by seven relatedness estimators. We found that an estimator chosen through such analyses can circumvent the influence of genotyping error, with the estimator of Ritland (Genetics Research, 67, 175) shown to be unaffected by allelic dropout and to be the most accurate when there is genotyping error. We also found that the choice of estimator should not rely solely on the strength of correlation between estimated and true relatedness as a strong correlation does not necessarily mean estimates are close to true relatedness. We also demonstrated how even a large SNP data set with genotyping error (allelic dropout or otherwise) or missing data still performs better than a perfectly genotyped microsatellite data set of tens of markers. The simulation‐based approach used here can be easily implemented by others on their own genotyping‐by‐sequencing data sets to confirm the most appropriate and powerful estimator for their data.  相似文献   

8.
To enable rapid selection of traits in marker‐assisted breeding, markers must be technically simple, low‐cost, high‐throughput and randomly distributed in a genome. We developed such a technology, designated as Multiplex Restriction Amplicon Sequencing (MRASeq), which reduces genome complexity by polymerase chain reaction (PCR) amplification of amplicons flanked by restriction sites. The first PCR primers contain restriction site sequences at 3’‐ends, preceded by 6‐10 bases of specific or degenerate nucleotide sequences and then by a unique M13‐tail sequence which serves as a binding site for a second PCR that adds sequencing primers and barcodes to allow sample multiplexing for sequencing. The sequences of restriction sites and adjacent nucleotides can be altered to suit different species. Physical mapping of MRASeq SNPs from a biparental population of allohexaploid wheat (Triticum aestivum L.) showed a random distribution of SNPs across the genome. MRASeq generated thousands of SNPs from a wheat biparental population and natural populations of wheat and barley (Hordeum vulgare L.). This novel, next‐generation sequencing‐based genotyping platform can be used for linkage mapping to screen quantitative trait loci (QTL), background selection in breeding and many other genetics and breeding applications of various species.  相似文献   

9.
We present the development of a genomic library using RADseq (restriction site associated DNA sequencing) protocol for marker discovery that can be applied on evolutionary studies of the sugarcane borer Diatraea saccharalis, an important South American insect pest. A RADtag protocol combined with Illumina paired‐end sequencing allowed de novo discovery of 12 811 SNPs and a high‐quality assembly of 122.8M paired‐end reads from six individuals, representing 40 Gb of sequencing data. Approximately 1.7 Mb of the sugarcane borer genome distributed over 5289 minicontigs were obtained upon assembly of second reads from first reads RADtag loci where at least one SNP was discovered and genotyped. Minicontig lengths ranged from 200 to 611 bp and were used for functional annotation and microsatellite discovery. These markers will be used in future studies to understand gene flow and adaptation to host plants and control tactics.  相似文献   

10.
Single nucleotide polymorphisms are the most common polymorphism in plant and animal genomes and, as such, are the logical choice for marker-assisted selection. However, many plants are also polyploid, and marker-assisted selection can be complicated by the presence of highly similar, but non-allelic, homoeologous sequences. Despite this, there is practical and academic demand for high-throughput genotyping in several polyploid crop species, such as allohexaploid wheat. In this paper, we present such a system, which utilizes public single nucleotide polymorphisms previously identified in both agronomically important genes and in randomly selected, mapped, expressed sequence tags developed by the wheat community. To achieve relatively high levels of multiplexing, we used non-amplified genomic DNA and padlock probe pairs, together with high annealing temperatures, to differentiate between similar sequences in the wheat genome. Our results suggest that padlock probes are capable of discriminating between homoeologous sequences and hence can be used to efficiently genotype wheat varieties.  相似文献   

11.
12.
While various technologies for high‐throughput genotyping have been developed for ecological studies, simple methods tolerant to low‐quality DNA samples are still limited. In this study, we tested the availability of a random PCR‐based genotyping‐by‐sequencing technology, genotyping by random amplicon sequencing, direct (GRAS‐Di). We focused on population genetic analysis of estuarine mangrove fishes, including two resident species, the Amboina cardinalfish (Fibramia amboinensis, Bleeker, 1853) and the Duncker's river garfish (Zenarchopterus dunckeri, Mohr, 1926), and a marine migrant, the blacktail snapper (Lutjanus fulvus, Forster, 1801). Collections were from the Ryukyu Islands, southern Japan. PCR amplicons derived from ~130 individuals were pooled and sequenced in a single lane on a HiSeq2500 platform, and an average of three million reads was obtained per individual. Consensus contigs were assembled for each species and used for genotyping of single nucleotide polymorphisms by mapping trimmed reads onto the contigs. After quality filtering steps, 4,000–9,000 putative single nucleotide polymorphisms were detected for each species. Although DNA fragmentation can diminish genotyping performance when analysed on next‐generation sequencing technology, the effect was small. Genetic differentiation and a clear pattern of isolation‐by‐distance was observed in F. amboinensis and Z. dunckeri by means of principal component analysis, FST and the admixture analysis. By contrast, L. fulvus comprised a genetically homogeneous population with directional recent gene flow. These genetic differentiation patterns reflect patterns of estuary use through life history. These results showed the power of GRAS‐Di for fine‐grained genetic analysis using field samples, including mangrove fishes.  相似文献   

13.
Globally, wheat is the most widely grown crop and one of the three most important crops for human and livestock feed. However, the complex nature of the wheat genome has, until recently, resulted in a lack of single nucleotide polymorphism (SNP)‐based molecular markers of practical use to wheat breeders. Recently, large numbers of SNP‐based wheat markers have been made available via the use of next‐generation sequencing combined with a variety of genotyping platforms. However, many of these markers and platforms have difficulty distinguishing between heterozygote and homozygote individuals and are therefore of limited use to wheat breeders carrying out commercial‐scale breeding programmes. To identify exome‐based co‐dominant SNP‐based assays, which are capable of distinguishing between heterozygotes and homozygotes, we have used targeted re‐sequencing of the wheat exome to generate large amounts of genomic sequences from eight varieties. Using a bioinformatics approach, these sequences have been used to identify 95 266 putative single nucleotide polymorphisms, of which 10 251 were classified as being putatively co‐dominant. Validation of a subset of these putative co‐dominant markers confirmed that 96% were true polymorphisms and 65% were co‐dominant SNP assays. The new co‐dominant markers described here are capable of genotypic classification of a segregating locus in polyploid wheat and can be used on a variety of genotyping platforms; as such, they represent a powerful tool for wheat breeders. These markers and related information have been made publically available on an interactive web‐based database to facilitate their use on genotyping programmes worldwide.  相似文献   

14.
The number of polymorphisms identified with next‐generation sequencing approaches depends directly on the sequencing depth and therefore on the experimental cost. Although higher levels of depth ensure more sensitive and more specific SNP calls, economic constraints limit the increase of depth for whole‐genome resequencing (WGS). For this reason, capture resequencing is used for studies focusing on only some specific regions of the genome. However, several biases in capture resequencing are known to have a negative impact on the sensitivity of SNP detection. Within this framework, the aim of this study was to compare the accuracy of WGS and capture resequencing on SNP detection and genotype calling, which differ in terms of both sequencing depth and biases. Indeed, we have evaluated the SNP calling and genotyping accuracy in a WGS dataset (13X) and in a capture resequencing dataset (87X) performed on 11 individuals. The percentage of SNPs not identified due to a sevenfold sequencing depth decrease was estimated at 7.8% using a down‐sampling procedure on the capture sequencing dataset. A comparison of the 87X capture sequencing dataset with the WGS dataset revealed that capture‐related biases were leading with the loss of 5.2% of SNPs detected with WGS. Nevertheless, when considering the SNPs detected by both approaches, capture sequencing appears to achieve far better SNP genotyping, with about 4.4% of the WGS genotypes that can be considered as erroneous and even 10% focusing on heterozygous genotypes. In conclusion, WGS and capture deep sequencing can be considered equivalent strategies for SNP detection, as the rate of SNPs not identified because of a low sequencing depth in the former is quite similar to SNPs missed because of method biases of the latter. On the other hand, capture deep sequencing clearly appears more adapted for studies requiring great accuracy in genotyping.  相似文献   

15.
Single nucleotide polymorphisms SNPs are rapidly replacing anonymous markers in population genomic studies, but their use in non model organisms is hampered by the scarcity of cost‐effective approaches to uncover genome‐wide variation in a comprehensive subset of individuals. The screening of one or only a few individuals induces ascertainment bias. To discover SNPs for a population genomic study of the Pyrenean rocket (Sisymbrium austriacum subsp. chrysanthum), we undertook a pooled RAD‐PE (Restriction site Associated DNA Paired‐End sequencing) approach. RAD tags were generated from the PstI‐digested pooled genomic DNA of 12 individuals sampled across the species distribution range and paired‐end sequenced using Illumina technology to produce ~24.5 Mb of sequences, covering ~7% of the specie's genome. Sequences were assembled into ~76 000 contigs with a mean length of 323 bp (N50 = 357 bp, sequencing depth = 24x). In all, >15 000 SNPs were called, of which 47% were annotated in putative genic regions based on homology with the Arabidopsis thaliana genome. Gene ontology (GO) slim categorization demonstrated that the identified SNPs covered extant genic variation well. The validation of 300 SNPs on a larger set of individuals using a KASPar assay underpinned the utility of pooled RAD‐PE as an inexpensive genome‐wide SNP discovery technique (success rate: 87%). In addition to SNPs, we discovered >600 putative SSR markers.  相似文献   

16.
Minimally invasive sampling (MIS) is widespread in wildlife studies; however, its utility for massively parallel DNA sequencing (MPS) is limited. Poor sample quality and contamination by exogenous DNA can make MIS challenging to use with modern genotyping‐by‐sequencing approaches, which have been traditionally developed for high‐quality DNA sources. Given that MIS is often more appropriate in many contexts, there is a need to make such samples practical for harnessing MPS. Here, we test the ability for Genotyping‐in‐Thousands by sequencing (GT‐seq), a multiplex amplicon sequencing approach, to effectively genotype minimally invasive cloacal DNA samples collected from the Western Rattlesnake (Crotalus oreganus), a threatened species in British Columbia, Canada. As there was no previous genetic information for this species, an optimized panel of 362 SNPs was selected for use with GT‐seq from a de novo restriction site‐associated DNA sequencing (RADseq) assembly. Comparisons of genotypes generated within and among RADseq and GT‐seq for the same individuals found low rates of genotyping error (GT‐seq: 0.50%; RADseq: 0.80%) and discordance (2.57%), the latter likely due to the different genotype calling models employed. GT‐seq mean genotype discordance between blood and cloacal swab samples collected from the same individuals was also minimal (1.37%). Estimates of population diversity parameters were similar across GT‐seq and RADseq data sets, as were inferred patterns of population structure. Overall, GT‐seq can be effectively applied to low‐quality DNA samples, minimizing the inefficiencies presented by exogenous DNA typically found in minimally invasive samples and continuing the expansion of molecular ecology and conservation genetics in the genomics era.  相似文献   

17.
Genetic variation is of key importance for a species’ evolutionary potential, and its estimation is a major component of conservation studies. New DNA sequencing technologies have enabled the analysis of large portions of the genome in nonmodel species, promising highly accurate estimates of such population genetic parameters. Restriction site‐associated DNA sequencing (RADseq) is used to analyse thousands of variants in the bumble bee species Bombus impatiens, which is common, and Bombus pensylvanicus, which is in decline. Previous microsatellite‐based analyses have shown that gene diversity is lower in the declining B. pensylvanicus than in B. impatiens. RADseq nucleotide diversities appear much more similar in the two species. Both species exhibit allele frequencies consistent with historical population expansions. Differences in diversity observed at microsatellites thus do not appear to have arisen from long‐term differences in population size and are either recent in origin or may result from mutational processes. Additional research is needed to explain these discrepancies and to investigate the best ways to integrate next‐generation sequencing data and more traditional molecular markers in studies of genetic diversity.  相似文献   

18.
Genetic relatedness of 24 animals belonging to seven Indian cattle breeds was studied using high throughput genotyping‐by‐sequencing (GBS) markers. GBS produced 93.6 million reads with an average of about 3.9 million reads per animal. A total of 107 488 SNPs were identified in these individuals. When only one SNP per read was considered, a total of 60 261 SNPs representing independent reads were identified with an average SNP‐to‐SNP distance of 45 kb across the bovine reference genome. About 24% of the GBS‐SNP markers were more than 100 kb apart. Of these, 58 322 SNPs mapped to autosomes, 1645 to the X chromosome and 28 to the Y chromosome. The average SNP‐to‐SNP distance on the X chromosome was 91.3 kb, whereas on the Y chromosome it was 1546.4 kb. The minor allele frequency within the Indian cattle varied from 0.103 (Ongole) to 0.177 (Siri), whereas Holstein cattle had the lowest value of 0.089. This is the first application of GBS in cattle of South Asia. The baseline information generated in this study might prompt implementation of GBS in breeding of cattle belonging to this region.  相似文献   

19.
The large yellow croaker, Larimichthys crocea, is a commercially important drum fish (Family: Sciaenidae) native to the East and South China Sea. Habitat deterioration and overfishing have led to significant population decline and the collapse of its fishery over the past decades. Today, the market supply of L. crocea depends solely on stocks produced in hatcheries and farms. Common issues that occur in the culture of L. crocea include germplasm degradation, precocious puberty, elevated disease susceptibility and growth retardation. In this study, we employed SLAF‐seq (specific‐locus amplified fragment sequencing) technology to identify single nucleotide polymorphism (SNP) loci across the L. crocea genome. Sixty samples were selected for SLAF analysis out of 1000 progeny in the same cohort of a cultured stock. Our analysis obtained a total of 151 253 SLAFs, of which 65.88% (99 652) were identified to be polymorphic, scoring a total of 710 567 putative SNPs. Further filtration resulted in a final panel of 1782 SNP loci. The data derived from this work could be beneficial for understanding the genetics of complex phenotypic traits as well as for developing marker‐selection‐assisted breeding programs in L. crocea.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号