首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  总被引:8,自引:0,他引:8  
Aim This article aims to test for and explore spatial nonstationarity in the relationship between avian species richness and a set of explanatory variables to further the understanding of species diversity variation. Location Sub‐Saharan Africa. Methods Geographically weighted regression was used to study the relationship between species richness of the endemic avifauna of sub‐Saharan Africa and a set of perceived environmental determinants, comprising the variables of temperature, precipitation and normalized difference vegetation index. Results The relationships between species richness and the explanatory variables were found to be significantly spatially variable and scale‐dependent. At local scales > 90% of the variation was explained, but this declined at coarser scales, with the greatest sensitivity to scale variation evident for narrow ranging species. The complex spatial pattern in regression model parameter estimates also gave rise to a spatial variation in scale effects. Main conclusions Relationships between environmental variables are generally assumed to be spatially stationary and conventional, global, regression techniques are therefore used in their modelling. This assumption was not satisfied in this study, with the relationships varying significantly in space. In such circumstances the average impression provided by a global model may not accurately represent conditions locally. Spatial nonstationarity in the relationship has important implications, especially for studies of species diversity patterns and their scaling.  相似文献   

2.
  总被引:1,自引:0,他引:1  
Area and available energy are major determinants of species richness. Although scale dependency of the relationship between energy availability and species richness (the species-energy relationship) has been documented, the exact relationship between the species-area and the species-energy relationship has not been studied explicitly. Here we show, using two extensive data sets on avian distributions in different biogeographic regions, that there is a negative interaction between energy availability and area in their effect on species richness. The slope of the species-area relationship is lower in areas with higher levels of available energy, and the slope of the species-energy relationship is lower for larger areas. This three-dimensional species-area-energy relationship can be understood in terms of probabilistic processes affecting the proportions of sites occupied by individual species. According to this theory, high environmental energy elevates species' occupancies, which depress the slope of the species-area curve.  相似文献   

3.
    
Although acknowledged to be common, intraspecific relationships between local abundance and site occupancy have been examined in detail for few species. Here we report such analyses for six widespread species of breeding birds in Britain, using data from the Common Birds Census. These exhibit a range of temporal trends, including different combinations of increase and decrease in abundance and occupancy. Overall, two species have a statistically significant positive abundance–occupancy relationship on farmland but no relationship in woodland (collared dove, tree sparrow), one a significant positive relationship on farmland and in woodland (magpie), two a significant positive relationship on farmland and a negative one in woodland (redstart, song thrush), and one a significant negative abundance–occupancy relationship on farmland but no relationship in woodland (sparrowhawk). The population dynamics associated with these patterns are used to discern their underlying mechanisms.  相似文献   

4.
5.
Connecting geographical distributions with population processes   总被引:2,自引:0,他引:2  
The geographical distribution of a species is determined by a large number of complex processes operating over spatial scales spanning 10 orders of magnitude. Patterns in population processes have been described at numerous scales. We show that two patterns, measured at different scales, jointly allow us to infer heretofore unknown patterns in the distribution of demographic patterns across the geographical range of a species. The resulting model describes three fundamentally different modes of geographical variation in vital rates of populations. One mode is characterized by a positive nonlinear relationship between the maximum rate of population growth and the intensity of intraspecific competition across a geographical range. That is, populations that grow rapidly are also those where individuals experience the greatest per capita negative effect of the presence of other individuals. The second mode of behaviour is described by a negative nonlinear relationship between maximum growth rate and density dependence. Under this scenario, populations with low capacity to grow rapidly have highest intensities of intraspecific competitive effects. A third mode of behaviour is characterized by a weak positive relationship between growth rate and intraspecific competition, with very little geographical variation in maximum growth rate. A survey of studies relating temporal means and variances in population abundance for a variety of species indicate that the second mode of geographical variation in population dynamics across species ranges is the most common, though a few species appear to be characterized by the third mode.  相似文献   

6.
    
The most pervasive macroecological patterns concern (1) the frequency distribution of range size, (2) the relationship between range size and species abundance and (3) the effect of body size on range size. We investigated these patterns at a regional scale using the tenebrionid beetles of Latium (Central Italy). For this, we calculated geographical range size (no. of 10‐km square cells), ecological tolerance (no. of phytoclimatic units) and abundance (no. of sampled individuals) using a large database containing 3561 georeferenced records for 84 native species. For each species, we also calculated body mass and its ‘phylogenetic diversity’ on the basis of cladistic relationships. Frequency distribution of range size followed a log‐normal distribution as found in many other animal groups. However, a log‐normal distribution accommodated well the frequency distribution of ecological tolerance, a so far unexplored issue. Range size was correlated with abundance and ecological tolerance, thus supporting the hypothesis that a positive correlation between distribution and abundance is a reflection of interspecific differences in ecological specialization. Larger species tended to have larger ranges and broader ecological tolerance. However, contrary to what known in most vertebrates, not only small‐sized, but also many medium‐to‐large‐sized species exhibited great variability in their range size, probably because tenebrionids are not so strictly influenced by body size constraints (e.g. home ranges) as vertebrates. Moreover, in contrast to other animals, tenebrionid body size does not influence species abundances, probably because these detritivorous animals are not strongly regulated by competition. Finally, contrary to the assumption that rare species should be mainly found among lineages that split from basal nodes, rarity of a tenebrionid species was not influenced by the phylogenetic position of its tribe. However, lineages that split from more basal nodes had lower variability in terms of species geographical distribution, ecological tolerance and abundance, which suggests that lineages that split from more basal nodes are not only morphologically conservative but also tend to have an ecological ‘inertia’.  相似文献   

7.
    
Biological invasions are a worldwide phenomenon, but the global flows between native and alien regions have rarely been investigated in a cross‐taxonomic study. We therefore lack a thorough understanding of the global patterns of alien species spread. Using native and alien ranges of 1380 alien species, we show that the number of alien species follows a hump‐shaped function of geographic distance. We observe distinct variations in the relationship between alien species exchanges and distance among taxonomic groups, which relate to the taxa‐specific dispersal modes and their pathways of introduction. We formulate a simple statistical model, combining trade volume and biogeographic dissimilarity, which reproduces the observed pattern in good agreement with reported data and even captures variations among taxonomic groups. This study demonstrates the universality of the intermediate distance hypothesis of alien species spread across taxonomic groups, which will help to improve the predictability of new alien species arrivals.  相似文献   

8.
  总被引:4,自引:0,他引:4  
The past 15 years have seen the development of macroecology as a respectable discipline within the biological sciences. Initial concerns about the utility of a large‐scale approach to ecology have been quietened, if not eliminated, but other arguments about spatial scale in ecology have arisen to take their place. The situation has moved from the absolute advocacy of small‐scale over large‐scale studies to an advocacy of some large scales in preference to others. Here, we argue that there is no general sense in which one scale of study (either in terms of spatial extent or sampling resolution) is better than any other. As long as there are sensible reasons for using the scale chosen, studies at all scales have the potential to inform about the structure and function of the ecological systems that clothe this planet.  相似文献   

9.
  总被引:2,自引:0,他引:2  
Using coarse resolution data on the spatial distribution of the entire New World avifauna, we test for phylogenclic patterns in the mean and total geographic range sizes of taxa. The analyses reveal that (i) the species-range size distribution is only approximately normalized, and remains significantly left-skewed, under logarithmic transformation. Most variance in range sizes is explained at the level of species within genera; (ii) there is no effect of the age of taxa on mean clade range size, although older taxa are more likely to have larger total range sizes; (iii) there is some evidence that taxa comprising more species have larger total range sizes; (iv) there is little or no evidence for a relationship between rate of cladogenesis and range size. The results suggest that geographic range size is a labile trait, at least for New World birds, and that the influence of evolutionary history is only weakly detectable in the range size variation of extant taxa, at least at the scale of analysis used here. In addition to these conclusions, two general and important procedural issues emerge.  相似文献   

10.
Species occurrences gathered from the literature, from atlases or from field surveys are currently used to analyze multispecific patterns, such as species richness or species geographic ranges. Such occurrences result from the independent recognitions of specimens by several botanists in particular places and at particular occasions. Thereby, the analysis of the resulting occasional relevés involves the assignment of the species occurrences to spatial units such as a grid of quadrats. As a result, the distribution of occurrences among quadrats is controlled while their distribution among species is observed. In this paper we show how non-symmetric correspondence analysis (NSCA) enables the investigation of data structure by taking into account this fundamental asymmetry. We apply this new ordination technique to a list of endemic tree species occurrences in the Western Ghats (South India). We explore the interesting properties of NSCA as an ordination technique and demonstrate the usefulness of the method as a tool in biogeography. Regarding the Western Ghats, NSCA brings out the preponderance of deforestation over biogeographic history in explaining the observed multispecific patterns.  相似文献   

11.
12.
  总被引:4,自引:0,他引:4  
It has been suggested that the presence of sister species in small circumscribed areas, such as isolated lakes or islands, might imply that these species originated sympatrically. To investigate this possibility in birds, we searched for endemic, congeneric species on isolated islands in the ocean. Among 46 islands and small archipelagos chosen because they contain at least one species of endemic land bird, we identified seven pairs of endemic congeners (excluding flightless rails). Of these seven, only four pairs are potentially sister species and thus possible candidates for sympatric speciation. However, three of these four pairs have always been considered the results of double invasion from a mainland source (in two of these cases, molecular-phylogenetic work has either confirmed a double invasion or is ambiguous). The one remaining pair may have speciated allopatrically on a small archipelago. Additional phylogenetic studies are required to understand these cases, and our results should also be considered in light of the large number of island-bird extinctions in historic time. We conclude that, at present, there is little evidence for sympatric speciation in island birds.  相似文献   

13.
Despite two centuries of exploration, our understanding of factors determining the distribution of life on Earth is in many ways still in its infancy. Much of the disagreement about governing processes of variation in species richness may be the result of differences in our perception of species‐richness patterns. Until recently, most studies of large‐scale species‐richness patterns assumed implicitly that patterns and mechanisms were scale invariant. Illustrated with examples and a quantitative analysis of published data on altitudinal gradients of species richness (n = 204), this review discusses how scale effects (extent and grain size) can influence our perception of patterns and processes. For example, a hump‐shaped altitudinal species‐richness pattern is the most typical (c. 50%), with a monotonic decreasing pattern (c. 25%) also frequently reported, but the relative distribution of patterns changes readily with spatial grain and extent. If we are to attribute relative impact to various factors influencing species richness and distribution and to decide at which point along a spatial and temporal continuum they act, we should not ask only how results vary as a function of scale but also search for consistent patterns in these scale effects. The review concludes with suggestions of potential routes for future analytical exploration of species‐richness patterns.  相似文献   

14.
The Middle Miocene sediments of Maboko Island (Lake Victoria) in western Kenya yielded numerous avian bones, which remained, however, little studied. The significance of this material is shown by the recent identification of an opisthocomiform bird. In the present study, further avian remains from Maboko Island are described. Most of the specimens belong to aquatic or semi-aquatic groups, of which some are closely related to taxa known from Early and Middle Miocene European avifaunas, that is, Nectornis cormorants (N. africanus nov. sp.) and Laricola-like Laromorphae. The fossil material also includes Ciconiidae (cf. Ciconia), Pelecanidae, Phoenicopteridae (Leakeyornis aethiopicus), Musophagidae, and a species of Ardeidae, which closely resembles the taxon Pikaihao from the Early Miocene of New Zealand. Some avian remains from Maboko Island belong to higher-level taxa unknown from the Middle Miocene of Europe. The occurrence of a giant Jacanidae (?Nupharanassa mabokoensis nov. sp.) is of particular interest, because these are globally absent in extant avifaunas and were previously only known from the Late Eocene/Early Oligocene of Egypt. Further unknown from contemporaneous European sites are small representatives of Jacanidae, Bucerotidae, and Alcedinidae, with the fossils of the latter two taxa being among the earliest published records of their respective groups. Several of the taxa that are common in contemporaneous European avifaunas have not been found in Maboko, and in spite of less pronounced climatic differences, Middle Miocene Afrotropical avifaunas already appear to have been distinct from contemporaneous European ones.  相似文献   

15.
16.
17.
    
We demonstrate that within-year climatic variability, particularly rainfall seasonality, is the most significant variable explaining spatial patterns of bird abundance in Australian tropical rainforest. The likely mechanism causing this pattern is a resource bottleneck (insects, nectar, and fruit) during the dry season that limits the population size of many species. The patterns support both the diversity–climatic–stability hypothesis and the species–energy hypothesis but clearly show that seasonality in energy availability may be a more significant factor than annual totals or means. An index of dry season severity is proposed that quantifies the combined effect of the degree of dryness and the duration of the dry season. We suggest that the predicted increases in seasonality due to global climate change could produce significant declines in bird abundance, further exacerbating the impacts of decreased range size, increased fragmentation, and decreased population size likely to occur as a result of increasing temperature. We suggest that increasing climatic seasonality due to global climate change has the potential to have significant negative impacts on tropical biodiversity.  相似文献   

18.
  总被引:1,自引:1,他引:1  
Although macroecology arose from geographical ecology, it has diverted from a geographical perspective. At present, most macroecological studies use a statistical approach that adopts an 'individual species focus' and relies on comparisons between species to test for broad-scale ecological patterns. Sometimes, space is included as part of the analysis, but almost always in a single dimension. In both situations, observed relationships are depicted using bivariate scatter-plots. We argue that current macroecological approaches may interfere with our perception of patterns and have important implications for their biological interpretation. We use the literature concerned with spatial variation in the range sizes of species (Rapoport's rule) to illustrate our point of view. Given the current lack of maps actually showing the patterns we are trying to explain, we contend that macroecology could benefit greatly by returning to its geographical roots, at least when data contain spatial structure.  相似文献   

19.
The relationships among species'' physiological capacities and the geographical variation of ambient climate are of key importance to understanding the distribution of life on the Earth. Furthermore, predictions of how species will respond to climate change will profit from the explicit consideration of their physiological tolerances. The climatic variability hypothesis, which predicts that climatic tolerances are broader in more variable climates, provides an analytical framework for studying these relationships between physiology and biogeography. However, direct empirical support for the hypothesis is mostly lacking for endotherms, and few studies have tried to integrate physiological data into assessments of species'' climatic vulnerability at the global scale. Here, we test the climatic variability hypothesis for endotherms, with a comprehensive dataset on thermal tolerances derived from physiological experiments, and use these data to assess the vulnerability of species to projected climate change. We find the expected relationship between thermal tolerance and ambient climatic variability in birds, but not in mammals—a contrast possibly resulting from different adaptation strategies to ambient climate via behaviour, morphology or physiology. We show that currently most of the species are experiencing ambient temperatures well within their tolerance limits and that in the future many species may be able to tolerate projected temperature increases across significant proportions of their distributions. However, our findings also underline the high vulnerability of tropical regions to changes in temperature and other threats of anthropogenic global changes. Our study demonstrates that a better understanding of the interplay among species'' physiology and the geography of climate change will advance assessments of species'' vulnerability to climate change.  相似文献   

20.
    
Although theory suggests geographic variation in species' performance is determined by multiple niche parameters, little consideration has been given to the spatial structure of interacting stressors that may shape local and regional vulnerability to global change. Here, we use spatially explicit mosaics of carbonate chemistry, food availability and temperature spanning 1280 km of coastline to test whether persistent, overlapping environmental mosaics mediate the growth and predation vulnerability of a critical foundation species, the mussel Mytilus californianus. We find growth was highest and predation vulnerability was lowest in dynamic environments with frequent exposure to low pH seawater and consistent food. In contrast, growth was lowest and predation vulnerability highest when exposure to low pH seawater was decoupled from high food availability, or in exceptionally warm locations. These results illustrate how interactions among multiple drivers can cause unexpected, yet persistent geographic mosaics of species performance, interactions and vulnerability to environmental change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号