首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cloning the KpnI restriction-modification system in Escherichia coli   总被引:3,自引:0,他引:3  
The genes encoding the KpnI restriction and modification (R-M) system from Klebsiella pneumoniae, recognizing the sequence, 5'-GGTAC decreases C-3', were cloned and expressed in Escherichia coli. Although the restriction endonuclease (ENase)- and methyltransferase (MTase)-encoding genes were closely linked, initial attempts to clone both genes as a single DNA fragment in a plasmid vector resulted in deletions spanning all or part of the gene coding for the ENase. Initial protection of the E. coli host with MTase expressed on a plasmid was required to stabilize a compatible plasmid carrying both the ENase- and the MTase-encoding genes on a single DNA fragment. However, once established, the MTase activity can be supplied in cis to the kpnIR gene, without an extra copy of kpnIM. A chromosomal map was generated localizing the kpnIR and kpnIM genes on 1.7-kb and 3.5-kb fragments, respectively. A final E. coli strain was constructed, AH29, which contained two compatible plasmids: an inducible plasmid carrying the kpnIR gene which amplifies copy number at elevated temperatures and a pBR322 derivative expressing M.KpnI. This strain produces approx. 10 million units of R.KpnI/g of wet-weight cells, which is several 1000-fold higher than the level of R.KpnI produced by K. pneumoniae. In addition, DNA methylated with M.KpnI in vivo does not appear to be restricted by the mcrA, mcrB or mrr systems of E. coli.  相似文献   

2.
C Vásquez  C Saavedra  E González 《Gene》1991,102(1):83-85
A standard DNA modification methyltransferase (MTase) selection protocol was followed to clone the BstVI restriction and modification system from Bacillus stearothermophilus in Escherichia coli. Both genes were contained in a 4.4-kb EcoRI fragment from B. stearothermophilus V chromosomal DNA. The heterologous expression of these genes did not depend on their orientation in the vector, suggesting that the genes are expressed in E. coli under the control of promoters located on the cloned fragment. Subcloning experiments demonstrated that the bstVIR gene was expressed in the absence of its cognate MTase.  相似文献   

3.
The genes coding for the GGPyPuCC-specific (BanI) and ATCGAT-specific (BanIII) restriction-modification systems of Bacillus aneurinolyticus IAM1077 were cloned and expressed in Escherichia coli using pBR322 as a vector. The plasmids carrying the BanI and BanIII restriction-modification genes were designated pBanIRM8 and pBanIIIRM12, respectively. The restriction maps of these recombinant plasmids were constructed. These two plasmids were stably maintained in E. coli HB101. However, when E. coli JM109 was used as a host, pBanIIIRM12 was efficiently propagated but pBanIRM8 was not. The HB101 cells carrying only the restriction gene of BanIII were viable, but the BanI restriction gene carrier could not form colonies on agar plates. The growth of bacteriophage λ was strongly restricted only in the F. coli HB101 cells harboring pBanIRM8. These facts indicate that the BanI restriction enzyme is expressed and functions more efficiently than BanI modification enzyme in E. coli.  相似文献   

4.
5.
The genes of the BanI restriction-modification system specific for GGPyPuCC were cloned from the chromosomal DNA of Bacillus aneurinolyticus IAM1077, and the coding regions were assigned on the nucleotide sequence on the basis of the N-terminal amino acid sequences and molecular weights of the enzymes. The restriction and modification genes coded for polypeptides with calculated molecular weights of 39,841 and 42,637, respectively. Both the enzymes were coded by the same DNA strand. The restriction gene was located upstream of the methylase gene, separated by 21 bp. The cloned genes were significantly expressed in E. coli cells, so that the respective enzymes could be purified to homogeneity. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration indicated that the catalytically active form of the endonuclease was dimeric and that of the methylase was monomeric. Comparison of the amino acid sequences revealed no significant homology between the endonuclease and methylase, though both enzymes recognize the same target sequence. Sequence comparison with other related enzymes indicated that BanI methylase contains sequences common to cytosine-specific methylases.  相似文献   

6.
《Gene》1996,172(1):41-46
The genes encoding a class-IIN restriction-modification (R-M) system (MamI, sequence specificity 5'-GATnnvnnATC-3'
from Microbacterium ammoniaphilum have been cloned in Escherichia coli. The vector used for cloning was plasmid pUC18 modified by the inclusion of three MamI recognition sites. Recombinant clones containing the mamIM gene in its genomic context became fully methylated in vivo and remained completely resistant against digestion with the R·MamI restriction endonuclease (ENase). Determination of the nucleotide (nt) sequence revealed three open reading frames with lengths of 1089 bp (ORF1), 276 bp (ORFc) and 927 bp (ORF2). On the basis of expression and deletion experiments, the 1089-bp ORF1 was assigned to mamIM encoding the M·MamI DNA methyltransferase (MTase). By amino acid sequencing of the N terminus of R·MamI and comparison of the deduced nt sequence with ORF2, the 927-bp ORF2 was identified as the mamIR gene encoding R·MamI. The 276-bp ORFc, located between mamIR and mamIM, is part of the DNA sequence downstream from mamIM shown to be necessary for controlled mamIM expression.  相似文献   

7.
8.
9.
Summary DNA from Clostridium acetobutylicum ABKn8 was partially digested with Sau3A and the fragments obtained were inserted into the unique BamHI site of the cloning vector pHV33. The recombinant plasmids were used to transform Escherichia coli HB101 with selection for ampicillin resistance. A collection of ampicillin-resistant, tetracycline-sensitive clones representative of the Clostridium acetobutylicum genome was made. The clones were shown to carry recombinant plasmids each containing an insert of 2 to 16 kb in size. Several of them complemented the HB101 proA2 or leuB6 auxotrophic mutations. The cloned sequences were shown by Southern blot hybridization to be homologous to the corresponding ABKn8 DNA fragments.  相似文献   

10.
The genes involved in the biosynthetic pathway of ectoine (2-methyl-1,4,5,6-tetrahydropyrimidine-4-carboxylic acid) from Bacillus halodurans were cloned as an operon and expressed in E. coli. Analysis of the deduced ectoine biosynthesis cluster amino acid sequence revealed that the ectoine operon contain 2,389 bp, encoded by three genes; ectA, ectB and ectC that encode proteins of 189, 427 and 129 amino acids with deduced molecular masses of 21,048, 47,120 and 14,797 Da respectively. Extracts of induced cells showed two bands at 41 kDa and 17 kDa, possibly corresponding to the products of the later two genes. However the expression of ectA gene could not be ascertained by SDS-PAGE. The activity of the ectA protein was confirmed by an acylation assay. The transgenic E. coli accumulated upto 4.6 mg ectoine/l culture. This is the first report of an engineered E. coli strain carrying the ectoine genes of the alkaliphilic bacterium, B. halodurans.  相似文献   

11.
Two fragments of DNA which carry the genes coding for the tyrosyl-tRNA synthetases of Escherichia coli and Bacillus stearothermophilus have been cloned into the plasmid pBR322 and were selected by complementation of an E. coli temperature-sensitive mutant. Transformation of this strain with either of the recombinant plasmids results in a 100-fold increase in tyrosyl-tRNA synthetase activity measured in vitro and the protein products co-migrate with the corresponding purified enzymes on polyacrylamide gels.  相似文献   

12.
Genes from Beneckea harveyi, a luminescent marine bacterium, were cloned in Escherichia coli. This was done by producing randomly sheared fragments of Beneckea DNA and inserting them into the EcoRI site of plasmid pMB9 by the adenine-thymine joining procedure. The hybrid plasmids were used to transform E. coli C600 SF8. Among the transformants selected for tetracycline resistance, one clone that appeared to complement a leucine tb mutation was identified. The transformants were screened for the presence of Beneckea 5S genes. Four of these clones were analyzed in detail by hybridization with 16S, 23S, and 4S Beneckea RNA. The observations suggest that the ribosomal genes in Beneckea are linked, but are present in a different order than those in E. coli.  相似文献   

13.
DNA fragments from Bacillus polymyxa which encode beta-glucosidase activity were cloned in Escherichia coli by selection of yellow transformants able to hydrolyze the artificial chromogenic substrate p-nitrophenyl-beta-D-glucopyranoside. Restriction endonuclease maps and Southern analysis of the cloned fragments showed the existence of two different genes. Expression of either one of these genes allowed growth of E. coli in minimal medium with cellobiose as the only carbon source. One of the two enzymes was found in the periplasm of E. coli, hydrolyzed arylglucosides more actively than cellobiose, and rendered glucose as the only product upon cellobiose hydrolysis. The other enzyme was located in the cytoplasm, was more active toward cellobiose, and hydrolyzed this disaccharide, yielding glucose and another, unidentified compound, probably a phosphorylated sugar.  相似文献   

14.
DNA fragments from Bacillus polymyxa which encode beta-glucosidase activity were cloned in Escherichia coli by selection of yellow transformants able to hydrolyze the artificial chromogenic substrate p-nitrophenyl-beta-D-glucopyranoside. Restriction endonuclease maps and Southern analysis of the cloned fragments showed the existence of two different genes. Expression of either one of these genes allowed growth of E. coli in minimal medium with cellobiose as the only carbon source. One of the two enzymes was found in the periplasm of E. coli, hydrolyzed arylglucosides more actively than cellobiose, and rendered glucose as the only product upon cellobiose hydrolysis. The other enzyme was located in the cytoplasm, was more active toward cellobiose, and hydrolyzed this disaccharide, yielding glucose and another, unidentified compound, probably a phosphorylated sugar.  相似文献   

15.
Six independent and distinct cel genes coding endoglucanases have been selected from C. thermocellum pUC19-based gene bank in E. coli TG1. E. coli-derived Cel-proteins possessing Mr from 39,000 to 61,000 are able to cleave lichenan, as well as xylan and carboxymethyl cellulose. Cel 7- and Cel 8-endoglucanases are characterized by cellobiohydrolase type substrate specificity, being able to cleave model fluorogenic aryldisaccharide substrate MU-G2. The clone pCU110 (cel 7) produces about 10-fold more endoglucanase activity than other clones.  相似文献   

16.
Restriction map of Escherichia coli chromosome fragment (7.4 MD) carrying proAB genes was constructed. Localization of proA and proB genes on the cloned chromosome fragment was determined by complementation test and the measuring of glutamylkinase activity (proB gene product). ProA and proB genes were cloned separately on multicopy plasmids of alternative orientation and their expression being, probably, under the control of their own regulatory regions, studied.  相似文献   

17.
The genes from Haemophilus parainfluenzae encoding the HpaI restriction-modification system were cloned and expressed in Escherichia coli. From the DNA sequence, we predicted the HpaI endonuclease (R.HpaI) to have 254 amino acid residues (Mr 29,630) and the HpaI methyltransferase (M.HpaI) to have 314 amino acid residues (37,390). The R.HpaI and M.HpaI genes overlapped by 16 base pairs on the chromosomal DNA. The genes had the same orientation. The clone, named E. coli HB101-HPA2, overproduced R.HpaI. R.HpaI activity from the clone was 100-fold that from H. parainfluenzae. The amino acid sequence of M.HpaI was compared with those of other type II methyltransferases.  相似文献   

18.
A 7.9-kilobase (kb) chromosomal fragment was cloned from a mercury-resistant Bacillus sp. In Escherichia coli, in the presence of a second plasmid carrying functional transport genes, resistance to HgCl2 and to phenylmercury acetate (PMA) was expressed. Shortening the cloned fragment to 3.8 kb abolished resistance to PMA but not to HgCl2. In Bacillus subtilis, the 3.8-kb fragment produced mercuric reductase constitutively but did not produce resistance to HgCl2 or to PMA.  相似文献   

19.
20.
Cloning and expression of the Escherichia coli recA gene in Bacillus subtilis   总被引:14,自引:0,他引:14  
W M de Vos  S C de Vries  G Venema 《Gene》1983,25(2-3):301-308
By means of homopolymer dG-dC tailing, using PstI linearized pBR327 as vector, we constructed small plasmids containing the entire Escherichia coli recA gene. The 1.8-kb inserts were recloned in the Bacillus subtilis expression vector pPL608 in a B. subtilis recE4 strain. Analysis of plasmid-coded proteins showed expression of the E. coli recA gene both in minicells and whole cells of B. subtilis. Expression was under control of the bacteriophage SP02 promoter, which is part of pPL608. A recA-expressing plasmid completely abolished the transformation deficiency of the recE4 mutant as well as its sensitivity to mitomycin C (MC). The expressed recA gene also restored recombination in other B. subtilis strains lacking the recE gene product. These results indicate a high similarity between the functions of the E. coli RecA and B. subtilis RecE proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号