首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Left ventricular dynamics during recovery were measured in dogs, 3 min after brief periods of mild, moderate, and severe treadmill exercise. As compared with resting values, stroke volume was unchanged, and the maximum first derivative of the left ventricular pressure was either unchanged or slightly elevated. Increases in heart rate of 20, 26, and 46 beats/min for mild, moderate, and severe exercise appear to be the major factor in augmenting cardiac output during recovery. With moderate and severe exercise, left ventricular end-diastolic diameter increased and continued to be elevated during recovery, whereas end-systolic diameter decreased during exercise but was elevated above resting values during recovery. Therefore, with strenuous exercise, a sympathetic-mediated increase in contractility recedes promptly during the postexercise period but the Frank-Starling mechanism continues to be a factor.  相似文献   

2.
Adaptation of the left ventricle to exercise-induced hypertrophy   总被引:1,自引:0,他引:1  
Cardiac functional and structural adaptations to exercise-induced hypertrophy were studied in 68 pigs. Pigs were exercise trained on a treadmill for 10 wk. Sequential measurements were made of cardiac dimensions, [left ventricular end-diastolic diameter (EDD), changes in diameter (delta D%), wall thickness (WTh), wall thickening (WTh%), left ventricular pressure (LVP), time derivative of pressure (dP/dt), stroke volume, total body O2 consumption (VO2), blood gases, and systemic hemodynamics] at rest and during moderate and severe exercise. Postmortem studies included morphometric measurements of capillary density, arteriolar density, mitochondria, and myofibrils. All of the exercise-trained pigs showed significant increases in aerobic capacity. Maximum O2 consumption (VO2 max) increased by 37.5% in group 1 (moderate exercise training) and 34% in group 3 (heavy exercise training). Cardiac hypertrophy ranged from less than 15% in a group (n = 8) subjected to moderate exercise training to greater than 30% in a group (n = 11) subjected to heavy exercise training. Before training, exercise was characterized by a decreasing EDD during progressive exercise; this was reversed after exercise training. Stroke volume and end-diastolic volumes during exercise showed a highly significant increase after exercise training and hypertrophy. Morphometric measurements showed that mitochondria and cell membranes increased with increasing myocyte growth in all exercise groups, but there was only a partially compensated adaptation of capillary proliferation. Arteriolar number and length increased in all exercise groups. Intrinsic contractility as measured by delta D%, WTh%, or left ventricular dP/dt did not increase with exercise training and in some instances decreased. Therefore, left ventricular adaptation to strenuous exercise in the pig heart is primarily one of changes in left ventricular dimensions and a compensated hypertrophy. Exercise-induced increases in EDD and stroke volume can be accounted for by decreases in peripheral resistance and increased cardiac dimensions.  相似文献   

3.
In 11 healthy subjects (8 males and 3 females, age 21-59 yr) left ventricular end-diastolic (LVEDV) and end-systolic (LVESV) volumes were measured in the supine position by isotope cardiography at rest and during two submaximal one-legged exercise loads before and 1 h after acute plasma expansion (PE) by use of a 6% dextran solution (500-750 ml). After PE, blood volume increased from 5.22 +/- 0.92 to 5.71 +/- 1.02 (SD) liters (P < 0.01). At rest, cardiac output increased 30% (5.3 +/- 1.0 to 6.9 +/- 1.6 l/min; P < 0.01), stroke volume increased from 90 +/- 20 to 100 +/- 28 ml (P < 0.05), and LVEDV increased from 134 +/- 29 to 142 +/- 40 ml (NS). LVESV was unchanged (44 +/- 11 and 42 +/- 14 ml). Heart rate rose from 60 +/- 7 to 71 +/- 10 beats/min (P < 0.01). The cardiac preload [central venous pressure (CVP)] was insignificantly elevated (4.9 +/- 2.1 and 5.3 +/- 3.0 mmHg); systemic vascular resistance and arterial pressures were significantly reduced (mean pressure fell from 91 +/- 11 to 85 +/- 11 mmHg, P < 0.01). Left ventricular peak filling and peak ejection rates both increased (19 and 14%, respectively; P < 0.05). During exercise, cardiac output remained elevated after PE compared with the control situation, predominantly due to a 10- to 14-ml rise in stroke volume caused by an increased LVEDV, whereas LVESV was unchanged. CVP increased after PE by 2.1 and 3.0 mmHg, respectively (P < 0.05).2+ remained unchanged during exercise compared with rest after PE in  相似文献   

4.
Hemodynamic effects of epinephrine: concentration-effect study in humans   总被引:1,自引:0,他引:1  
The hemodynamic effects of three different infusion rates of epinephrine (25, 50, or 100 ng X kg-1 X min-1 for 14 min) were examined in 10 normal human subjects. Ejection fraction and changes in cardiac volumes were assessed by radionuclide ventriculography. Plasma epinephrine was increased to levels that spanned the normal physiological range (178 +/- 15, 259 +/- 24, and 484 +/- 69 pg/ml, respectively). Epinephrine infusions resulted in dose-dependent increases in heart rate (8 +/- 3, 12 +/- 2, and 17 +/- 1 beats/min, mean +/- SE) and systolic pressure (8 +/- 1, 18 +/- 2, and 30 +/- 6 mmHg). Although epinephrine infusions had minimal effects on end-diastolic volume, there were significant increases in stroke volume (+26 +/- 2, 31 +/- 4, and 40 +/- 4%), ejection fraction (+0.10 +/- 0.01, 0.14 +/- 0.02 and 0.16 +/- 0.03 ejection fraction units), and cardiac output (+41 +/- 4, 58 +/- 5, and 74 +/- 1%). These increases in left ventricular performance were associated with a decreased systemic vascular resistance (-31 +/- 3, -42 +/- 2, and -48 +/- 8%). Supine bicycle exercise resulted in similar plasma epinephrine levels (417 +/- 109 pg/ml) and similar changes in stroke volume, ejection fraction, and systemic vascular resistance but greater increases in heart rate and systolic blood pressure. Since infusion-associated hemodynamic changes occurred at plasma epinephrine levels commonly achieved during many types of physical and emotional stress, epinephrine release may have an important role in regulating systemic vascular resistance, stroke volume, and ejection fraction responses to stress in man.  相似文献   

5.
When oxygen delivery to active skeletal muscle is insufficient for the metabolic demands, afferent nerves within muscles are activated, which elicit reflex increases in heart rate (HR), cardiac output (CO), and arterial pressure (AP), termed the muscle metaboreflex (MMR). To what extent the increases in CO are the result of increased ventricular contractility is unclear. A widely accepted index of contractility is maximal left ventricular elastance (Emax), the slope of the end-systolic pressure-volume relationship, such as during rapidly imposed reductions in preload. The objective of the present study was to determine whether MMR activation elicits increases in Emax. Experiments were performed using conscious dogs chronically instrumented to measure left ventricular pressure and volume at rest and during mild or moderate treadmill exercise with and without partial hindlimb ischemia to elicit MMR responses. At both workloads, MMR activation significantly increased CO, HR, AP, and maximum rate of change of left ventricular pressure. During both mild and moderate exercise, MMR activation increased Emax to 159.6 +/- 8.83 and 155.8 +/- 6.32% of the exercise value under free-flow conditions, respectively. We conclude that the increase of ventricular elastance associated with MMR activation indicates that a substantial increase in ventricular contractility contributes to the rise in CO during dynamic exercise.  相似文献   

6.
To determine whether endogenous opiates have a role in circulatory regulation during mild to moderate exercise, 11 chronically instrumented dogs were exercised on a treadmill up a 6% incline at 2.5 and 5.0 mph, each for 20 min, after treatment with either the opiate receptor antagonist naloxone (1 mg/kg bolus and 20 micrograms.kg-1.min-1 infusion) or normal saline. Naloxone increased plasma beta-endorphin and adrenocorticotropic hormone at rest but had no effect on resting heart rate, aortic pressure, cardiac output, left ventricular time derivative of pressure (dP/dt) and ratio of dP/dt at a developed pressure of 50 mmHg and the developed pressure (dP/dt/P), or plasma catecholamines. Plasma beta-endorphin and adrenocorticotropic hormone increased during exercise. In addition, graded treadmill exercise produced proportional increases in heart rate, cardiac output, aortic pressure, left ventricular dP/dt and dP/dt/P, and blood flow to exercising muscles, right and left ventricular myocardium, and adrenal glands. However, there were no differences in the circulatory responses to exercise between animals receiving naloxone and normal saline. Thus the endogenous opiate system probably does not play an important role in regulating the systemic hemodynamic and blood flow responses to mild and moderate exercise.  相似文献   

7.
We investigated the effect of muscle metaboreflex activation on left circumflex coronary blood flow (CBF), coronary vascular conductance (CVC), and regional left ventricular performance in conscious, chronically instrumented dogs during treadmill exercise before and after the induction of heart failure (HF). In control experiments, muscle metaboreflex activation during mild exercise elicited significant reflex increases in mean arterial pressure, heart rate, and cardiac output. CBF increased significantly, whereas no significant change in CVC occurred. There was no significant change in the minimal rate of myocardial shortening (-dl/dt(min)) with muscle metaboreflex activation during mild exercise (15.5 +/- 1.3 to 16.8 +/- 2.4 mm/s, P > 0.05); however, the maximal rate of myocardial relaxation (+dl/dt(max)) increased (from 26.3 +/- 4.0 to 33.7 +/- 5.7 mm/s, P < 0.05). Similar hemodynamic responses were observed with metaboreflex activation during moderate exercise, except there were significant changes in both -dl/dt(min) and dl/dt(max). In contrast, during mild exercise with metaboreflex activation during HF, no significant increase in cardiac output occurred, despite a significant increase in heart rate, inasmuch as a significant decrease in stroke volume occurred as well. The increases in mean arterial pressure and CBF were attenuated, and a significant reduction in CVC was observed (0.74 +/- 0.14 vs. 0.62 +/- 0.12 ml x min(-1) x mmHg(-1); P < 0.05). Similar results were observed during moderate exercise in HF. Muscle metaboreflex activation did not elicit significant changes in either -dl/dt(min) or +dl/dt(max) during mild exercise in HF. We conclude that during HF the elevated muscle metaboreflex-induced increases in sympathetic tone to the heart functionally vasoconstrict the coronary vasculature, which may limit increases in myocardial performance.  相似文献   

8.
The purpose of the study was to describe hemodynamic response and regional blood flows through various organs and tissues (microsphere technique) in dogs (n = 8), at rest and during mild (4 km/h, 13% slope; heart rate = 154 bpm), moderate (4 km/h, 26% slope; heart rate = 201 bpm), and severe (4 km/h, 39% slope; heart rate = 266 bpm) exercise on treadmill. Cardiac output (rest: 3.2 +/- 0.3; 39% slope: 10.2 +/- 1.3 l/min; mean +/- SE), systolic aortic pressure (rest: 122 +/- 4; 39% slope: 158 +/- 9 mm Hg), and left atrial pressure (rest: 5 +/- 0.7; 39% slope: 11.0 +/- 0.6 mm Hg) increased linearly with workload. On the contrary stroke volume increased from rest (35 +/- 2 ml) to mild (38 +/- 2 ml) and moderate (42 +/- 3 ml) exercise but decreased in response to the severe workload (38 +/- 5 ml). Regional blood flows across the brain, femoral bone, adrenal glands and temporalis muscle were not modified during exercise. On the contrary, a marked increase in regional blood flow was observed through the flexor and extensor muscles of the limb (X 5 to X 15), the muscles of the back (X 4) and the diaphragm (X 2.5). The small inconsistent increase in nutritional tongue blood flow probably underestimated the increased perfusion through arteriovenous shunts in the mucosa for heat-loss purposes. Myocardial blood flow increased in a linear fashion with work load in both ventricles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The effects of an acute increase in preload, afterload, and inotropic state on several indices of left ventricular contractility were studied in 20 anesthetized intact dogs. The behaviour of the exponential rate of fiber shortening (ERFS), a newly described index, which is based on the instantaneous fiber length--time relationship through ejection, was compared with other classical ejection and isovolumic indices of left ventricular contractility. Acute volume overload by dextran 40 infusion produced a significant increase in preload as reflected by a 103% (p less than 0.01) increase in left ventricular end-diastolic pressure and a 121% (p less than 0.001) increase in end-diastolic circumferential wall stress. There was also a smaller but significant increase (p less than 0.05) of heart rate (30%) and of peak systolic circumferential wall stress (24%). None of the left ventricular contractility indices showed any significant change. Acute pressure overload, produced mechanically by an aortic balloon, increased the afterload significantly as reflected by a 33% (p less than 0.05) rise of end-systolic circumferential wall stress and a 43% (p less than 0.001) increase in systemic resistance. Stroke volume decreased significantly by 23% (p less than 0.05). All ejection indices, including ERFS, were significantly diminished by 30-37%; all isovolumic indices showed no significant changes. Positive inotropic intervention was induced by dopamine infusion, which caused a significant 28% (p less than 0.05) increase in cardiac output. End-diastolic and end-systolic circumferential wall stress were significantly diminished. All indices of left ventricular contractility increased significantly and ERFS showed the quantitatively greatest change.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Effect of methylene blue on cardiac output response to exercise in dogs   总被引:1,自引:0,他引:1  
To determine whether the increase in cardiac output during mild to moderate exercise is related to an increase in the tissue redox potential, we compared the responses of cardiac output, total body oxygen consumption, and arterial blood lactate-to-pyruvate ratio (a measure of NADH/NAD) to treadmill exercise between dogs treated with normal saline and those treated with a hydrogen acceptor, new methylene blue. Normal saline was infused into the left atrium in the first group of dogs at a rate of 0.38 ml/min throughout the treadmill exercise (2.5 mph and 5.0 mph on a 6% incline, each for 20 min). In the second group, methylene blue was administered as a loading dose (4 mg/kg) before exercise, followed by a continuous infusion (0.15 mg X kg-1 X min-1) throughout exercise. A similar infusion of methylene blue was given to a third group of dogs without exercise; it reduced the arterial lactate-to-pyruvate ratio from 6.70 +/- 0.35 to 4.12 +/- 0.27 but had no or little effects on cardiac output, heart rate, arterial pressure, and left ventricular dP/dt and (dP/dt)/P. Treadmill exercise doubled cardiac output and increased total body O2 consumption three- to fourfold in the first two groups but increased arterial blood lactate-to-pyruvate ratio only in group 1 (6.0 +/- 0.54 to 9.97 +/- 0.91). The relationship between cardiac output and total body O2 consumption was unaffected by the simultaneous administration of methylene blue during exercise. Groups 1 and 2 also did not differ in their heart rate, left ventricular dP/dt and (dP/dt)/P, and plasma catecholamine responses to exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Ten foxhounds were studied during maximal and submaximal exercise on a motor-driven treadmill before and after 8-12 wk of training. Training consisted of working at 80% of maximal heart rate 1 h/day, 5 days/wk. Maximal O2 consumption (VO2max) increased 28% from 113.7 +/- 5.5 to 146.1 +/- 5.4 ml O2 X min-1 X kg-1, pre- to posttraining. This increase in VO2max was due primarily to a 27% increase in maximal cardiac output, since maximal arteriovenous O2 difference increased only 4% above pretraining values. Mean arterial pressure during maximal exercise did not change from pre- to posttraining, with the result that calculated systemic vascular resistance (SVR) decreased 20%. There were no training-induced changes in O2 consumption, cardiac output, arteriovenous O2 difference, mean arterial pressure, or SVR at any level of submaximal exercise. However, if post- and pretraining values are compared, heart rate was lower and stroke volume was greater at any level of submaximal exercise. Venous lactate concentrations during a given level of submaximal exercise were significantly lower during posttraining compared with pretraining, but venous lactate concentrations during maximal exercise did not change as a result of exercise training. These results indicate that a program of endurance training will produce a significant increase in VO2max in the foxhound. This increase in VO2max is similar to that reported previously for humans and rats but is derived primarily from central (stroke volume) changes rather than a combination of central and peripheral (O2 extraction) changes.  相似文献   

12.
Gordon R. Cumming  W. Carr 《CMAJ》1966,95(10):527-531
Propranolol (P) .13 mg./kg. was given to seven patients with mitral valve obstruction the changes in resting and exercise hemodynamics were followed by means of combined right and left heart catheterization. Changes were variable. At rest there was a decrease in heart rate of 10 beats/min. with no consistent change in stroke volume, cardiac output, left ventricular systolic (LVS) or left atrial (LA) pressure after P. Mean left ventricular end-diastolic (LVED) pressure was increased 3 mm., mean pulmonary artery (PA) pressure was increased 4 mm., and mean mitral valve gradient was reduced 3 mm. Hg by P. During exercise, mean LVS pressure was decreased 31 mm., mean LVED pressure increased 3 mm., mean LA pressure decreased 3 mm., and mean mitral valve gradient was reduced 5 mm. Hg after P. Mean exercise PA pressure was unchanged, cardiac output was reduced 0.9 1./min., and mean heart rate was reduced 37 beats/min., while stroke volume increased 3 ml./beat after P. Exercise pulmonary vascular resistance was increased from 6.1 to 8.2 units by P. Despite a slower heart rate, the diastolic filling period was not increased. P has no place in the treatment of the majority of patients with mitral stenosis because it further reduces cardiac performance below normal.  相似文献   

13.
In pentobarbital-anesthetized mongrel dogs the intravenous actions of 0.50 mg/kg molsidomine on pulmonary artery and left ventricular (LV) end-diastolic pressures and internal heart dimensions (preload), left ventricular systolic and peripheral blood pressures, and total peripheral resistance (afterload), as well as on heart rate, dP/dt, stroke volume, and cardiac output (heart performance) were studied for 2 h. Hemodynamic molsidomine effects were influenced by increasing amounts of intravenously infused dihydroergotamine solution (DHE, 1-64 micrograms X kg-1 X min-1). Molsidomine decreased preload, stroke volume, and cardiac output for over 2 h but decreased ventricular and peripheral pressures for 45 min. Systemic vascular resistance showed a tendency to decrease while heart rate and LV dP/dtmax were not altered. DHE infusion reversed molsidomine effects on the preload and afterload of the heart. The diminished stroke volume was elevated so that cardiac output also increased. Total peripheral resistance increased while heart rate fell in a dose-dependent fashion. The LV dP/dtmax remained unchanged until the highest dose of 64 micrograms X kg-1 X min-1 DHE elevated the isovolumic myocardial contractility. These experiments indicate that DHE can reverse the intravenous molsidomine effects on hemodynamics. Most likely, this is mediated through peripheral vasoconstriction of venous capacitance vessels, thereby affecting molsidomine's action on postcapillary beds of the circulation.  相似文献   

14.
At present, it is unknown why patients suffering from severe pulmonary hypertension (PH) benefit from atrial septostomy (AS). Suggested mechanisms include enhanced filling of the left ventricle, reduction of right ventricular preload, increased oxygen availability in the peripheral tissue, or a combination. A multiscale computational model of the cardiovascular system was used to assess the effects of AS in PH. Our model simulates beat-to-beat dynamics of the four cardiac chambers with valves and the systemic and pulmonary circulations, including an atrial septal defect (ASD). Oxygen saturation was computed for each model compartment. The acute effect of AS on systemic flow and oxygen delivery in PH was assessed by a series of simulations with combinations of different ASD diameters, pulmonary flows, and degrees of PH. In addition, blood pressures at rest and during exercise were compared between circulations with PH before and after AS. If PH did not result in a right atrial pressure exceeding the left one, AS caused a left-to-right shunt flow that resulted in decreased oxygenation and a further increase of right ventricular pump load. Only in the case of severe PH a right-to-left shunt flow occurred during exercise, which improved left ventricular preload reserve and maintained blood pressure but did not improve oxygenation. AS only improves symptoms of right heart failure in patients with severe PH if net right-to-left shunt flow occurs during exercise. This flow enhances left ventricular filling, allows blood pressure maintenance, but does not increase oxygen availability in the peripheral tissue.  相似文献   

15.
P W Armstrong 《CMAJ》1979,121(7):913-918
Optimal therapy for congestive cardiac failure requires identification of correctable factors that aggravate it as well as an understanding of its etiology. Increased sympathetic nervous system activity, reduced renal blood flow, and cardiac hypertrophy and dilation are the main compensatory processes that occur in response to cardiac failure. Although they may be of initial benefit in supporting a reduced stroke volume, they may ultimately prove self-defeating. New drugs for the treatment of severe congestive heart failure include dopamine, which has a selective nonadrenergic dilator effect on the renal vascular bed, and dobutamine, which has potent inotropic effects, lowers the left ventricular filling pressure and does not increase the heart rate or the systemic vascular resistance. By reducing both the resistance to left ventricular ejection and the venous return to the right heart, vasodilators result in improved peripheral perfusion and reduced pulmonary congestion. Optimal therapy for refractory cardiac failure can be rationally determined by characterizing the hemodynamic profile through measurement of the mean arterial pressure, the left ventricular filling pressure, the cardiac output and the systemic vascular resistance. The specific therapy can then be effectively and safely delivered by a careful analysis of the dose-response relation as identified by hemodynamic monitoring.  相似文献   

16.
Exercise stroke volume relative to plasma-volume expansion   总被引:1,自引:0,他引:1  
The effects of plasma-volume (PV) expansion on stroke volume (SV) (CO2 rebreathing) during submaximal exercise were determined. Intravenous infusion of 403 +/- 21 ml of a 6% dextran solution before exercise in the upright position increased SV 11% (i.e., 130 +/- 6 to 144 +/- 5 ml; P less than 0.05) in untrained males (n = 7). Further PV expansion (i.e., 706 +/- 43 ml) did not result in a further increase in SV (i.e., 145 +/- 4 ml). SV was somewhat higher during supine compared with upright exercise when blood volume (BV) was normal (i.e., 138 +/- 8 vs. 130 +/- 6 ml; P = 0.08). PV expansion also increased SV during exercise in the supine position (i.e., 138 +/- 8 to 150 +/- 8 ml; P less than 0.05). In contrast to these observations in untrained men, PV expansion of endurance-trained men (n = 10), who were naturally PV expanded, did not increase SV during exercise in the upright or supine positions. When BV in the untrained men was increased to match that of the endurance-trained subjects, SV was observed to be 15% higher (165 +/- 7 vs. 144 +/- 5 ml; P less than 0.05), whereas mean blood pressure and total peripheral resistance were significantly lower (P less than 0.05) in the trained compared with untrained subjects during upright exercise at a similar heart rate. The present findings indicate that exercise SV in untrained men is preload dependent and that increases in exercise SV occur in response to the first 400 ml of PV expansion. It appears that approximately one-half of the difference in SV normally observed between untrained and highly endurance-trained men during upright exercise is due to a suboptimal BV in the untrained men.  相似文献   

17.
Echocardiographic evaluation of space shuttle crewmembers   总被引:3,自引:0,他引:3  
Echocardiographic measurements were obtained before and after space flight from 17 members of four shuttle crews. Measurements obtained 1 h after landing (L+0) compared with preflight values (n = 7) demonstrated an increase in heart rate (HR) (16 beats/min, 30.5%, P less than 0.05), mean arterial pressure (12%, P less than 0.05), and systemic vascular resistance (34%, P less than 0.05). End-diastolic volume index (EDVI) fell 17 ml/m2 (-23%, P less than 0.005) and stroke volume index (SVI) fell 15 ml/m2 (-28%, P less than 0.05). Repeat measurements taken 1-2 wk later (n = 17) demonstrated that HR had returned to normal (4 beats/min, P less than 0.05); however, EDVI remained significantly below preflight levels (-11%, P less than 0.005). End-systolic volume index (ESVI) was also still significantly lower (-23%, P less than 0.01). This delayed recovery occurred despite ability of the subjects to fully ambulate and exercise during the postflight period. These results indicate that spaceflight induces significant changes in heart volume affecting left ventricular function. The exact reasons for these specific changes remain unknown and will require additional measurements before, during, and after flight. The prolonged recovery period for the present subject group probably relates to their high level of aerobic conditioning.  相似文献   

18.
The cardiac function was studied by radionuclide cardiography in eight healthy subjects at rest and during submaximal upright exercise before and after autonomic blockade with metoprolol and atropine. At rest the median stroke volume was reduced by 21% during autonomic blockade (P less than 0.01), but cardiac output was maintained by a concomitant increase in heart rate. The systolic blood pressure was reduced from 120 to 105 mmHg (P less than 0.01), and left ventricular ejection fraction was reduced from 61 to 56% (P less than 0.05). After autonomic blockade the heart rate reached during exercise was the same. Stroke volume and cardiac output were maintained through cardiac dilation. The increase in left ventricular end-diastolic volume was 31 vs. 10% during control conditions (P less than 0.01). The systolic blood pressure was reduced from 174 to 135 mmHg (P less than 0.01). Left ventricular ejection fraction was reduced from 75 to 67% (P less than 0.05), but the increase from rest to exercise was preserved. Total peripheral resistance was reduced by 17% (P less than 0.05). These findings suggest that the heart possesses intrinsic mechanisms to maintain cardiac output during submaximal upright exercise. End-diastolic dilation results in a preserved stroke volume despite a reduced contractility.  相似文献   

19.
Because of similar physiological changes such as increased left ventricular (LV) afterload and sympathetic tone, an exaggerated depression in cardiac output (CO) could be expected in patients with coexisting obstructive sleep apnea and congestive heart failure (CHF). To determine cardiovascular effects and mechanisms of periodic obstructive apnea in the presence of CHF, 11 sedated and chronically instrumented pigs with CHF (rapid pacing) were tested with upper airway occlusion under room air breathing (RA), O(2) breathing (O2), and room air breathing after hexamethonium (Hex). All conditions led to large negative swings in intrathoracic pressure (-30 to -39 Torr) and hypercapnia (PCO(2) approximately 60 Torr), and RA and Hex also caused hypoxia (to approximately 42 Torr). Relative to baseline, RA increased mean arterial pressure (from 97.5 +/- 5.0 to 107.3 +/- 5.7 Torr, P < 0.01), systemic vascular resistance, LV end-diastolic pressure, and LV end-systolic length while it decreased CO (from 2.17 +/- 0.27 to 1.52 +/- 0.31 l/min, P < 0.01), stroke volume (SV; from 23.5 +/- 2.4 to 16.0 +/- 4.0 ml, P < 0.01), and LV end-diastolic length (LVEDL). O2 and Hex decreased mean arterial pressure [from 102.3 +/- 4.1 to 16.0 +/- 4.0 Torr (P < 0.01) with O2 and from 86.0 +/- 8.5 to 78.1 +/- 8.7 Torr (P < 0.05) with Hex] and blunted the reduction in CO [from 2.09 +/- 0.15 to 1.78 +/- 0.18 l/ml for O2 and from 2.91 +/- 0.43 to 2.50 +/- 0.35 l/ml for Hex (both P < 0.05)] and SV. However, the reduction in LVEDL and LV end-diastolic pressure was the same as with RA. There was no change in systemic vascular resistance and LVEDL during O2 and Hex relative to baseline. In the CHF pigs during apnea, there was an exaggerated reduction in CO and SV relative to our previously published data from normal sedated pigs under similar conditions. The primary difference between CHF (present study) and the normal animals is that, in addition to increased LV afterload, there was a decrease in LV preload in CHF contributing to SV depression not seen in normal animals. The decrease in LV preload during apneas in CHF may be related to effects of ventricular interdependence.  相似文献   

20.
Elderly female hypertensives with arterial stiffening constitute a majority of patients with heart failure with preserved ejection fraction (HFpEF), a condition characterized by inability to increase cardiac stroke volume (SV) with physical exercise. As SV is determined by the interaction between the left ventricle (LV) and its load, we wished to study the role of arterial hemodynamics for exertional SV reserve in patients at high risk of HFpEF. Twenty-one elderly (67 ± 9 yr) female hypertensive patients were studied at rest and during supine bicycle stress using echocardiography including pulsed-wave Doppler to record flow in the LV outflow tract and arterial tonometry for central arterial pressure waveforms. Arterial compliance was estimated based on an exponential relationship between pressure and volume. The ratio of aortic pressure-to-flow in early systole was used to derive characteristic impedance, which was subsequently subtracted from total resistance (mean arterial pressure/cardiac output) to yield systemic vascular resistance (SVR). It was found that patients with depressed SV reserve (NoRes; reserve <15%; n = 10) showed decreased arterial compliance during exercise, while patients with SV reserve ≥15% (Res; n = 11) showed increased compliance. Exercise produced parallel increases in LV end-diastolic volume and arterial volume in Res patients while NoRes patients exhibited a lesser decrease in SVR and a drop in effective arterial volume. Poor SV reserve in elderly female hypertensives is due to simultaneous failure of LV preload and arterial vasodilatory reserves. Abnormal arterial function contributes to a high risk of HFpEF in these patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号