首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 421 毫秒
1.
目的:微小RNA(microRNAs,miRNAs)在胆固醇的合成,代谢和转运中起着重要作用,而mi RNAs在胆固醇代谢物胆酸的代谢和转运中的作用尚不清楚。Dicer基因是miRNAs生成过程的关键酶。本课题使用肝脏特异的Dicer1基因敲除小鼠,考察肝脏Dicer1基因敲除对C57BL/6小鼠肝脏胆酸代谢和转运的影响。方法:使用白蛋白启动子驱动的Cre重组酶和Loxp系统(Alb-Cre/Loxp)在小鼠肝脏中特异的敲除Dicer1基因;分别收集3~12周龄的小鼠血液和肝脏组织,使用Cobas生化仪检测小鼠血液和肝脏中总胆酸含量;利用实时定量PCR的方法分析肝脏中胆汁酸代谢转运相关基因的表达。结果:实验发现,肝脏Dicer基因敲除后,胆酸在血液和肝脏中明显蓄积,弥漫性肝细胞轻微空泡化,偶见单个肝细胞坏死。检测胆酸代谢和转运相关基因的表达发现,胆酸合成相关基因的表达有轻度升高,但缺乏统计学差异;在肝脏细胞血管侧的胆酸摄取转运体中,Oatp1a1在Dicer1敲除小鼠肝脏中明显下调,Ntcp和Oatp1b2则无明显改变;而肝细胞血管侧胆酸外排转运体的表达均有显著升高,胆管侧的外排转运体中Abcb11表达有明显增加。结论:Dicer基因敲除后,胆酸在血液和肝脏中明显蓄积,肝脏和血液中胆酸总量显著增加。血液中胆酸的蓄积可能与肝脏细胞血管侧摄取转运体的低表达和血管侧外排转运体的高表达有关;而肝脏中胆酸的蓄积可能部分来自于轻度升高的胆酸合成酶,胆酸在肝细胞内运输途径的紊乱可能与肝脏和血液中胆酸总量的显著增加相关。  相似文献   

2.
衰老大鼠的某些脑区组织中游离氨基酸水平的改变   总被引:2,自引:1,他引:1  
使用D 半乳糖建立衰老大鼠模型组与同龄、同饲的正常对照组大鼠的某些脑区游离氨基酸 (FAA)水平的比较发现 :( 1 )衰老模型组的海马、纹状体以及皮层等脑区中谷氨酸 (Glu)、天门冬氨酸 (Asp)水平明显降低 ;( 2 )γ 氨基丁酸 (GABA)水平在衰老模型组大鼠的海马 ,纹状体以及小脑等脑区中明显升高 ;( 3)衰老模型组的皮层、小脑、海马、纹状体等脑区的牛磺酸 (Tau)水平明显下降。以此探讨动物衰老与脑区游离氨基酸水平的关系  相似文献   

3.
衰老对大鼠脑区氨基酸水平的影响   总被引:4,自引:1,他引:3  
本文测定了正常青龄组(3月龄)和老龄组(20月龄)大鼠不同脑区(皮层、小脑海马、纹状体和下丘脑)谷氨酸、天门冬氨酸、甘氨酸、r-氨基丁酸和牛磺酸的含量。结果表明:在衰老过程中大鼠某些脑区谷氨酸、天门冬氨酸、甘氨酸和牛磺酸水平显著降低;而纹状体γ-氨基丁酸含量则显著升高。  相似文献   

4.
大鼠不同脑区突触体钙水平的年龄差异   总被引:10,自引:1,他引:9  
本实验使用荧光指示剂Fura-2与Tb~(3+),检测了不同年龄组大鼠的不同脑区(海马、皮层、间脑、小脑)突触体内游离钙与膜结合钙水平。结果显示,与青年对照组相比,老年大鼠大部分脑区(海马、皮层、间脑)突触体内游离钙水平显著增高,尤其是海马突触体内游离钙增高极为显著;其突触体膜结合钙水平表现为:海马、小脑两脑区明显升高,而皮层、间脑两脑区明显下降,呈现一种全脑范围内的钙水平失衡。提示动物的衰老与其脑内钙自体平衡失调有关。  相似文献   

5.
目的:探讨亚慢性地卓西平(MK-801)诱导的精神分裂样小鼠模型中前额叶和海马脑区巨噬细胞迁移抑制因子(Macrophage migration inhibitory factor,MIF)蛋白表达的变化。方法:将24只7周龄小鼠随机分为对照组、MK-801组和MK-801+奥氮平(olanzapine,olz)组(n=8),三组小鼠分别接受0.9%生理盐水、MK-801(0.6 mg/kg)和MK-801(0.6 mg/kg)+奥氮平(2.5 mg/kg)给药,持续4周。小鼠行为学通过旷场试验、社交实验进行评价,免疫印迹法检测小鼠前额叶和海马组织中MIF蛋白的表达。结果:MK-801处理后,小鼠活动量增加,社交功能受损,且都能被抗精神分裂症药物奥氮平显著改善。MK-801组小鼠前额叶皮层中MIF蛋白表达与对照组比较无明显统计学差异(P0.05),而海马脑区中MIF蛋白表达较对照组明显升高(P0.05);MK-801+奥氮平组小鼠前额叶皮层中MIF蛋白表达较MK-801组无显著变化,而海马脑区中MIF蛋白表达较MK-801组明显降低(P0.05)。结论:亚慢性给予MK-801诱导的精神分裂样小鼠海马脑区中MIF蛋白水平升高,提示MIF蛋白可能参与MK-801诱导的精神分裂样行为。  相似文献   

6.
低氧预处理小鼠脑及血液中糖原与乳酸含量的变化   总被引:5,自引:1,他引:4  
Cui XY  Li L  An YY  Lu GW 《生理学报》2001,53(4):325-328
采用昆明小鼠为实验对象,将实验动物随机分为H4组(重复低氧4次,低氧预适应组)、H1组(只低氧1次,低氧对照组)和H0组(正常对照组,即不低氧组),分别测定全脑及不同脑区(端脑、间脑、中脑、脑桥、小脑和延髓)糖原、乳酸的含量,同时测定血液中乳酸的含量。结果:H4组全脑糖原含量显著高于H1及H0组,其中H4组端脑、间脑和脑桥内糖原含量显著高于H1组及H0组相应的脑区,H1组全脑糖原含量显著低于H0组,其中H4组端脑、间脑和脑桥内糖原含量显著高于H1组及H0组相应的脑区,H1组全脑糖原含量显著低于H0组,但各个脑区糖原含量的差别无显著意义。H4、H1组全脑乳酸含量无显著差异,但均显著高于H0组,而H4组血液中乳酸的含量则显著低于H1组及H0组。结果提示,在低氧预适应过程中,脑糖原增加与脑乳酸降低同时发生,脑有氧代谢参与低氧预适应或低氧耐受的形成。  相似文献   

7.
目的:观察NDRG2(N-myc下游调节基因2)与GFAP(胶质纤维酸性蛋白)在不同脑区星形胶质细胞的表达与分布。方法:利用免疫荧光NDRG2与GFAP双标技术以及Western Blot技术观察皮层、海马及纹状体等不同脑区星形胶质细胞NDRG2和GFAP的表达与分布。结果:免疫荧光结果显示NDRG2阳性细胞广泛而均匀地分布于不同脑区,并与GFAP存在较好的共定位;NDRG2与GFAP标记的星形胶质细胞形态不尽相同。Western Blot结果显示NDRG2在皮层中表达比海马和纹状体多,而GFAP在海马中表达比皮层和纹状体多。结论:NDRG2广泛表达于不同脑区星形胶质细胞,并于GFAP存在较好的共定位。  相似文献   

8.
小鼠脑内NO/NOS-cGMP信号系统与吗啡依赖形成的机制   总被引:9,自引:2,他引:7  
Fang F  Cao Q  Song FJ  Wang YH  Liu JS 《生理学报》1999,(2):133-139
本文观察了吗啡依赖小鼠脑组织cGMP含量,钙依赖性及非钙依赖性NOS活性的变化,蛋白激酶A对NOS活性的磷酸化调节以及一氧化氮合酶(NOS)抑制剂对吗啡依赖形成的影响。结果发现:(1)小脑,纹状体,海马及大脑皮质cGMP含量明显下降;(2)纹状体及大脑皮质钙依赖性NOS活性明显升高,而IP20(PKA抑制剂)可抑制比变化,小脑及海马依赖性NOS活性及以上各脑区非钙依赖性NOS活性无明显变化;(3)  相似文献   

9.
衰老性记忆障碍与脑突触体内游离[Ca^2+]i的相关性   总被引:9,自引:0,他引:9  
Zhang ZG  Xu XH  Du HY  Wu FM 《生理学报》2000,52(1):85-88
采用行为观察和生化检测相结合的方法,在过去工作的基础上,研究了12月龄和18月龄小鼠学习记忆能力的变化和18月龄小鼠四个脑区(海马、大脑皮层、四叠体和小脑)交触体内「Ca^2+」i的水平,同时还比较了老年记忆保持良好组与记忆障碍组小鼠的脑钙水平。结果表明,随着年龄的增长,小鼠的学习记忆能力显著下降,上述脑区(除大脑皮层外)突触内「Ca^2+」i均明显升高,其中老年记忆障碍小鼠脑钙水平升高最为显著。  相似文献   

10.
低氧对动物组织糖原含量和血糖水平的影响   总被引:2,自引:0,他引:2  
比较不同年龄组大鼠和高原鼠兔(Ochotona curzoniae)的心肌、骨骼肌和脑皮层组织的糖原含量,以及血糖浓度在模拟高原低氧的变化,发现急性高原低氧暴露24小时,老年组大鼠心肌、骨骼肌糖原含量在海拨8000米高度时有不同程度升高。血糖水平在8000米高度也有明显上升。成年组大鼠心肌、骨骼肌和脑皮层组织糖原含量随海拔升高而增加。慢性低氧暴露25天,大鼠脑组织糖原含量在海拔7000米时略有升高,心肌和骨骼肌糖原含量在海拔7000米时明显升高。低氧暴露7天和48小时,大鼠血糖浓度无明显变化。 高原鼠兔在急性低氧暴露期间,成年组脑糖原含量在海拔5000米和8000米高度时均有明显下降,心肌糖原在8000米高度时明显升高。骨骼肌糖原含量随海拔升高而略有降低。幼年组高原鼠兔脑糖原含量随海拔升高而下降,心肌和骨骼肌糖原在海拔升高时有增加倾向。成年和幼年组鼠兔血糖水平则随海拔上升而升高。  相似文献   

11.
《Free radical research》2013,47(9):1076-1081
Abstract

Binge alcohol consumption in adolescents is increasing, and it has been proposed that immature brain deals poorly with oxidative stress. The aim of our work was to study the effect of an acute dose of ethanol on glutathione (GSH) metabolism in frontal cortex, hippocampus and striatum of juvenile and adult rats. We have observed no change in levels of glutathione produced by acute alcohol in the three brain areas studied of juvenile and adult rats. Only in the frontal cortex the ratio of GSH/GSSG was increased in the ethanol-treated adult rats. GSH levels in the hippocampus and striatum were significantly higher in adult animals compared to young ones. Higher glutathione peroxidase (GPx) activity in adult rats was observed in frontal cortex and in striatum. Our data show an increased GSH concentration and GPx activity in different cerebral regions of the adult rat, compared to the young ones, suggesting that age-related variations of total antioxidant defences in brain may predispose young brain structures to ethanol-induced, oxidative stress-mediated tissue damage.  相似文献   

12.
Abstract— The levels of hydroxyl radicals and oxidized GSH have been examined as indices of oxidative stress in young (3 months), middle-aged (15 months), and old (20–24 months) gerbil brain hippocampus, cortex, and striaturn. The hydroxyl radical stress was estimated by measuring the salicylate hydroxyl radical trapping products 2,5-and 2,3-dihydroxybenzoic acid. The stress was significantly higher in all three brain regions in middle-aged and old gerbils versus young animals (66.0%). Regional comparisons showed that the stress was significantly higher in cortex than in either the hippocampus or striatum of the middle-aged and old gerbils (32.0%). The ratio of oxidized to total GSH also increased progressively in middle-aged and old animals in all three brain regions (p < 0.05, 41.1%), further indicating a general age-related increase in oxidative stress. Parallel to this age-related increase in oxidative stress, a significant, albeit slight (8%), decrease in neuronal number in hippocampal CA1 region was observed in both the middle-aged and old animals. Possible differences in antioxidant levels were also examined. Total GSH levels were similar across age groups (variance <12%). However, the regional comparison showed that it was highest in striatum in all age groups. The levels of a-tocopherol (vitamin E) were significantly higher in the middle-aged and old animals in all three regions (70.4%). Vitamin E was highest in the hippocampus and the differences between the hippocampus and the cortex and striatum increased with age. Although of a lesser magnitude, significant increases in hippocampal total ascorbic acid level were also noted with age (p < 0.05, 10%). Ascorbic acid was the most regionally specific of the three antioxidants examined, with hippocampus > cortex > striatum for all age groups. The difference in ascorbic acid level between hippocampus and cortex also increased with age (64.4%). The results suggest that the general age-related, regionally specific increases in oxidative stress stimulate the accumulation of antioxidants. It is interesting that the hippocampus, which is selectively vulnerable to various insults such as ischemia, epilepsy, and insulin-induced hypoglycemia, exhibits the greatest age-related increase in vitamin E and ascorbic acid, perhaps reflective of a greater impact of the progressive increase in baseline oxidative stress.  相似文献   

13.
The vesicular monoamine transporter 2 (VMAT2) sequesters monoamines into synaptic vesicles in preparation for neurotransmission. Samples of cerebellum, cortex, hippocampus, substantia nigra and striatum from VMAT2-deficient mice were compared to age-matched control mice. Multivariate statistical analyses of 1H NMR spectral profiles separated VMAT2-deficient mice from controls for all five brain regions. Although the data show that metabolic alterations are region- and age-specific, in general, analyses indicated decreases in the concentrations of taurine and creatine/phosphocreatine and increases in glutamate and N-acetyl aspartate in VMAT2-deficient mouse brain tissues. This study demonstrates the efficacy of metabolomics as a functional genomics phenotyping tool for mouse models of neurological disorders, and indicates that mild reductions in the expression of VMAT2 affect normal brain metabolism. Special issue article in honor of Dr. Frode Fonnum.  相似文献   

14.
Binge alcohol consumption in adolescents is increasing, and it has been proposed that immature brain deals poorly with oxidative stress. The aim of our work was to study the effect of an acute dose of ethanol on glutathione (GSH) metabolism in frontal cortex, hippocampus and striatum of juvenile and adult rats. We have observed no change in levels of glutathione produced by acute alcohol in the three brain areas studied of juvenile and adult rats. Only in the frontal cortex the ratio of GSH/GSSG was increased in the ethanol-treated adult rats. GSH levels in the hippocampus and striatum were significantly higher in adult animals compared to young ones. Higher glutathione peroxidase (GPx) activity in adult rats was observed in frontal cortex and in striatum. Our data show an increased GSH concentration and GPx activity in different cerebral regions of the adult rat, compared to the young ones, suggesting that age-related variations of total antioxidant defences in brain may predispose young brain structures to ethanol-induced, oxidative stress-mediated tissue damage.  相似文献   

15.
《Cellular signalling》2014,26(2):383-397
3′,5′-cyclic nucleotide phosphodiesterases (PDEs) are the only known enzymes to compartmentalize cAMP and cGMP, yet little is known about how PDEs are dynamically regulated across the lifespan. We mapped mRNA expression of all 21 PDE isoforms in the adult rat and mouse central nervous system (CNS) using quantitative polymerase chain reaction (qPCR) and in situ hybridization to assess conservation across species. We also compared PDE mRNA and protein in the brains of old (26 months) versus young (5 months) Sprague–Dawley rats, with select experiments replicated in old (9 months) versus young (2 months) BALB/cJ mice. We show that each PDE isoform exhibits a unique expression pattern across the brain that is highly conserved between rats, mice, and humans. PDE1B, PDE1C, PDE2A, PDE4A, PDE4D, PDE5A, PDE7A, PDE8A, PDE8B, PDE10A, and PDE11A showed an age-related increase or decrease in mRNA expression in at least 1 of the 4 brain regions examined (hippocampus, cortex, striatum, and cerebellum). In contrast, mRNA expression of PDE1A, PDE3A, PDE3B, PDE4B, PDE7A, PDE7B, and PDE9A did not change with age. Age-related increases in PDE11A4, PDE8A3, PDE8A4/5, and PDE1C1 protein expression were confirmed in hippocampus of old versus young rodents, as were age-related increases in PDE8A3 protein expression in the striatum. Age-related changes in PDE expression appear to have functional consequences as, relative to young rats, the hippocampi of old rats demonstrated strikingly decreased phosphorylation of GluR1, CaMKIIα, and CaMKIIβ, decreased expression of the transmembrane AMPA regulatory proteins γ2 (a.k.a. stargazin) and γ8, and increased trimethylation of H3K27. Interestingly, expression of PDE11A4, PDE8A4/5, PDE8A3, and PDE1C1 correlate with these functional endpoints in young but not old rats, suggesting that aging is not only associated with a change in PDE expression but also a change in PDE compartmentalization.  相似文献   

16.
Previous studies show the enrichment of mammalian brain with neutral sphingomyelin-specific phospholipase C (ceramide-phosphocholine phosphodiesterase, EC 3.1.4.12; N-Sase), a key enzyme of sphingolipid metabolism and sphingolipid-induced signaling.

Objective:

The objective of this study was to evaluate the membrane-associated and cytosolic N-Sase activities in the brain regions associated with behavior (striatum, hippocampus, and frontal cortex).

Results:

Results showed higher membrane-associated N-Sase activity as compared to the N-Sase activity in the cytosolic fractions of all the evaluated brain regions. In the hippocampus, the N-Sase activity was significantly higher than in the striatum and cortex. In addition, age-related changes in the hippocampal N-Sase activities were profoundly higher than in the respective fractions isolated from the striatum and cortex. Age-related decreases in the hippocampal and striatal cytosolic N-Sase activities were accompanied by increases in the membrane N-Sase activities in those brain regions. There was a significant increase in the cortical membrane-associated N-Sase activity with age; however, to a much lesser extend than in other brain regions. The increase in the hippocampal membrane-associated N-Sase activity was accompanied by a higher expression of the inflammatory marker, interleukin-1β (IL-1β), with age. One of the important findings of the present study is the region-specific expression of heat shock protein 70 (hsp70). Frontal cortex showed lower hsp70 expression in both young and old age groups as compared to the striatal and hippocampal hsp70 levels which can contribute to the recently reported higher cortical sensitivity to oxidative stress.

Conclusion:

In conclusion (a) our results, for the first time to our knowledge, demonstrated the association between the N-Sase activity and the stress/inflammatory markers expression in the brain regions controlling behavior; (b) these findings suggest the role of N-Sase as a contributor to the increased stress and inflammatory sensitivity among the brain regions with age.  相似文献   


17.
Activities of the neurotransmitter synthetic enzymes, choline acetyltransferase (EC 2.3.1.6; ChAT), glutamic acid decarboxylase (EC 4.1.1.15; GAD), and tyrosine hydroxylase (EC 1.14.3.2; TH), were assayed in four brain regions of A/J and C57BL/6J mice at three ages (4, 18, and 24 months). The brain regions assayed were the fronto-parietal cortex, hippocampus, striatum, and cerebellum. Strain effects: In some brain regions, at several ages, ChAT activity did not differ among the two strains. However, ChAT was higher in the C57BL/6J strain in the cortex at 18 months, the hippocampus at 18 and 24 months, the striatum at 24 months, and the cerebellum at 4 months. The reverse was true in the cerebellum at 24 months, where ChAT was higher in A/J mice. GAD activity in C57BL/6J mice compared to that of A/J mice was higher in the striatum and cortex, and lower in the hippocampus and cerebellum. TH activities in all four regions were generally higher in C57BL/6J mice than in A/J mice. Age effects: Age differences in enzyme activities varied with the genetic strain. ChAT activity generally was higher in brain regions of older mice of both strains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Inflammatory conditions characterized by excessive peripheral immune responses are associated with diverse alterations in brain function, and brain-derived neural pathways regulate peripheral inflammation. Important aspects of this bidirectional peripheral immune–brain communication, including the impact of peripheral inflammation on brain region–specific cytokine responses, and brain cholinergic signaling (which plays a role in controlling peripheral cytokine levels), remain unclear. To provide insight, we studied gene expression of cytokines, immune cell markers and brain cholinergic system components in the cortex, cerebellum, brainstem, hippocampus, hypothalamus, striatum and thalamus in mice after an intraperitoneal lipopolysaccharide injection. Endotoxemia was accompanied by elevated serum levels of interleukin (IL)-1β, IL-6 and other cytokines and brain region–specific increases in Il1b (the highest increase, relative to basal level, was in cortex; the lowest increase was in cerebellum) and Il6 (highest increase in cerebellum; lowest increase in striatum) mRNA expression. Gene expression of brain Gfap (astrocyte marker) was also differentially increased. However, Iba1 (microglia marker) mRNA expression was decreased in the cortex, hippocampus and other brain regions in parallel with morphological changes, indicating microglia activation. Brain choline acetyltransferase (Chat ) mRNA expression was decreased in the striatum, acetylcholinesterase (Ache) mRNA expression was decreased in the cortex and increased in the hippocampus, and M1 muscarinic acetylcholine receptor (Chrm1) mRNA expression was decreased in the cortex and the brainstem. These results reveal a previously unrecognized regional specificity in brain immunoregulatory and cholinergic system gene expression in the context of peripheral inflammation and are of interest for designing future antiinflammatory approaches.  相似文献   

19.
The metabolic changes in hippocampus, temporal cortex and prefrontal cortex in SD rats along with aging were explored using a metabonomic approach, which based on high resolution “magic angle spinning” 1H NMR spectroscopy. The metabolite profiles were analyzed by partial least squares-discriminant analysis, and the results showed that the metabolites of the above three brain regions in old rats were dramatically different from that in the adult and young rats. The old rats showed increased myo-inositol and lactate in all of the three brain regions, and decreased N-acetylaspartate in temporal and frontal cortex, Glutamate–GABA level became imbalance in temporal cortex of old rats. In addition, compared with the adult female rats, male rats had higher levels of N-acetylaspartate, taurine, and creatine in temporal or frontal cortex. The age-related metabolic changes may indicate the early functional alterations of neural cells in these brain regions, especially the temporal cortex. The gender-related metabolic changes suggest the significance of the hormonal regulation in brain metabolism. Our work highlights the potential of metabolic profiling to enhance our understanding of biological mechanisms of brain aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号