首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
目的:对患有急性间歇性血卟啉病先证者及其两位直系亲属进行基因突变的分析。方法:采用PCR和一代测序技术分别对患者的HMBS基因的外显子及其旁翼区进行序列分析。结果:检测出先证者HMBS基因11号外显子的旁翼区发生杂合突变c.651+2AG,为剪切突变;从先证者母亲以及女儿的HMBS基因上检测出同样的突变位点。结论:根据先证者的家族史、临床表现及相关代谢检查结果诊断为血卟啉病;基因检测结果提示先证者为急性间歇性血卟啉病;先证者的母亲和女儿存在同样的突变位点,提示先证者母亲及其女儿均患有急性间歇性血卟啉病。  相似文献   

2.
对一个中国汉族Gilbert综合征遗传家系致病基因突变位点进行鉴定,以期了解该病的分子遗传学基础。首先提取先证者基因组DNA,PCR扩增尿苷二磷酸葡萄糖醛酸转移酶UGT1A1基因的5个外显子,以琼脂糖电泳鉴定PCR产物,纯化后直接测序鉴定。基因扫描显示,与血清胆红素水平密切相关的UGT1A1基因在第1和第5外显子存在纯合突变,而 UGT1A1基因启动子区域和内含子/外显子剪接边界位点序列未检测到突变。进一步对其他家系成员该基因的相应位点进行突变检测,结果显示他们在第1和第5外显子也存在杂合突变,其中还有两个成员在启动子区域检测到(TA)插入突变。对家系成员未抗凝新鲜血液进行生化检测证实了基因突变分析的结果。综合以上结果发现该家系三种突变并存,致病因素为第1和/或第5外显子突变,为显性遗传,两种突变位点纯合导致先证者出现严重胆红素代谢功能障碍。该家系因此成为Gilbert综合征突变位点及其致病机理研究的一个典型临床病例。  相似文献   

3.
Niu YF  Xiong HL  Wu JJ  Chen Y  Qiao K  Wu ZY 《遗传》2011,33(7):720-724
应用PCR技术结合DNA直接测序方法对8例临床确诊为家族性肌萎缩侧索硬化(Familiar amyotrophic lateral sclerosis,FALS)家系的先证者进行铜锌超氧化物歧化酶基因(SOD1)的突变筛查,在3例先证者中检出2种SOD1基因突变,其中,2例携带了位于4号外显子的错义突变Cys111Tyr(c.332G>A),另1例携带了位于5号外显子的错义突变Gly147Asp(c.440G>A),这2种突变在中国ALS患者中属首次报道。该结果扩大了中国FALS患者的SOD1基因突变谱,对研究中国FALS患者SOD1基因突变特点和分布规律有一定帮助。分析携带这2个突变患者的临床特点,提示Cys111Tyr突变导致的临床表型相对温和,而Gly147Asp突变可导致病情进展较快。该结果有待在更多的病例中进行证实。  相似文献   

4.
[目的]通过全外显子组测序(WES)技术筛选男性性腺功能减退症的致病基因,并对基因突变位点进行生物信息学分析。[方法]收集5例男性性腺功能减退症患者临床及遗传学检测资料。采用WES技术筛选相关致病基因,并通过PCR扩增、Sanger测序以及生物信息学分析等验证突变位点。[结果]先证者1为PROKR2基因c.533G>C(p.W178S)纯合突变,家系验证结果发现其父母均为PROKR2基因c.533G>C(p.W178S)杂合突变携带者,符合常染色体隐性遗传。先证者2为ZFPM2基因c.1498C>G(p.Q500E)杂合突变,生物信息学分析发现,该突变位点编码的氨基酸在不同物种中高度保守,并在人类外显子数据库、参考人群千人基因组1000G、SNP数据库及人群基因组突变频率数据库中未发现该突变位点,该突变经SIFT、Polyphen2和Mutation Taster软件预测结果均为有害。[结论]PROKR2基因c.533G>C(p.W178S)和ZFPM2基因c.1498C>G(p.Q500E)突变可能是男性性腺功能减退症的致病原因。  相似文献   

5.
目的:对1例临床确诊为纯合型家族性高胆固醇血症(FH)先证者及其核心家系成员进行基因检测分析,探讨患儿发病的分子病理基础.方法:收集先证者及父母血标本及临床资料,酚氯仿法提取基因组DNA,DNA直接测序方法检测低密度脂蛋白受体(LDL-R)基因18个外显子和启动子及载脂蛋白B(ApoB100)R3500Q位点,核苷酸序列分析结果与Gen Bank比对寻找突变.结果:(1)先证者三尖瓣轻度关闭不全,先证者父母双侧颈总动脉内-中膜增厚,先证者母亲左侧颈内动脉起始处后壁多发混合回声斑块(2)该家系排除ApoB100基因R3500Q突变;(3)先证者LDL-R基因第13外显子发生A606T和D601Y复合杂合突变,前者第1879位G→A碱基置换,导致丙氨酸改变为苏氨酸,后者为1864位G>T碱基置换,导致天冬氨酸改变为酪氨酸,其父为携带A606T突变的杂合子,其母为携带D601Y突变的杂合子.结论:先证者LDL-R基因存在A606T和D601Y复合杂合突变,它们分别来源于父系及母系遗传.  相似文献   

6.
用基因产物直接测序法对2个遗传性胰腺炎家系中胰腺炎患者(共有4例成员)的胰蛋白酶原基因(cationic trypsinogen,PRSS1)5个外显子进行测序,并分析其各自的临床特征.在4例胰腺炎患者中均出现了PRSS1基因杂合突变,但两家系PRSS1基因突变的位点不同,且临床表现差异较大,其中家系1出现6例糖尿病患者且发病年龄较家系2明显延迟,平均发病年龄为29岁,分析其PRSS1基因发现3号外显子336位碱基存在G→A杂合性突变,为中性突变,表达的氨基酸从赖氨酸(Lys)→赖氨酸(Lys),同时在同一外显子的361位碱基还存在另一个G→A杂合性突变,造成121位的丙氨酸(Ala)被苏氨酸(Thr)所取代,胰蛋白酶原的空间结构发生改变,其与抑制因子的结合位点消失,"保护失败"而产生有活性的胰蛋白酶,造成胰腺自身的消化.而家系2未发现糖尿病患者,其胰腺炎患者的血清肿瘤标志物不增高,先证者(Ⅲ8)在胰腺炎发病过程中表现为CD4 T/CD8 Tcell和乙肝表面抗体(anti-HBs)随病程进展逐渐降低,而Ⅲ7不表现出此现象,分析其PRSS1基因发现3号外显子361位碱基同样存在G→A(c.361G→A)突变,而且在415位还存在一个杂合性突变点T→A(c.415T→A),其中c.415T→A不存在于Ⅲ7.胰蛋白酶原基因存在多种形式的突变,而且与临床表型相关.  相似文献   

7.
一个遗传性胰腺炎家系中新发现的胰蛋白酶原基因突变   总被引:12,自引:0,他引:12  
刘奇才  程祖建  杨艳  欧启水 《遗传》2007,29(9):1067-1070
对1个遗传性胰腺炎(hereditary pancreatitis, HP)家系中6例成员和120例无亲缘关系健康人的胰蛋白酶原基因(protease serine 1, PRSS1)进行PCR扩增, 产物纯化后测序, 结合受检者的血清肿瘤标志物、糖尿病相关生化指标以及近亲属的一般临床资料进行分析。结果发现4例家系成员PRSS1基因3号外显子区136位碱基存在C→T杂合性突变, 他们的基因型表现为野生型与突变型杂合现象, 另外在先证者PRSS1基因的3号外显子区171位碱基还存在着一个同义突变点(C→T), 而对照组和家系其他成员中未发现此两种突变, 突变阳性患者表现为乳酸、糖基化血红蛋白和糖类肿瘤标志物(CA19-9、CA125)增高。因此, PRSS1基因3号外显子区136位碱基C→T杂合性突变与该家系遗传性胰腺炎有关, 是该家系中遗传性胰腺炎的遗传易感因素。  相似文献   

8.
Waardenburg综合征Ⅱ型患者MITF基因突变分析   总被引:1,自引:0,他引:1  
Waardenburg综合征(WS)是临床上常见的常染色体显性遗传性耳聋综合征, MITF基因突变与部分Waardenburg 综合征Ⅱ型(WS2)病例的发病有关。MITF属于碱性螺旋-环-螺旋亮氨酸拉链转录因子家族, 能调节酪氨酸酶基因, 参与黑色素细胞的分化。文章报道了1个携带MITF基因点突变的3代Waardenburg综合征Ⅱ型中国家系。先证者表现为先天性重度感音神经性聋、虹膜异色、面部雀斑; 其他家系成员除一名仅表现为先天性耳聋外, 均表现为颜面、上肢雀斑和/或早白发。患者可检测到c.639delA杂合突变, 该突变在MITF基因第7外显子上产生了终止密码子(p.I220X), 突变产生的截短的MITF蛋白没有DNA结合活性。该突变是WS2病例中第3个位于MITF第7外显子的突变, 尚未见报道。该突变与已报道的位于第7外显子其他两个突变仅相差1个碱基, 氨基酸改变十分相似, 但在表型上有显著差别, 提示遗传背景对WS临床表型有重要影响。  相似文献   

9.
目的:探讨线粒体糖尿病家系中的基因突变位点及临床转归。方法:收集1例线粒体糖尿病患者家系的临床资料,采用PCR、DNA直接测序法对家系成员进行线粒体基因突变高发区域t RNA~(Leu(UUR))检测,以了解mtDNA3243位点突变情况,并随访8年进一步了解研究对象的临床转归情况及胰岛功能变化。结果:6例家系成员中有5例携带mtDNA3243A→G位点的突变,其中4例为糖尿病患者且伴发不同程度的双侧听力受损(神经性耳聋),1例父系患者后代未检测出突变位点。随访过程中,先证者死亡,余3例糖尿病患者除常规治疗外,长期口服辅酶Q10,血糖控制较为稳定、尚未出现严重并发症但双侧听力严重下降,胰岛分泌功能明显下降,1例携带者已出现糖耐量受损。结论:线粒体tRNA~(Leu(UUR))点突变与糖尿病具有显著相关性。  相似文献   

10.
目的:研究中枢神经系统血管母细胞瘤(VHL)基因突变的主要类型和发生情况,探讨VHL疾病发生的原因、临床特点等。方法:以基因组DNA为模板,PCR扩增VHL基因3个外显子及5’UTR区域,结合DNA直接测序的方法,对一个有多个小脑血管母细胞瘤患者的家系进行VHL基因突变检测。结果:发现该家系VHL基因5’UTR区、外显子1和外显子2正常,外显子3存在c.499C>G的改变,为一个错意突变,氨基酸改变为Arg-Gln(p.R167Q),该突变是导致这个家系的患者发病的直接原因。结论:VHL疾病的突变主要集中在VHL蛋白的α、β结构域,位于α结构域的p.R167Q突变为该VHL家系致病的主要原因。  相似文献   

11.
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a rare hereditary stroke caused by mutations in NOTCH3 gene. We report the first case of CADASIL in an indigenous Rungus (Kadazan-Dusun) family in Kudat, Sabah, Malaysia confirmed by a R54C (c.160C>T, p.Arg54Cys) mutation in the NOTCH3. This mutation was previously reported in a Caucasian and two Korean cases of CADASIL. We recruited two generations of the affected Rungus family (n = 9) and found a missense mutation (c.160C>T) in exon 2 of NOTCH3 in three siblings. Two of the three siblings had severe white matter abnormalities in their brain MRI (Scheltens score 33 and 50 respectively), one of whom had a young stroke at the age of 38. The remaining sibling, however, did not show any clinical features of CADASIL and had only minimal changes in her brain MRI (Scheltens score 17). This further emphasized the phenotype variability among family members with the same mutation in CADASIL. This is the first reported family with CADASIL in Rungus subtribe of Kadazan-Dusun ethnicity with a known mutation at exon 2 of NOTCH3. The penetrance of this mutation was not complete during the course of this study.  相似文献   

12.
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a hereditary disease of small vessel caused by mutations in the NOTCH3 gene (NCBI Gene ID: 4854) located on chromosome 19p13.1. NOTCH3 consists of 33 exons which encode a protein of 2321 amino acids. Exons 3 and 4 were found to be mutation hotspots, containing more than 65% of all CADASIL mutations. We performed direct sequencing on an ABI 3130 Genetic Analyser to screen for mutations and polymorphisms on 300 patients who were clinically suspected to have CADASIL. First, exons 3 and 4 were screened in NOTCH3 and if there were no variations found, then extended CADASIL testing (exons 2, 11, 18 and 19) was offered to patients. Here we report two novel non-synonymous mutations identified in the NOTCH3 gene. The first mutation, located in exon 4 was found in a 49-year-old female and causes an alanine to valine amino acid change at position 202 (605C>T). The second mutation, located in exon 11, was found in a 66-year-old female and causes a cysteine to arginine amino acid change at position 579 (1735T>C). We also report a 46-year-old male with a known polymorphism Thr101Thr (rs3815188) and an unreported polymorphism NM_000435.2:c.679+60G>A observed in intron 4 of the NOTCH3 gene. Although Ala202Ala (rs1043994) is a common polymorphism in the NOTCH3 gene, our reported novel mutation (Ala202Val) causes an amino acid change at the same locus. Our other reported mutation (Cys579Arg) correlates well with other known mutations in NOTCH3, as the majority of the CADASIL-associated mutations in NOTCH3 generally occur in the EGF-like (epidermal growth factor-like) repeat domain, causing a change in the number of cysteine residues. The intronic polymorphism NM_000435.2:c.679+60G>A lies close to the intron-exon boundary and may affect the splicing mechanism in the NOTCH3 gene.  相似文献   

13.
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is originally featured with a strong clustering of mutations in NOTCH3 exons 3–6 and leukoencephalopathy with frequent anterior temporal pole involvement. The present study aims at characterizing the genotypic and phenotypic profiles of CADASIL in Taiwan. One hundred and twelve patients with CADASIL from 95 families of Chinese descents in Taiwan were identified by Sanger sequencing of exons 2 to 24 of NOTCH3. Twenty different mutations in NOTCH3 were uncovered, including 3 novel ones, and R544C in exon 11 was the most common mutation, accounting for 70.5% of the pedigrees. Haplotype analyses were conducted in 14 families harboring NOTCH3 R544C mutation and demonstrated a common haplotype linked to NOTCH3 R544C at loci D19S929 and D19S411. Comparing with CADASIL in most Caucasian populations, CADASIL in Taiwan has several distinct features, including less frequent anterior temporal involvement, older age at symptom onset, higher incidence of intracerebral hemorrhage, and rarer occurrence of migraine. Subgroup analyses revealed that the R544C mutation is associated with lower frequency of anterior temporal involvement, later age at onset and higher frequency of cognitive dysfunction. In conclusion, the present study broadens the spectrum of NOTCH3 mutations and provides additional insights for the clinical and molecular characteristics of CADASIL patients of Han-Chinese descents.  相似文献   

14.
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an adult onset cerebral small vessel disorder caused by the mutations of the neurogenic locus notch homolog protein 3 (NOTCH3) gene. The extracellular part of NOTCH3 is composed of 34 epidermal growth factor-like (EGF-like) repeat domains. Each EGF-like domain is rich of cysteine and glycine to produce three loops that are essential for high-affinity binding to its ligand. Nearly all reported CADASIL-associated mutations result in gain or loss of a cysteine residue within the EGF-like domains. Only a few cysteine-sparing NOTCH3 mutations have been documented in the patients with CADASIL to date. Here, we reported a Chinese CADASIL family with a cysteine-sparing NOTCH3 mutation. In this family, affected patients had dizziness, memory loss, gait instability, or hemiplegia. Brain magnetic resonance imaging (MRI) showed diffuse leukoencephalopathy with confluent signal abnormalities in the periventricular white matter, basal ganglia, and centrum semiovale bilaterally. By screening the entire coding region of NOTCH3, a novel missense mutation p.G149V (c.446G>T) was found. This mutation was not detected in 400 normal controls. Considering the critical position of glycine within the C-loop of EGF-like domain and its high conservation through evolution, p.G149V mutation could be a potential pathogenic cause for CADASIL.  相似文献   

15.

Background and Purpose

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is caused by NOTCH3 gene mutations that result in vascular smooth muscle cell (VSMC) degeneration. Its distinctive feature by electron microscopy (EM) is granular osmiophilic material (GOM) detected in VSMC indentations and/or the extracellular space close to VSMCs. Reports of the sensitivity of EM in detecting GOM in biopsies from CADASIL patients are contradictory. We present data from 32 patients clinically suspected to have CADASIL and discuss the role of EM in its diagnosis in this retrospective study.

Methods

Skin, skeletal muscle, kidney and pericardial biopsies were examined by EM; the NOTCH3 gene was screened for mutations. Skin and muscle biopsies from 12 patients without neurological symptoms served as controls.

Results and Discussion

All GOM-positive patients exhibited NOTCH3 mutations and vice versa. This study i) confirms that EM is highly specific and sensitive for CADASIL diagnosis; ii) extends our knowledge of GOM distribution in tissues where it has never been described, e.g. pericardium; iii) documents a novel NOTCH3 mutation in exon 3; and iv) shows that EM analysis is critical to highlight the need for comprehensive NOTCH3 analysis. Our findings also confirm the genetic heterogeneity of CADASIL in a small Italian subpopulation and emphasize the difficulties in designing algorithms for molecular diagnosis.  相似文献   

16.
《Endocrine practice》2012,18(5):e106-e110
ObjectiveTo describe a family with hereditary paraganglioma due to a disease-causing mutation in the SDHD gene.MethodsWe present the clinical findings, diagnostic test results, treatment, and genetic test results in a family with hereditary paraganglioma.ResultsThree siblings with bilateral carotid body tumors presented at different time points and with varied clinical presentations. While the proband, a 20-year-old man, was not hypertensive and had normal urinary metanephrine and normetanephrine levels, his sister and brother had a more severe clinical picture, with hypertension in both and elevated normetanephrine levels in his brother (his brother had pheochromocytoma and 2 intra-abdominal paragangliomas). Mean age at presentation was 24 years. A 4-base pair frameshift mutation, c.337-340delGACT, was detected in exon 4 of the SDHD gene in all 3 patients.ConclusionThis is the first report of the c.337340delGACT mutation being associated with hereditary paraganglioma; this report emphasizes the need to screen all at-risk first-degree relatives for the disease-causing SDHD mutation once it has been identified in an affected family member. (Endocr Pract. 2012;18:e106-e110)  相似文献   

17.

Background

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a monogenic, hereditary, small vessel disease of the brain causing stroke and vascular dementia in adults. CADASIL has previously been shown to be caused by varying mutations in the NOTCH3 gene. The disorder is often misdiagnosed due to its significant clinical heterogeneic manifestation with familial hemiplegic migraine and several ataxia disorders as well as the location of the currently identified causative mutations. The aim of this study was to develop a new, comprehensive and efficient single assay strategy for complete molecular diagnosis of NOTCH3 mutations through the use of a custom next-generation sequencing (NGS) panel for improved routine clinical molecular diagnostic testing.

Results

Our custom NGS panel identified nine genetic variants in NOTCH3 (p.D139V, p.C183R, p.R332C, p.Y465C, p.C597W, p.R607H, p.E813E, p.C977G and p.Y1106C). Six mutations were stereotypical CADASIL mutations leading to an odd number of cysteine residues in one of the 34 NOTCH3 gene epidermal growth factor (EGF)-like repeats, including three new typical cysteine mutations identified in exon 11 (p.C597W; c.1791C>G); exon 18 (p.C977G; c.2929T>G) and exon 20 (p.Y1106C; c.3317A>G). Interestingly, a novel missense mutation in the CACNA1A gene was also identified in one CADASIL patient. All variants identified (novel and known) were further investigated using in silico bioinformatic analyses and confirmed through Sanger sequencing.

Conclusions

NGS provides an improved and effective methodology for the diagnosis of CADASIL. The NGS approach reduced time and cost for comprehensive genetic diagnosis, placing genetic diagnostic testing within reach of more patients.
  相似文献   

18.
19.
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a familial progressive degenerative disorder and is caused by mutations in NOTCH3 gene. Previous study reported that mutant NOTCH3 is more prone to form aggregates than wild-type NOTCH3 and the mutant aggregates are resistant to degradation. We hypothesized that aggregation or accumulation of NOTCH3 could be due to impaired lysosomal-autophagy machinery in VSMC.Here, we investigated the possible cause of accumulation/aggregation of NOTCH3 in CADASIL using cerebral VSMCs derived from control and CADASIL patients carrying NOTCH3R133C mutation. Thioflavin-S-staining confirmed the increased accumulation of aggregated NOTCH3 in VSMCR133C compared to VSMCWT. Increased levels of the lysosomal marker, Lamp2, were detected in VSMCR133C, which also showed co-localization with NOTCH3 using double-immunohistochemistry. Increased level of LC3-II/LC3-I ratio was observed in VSMCR133C suggesting an accumulation of autophagosomes. This was coupled with the decreased co-localization of NOTCH3 with LC3, and Lamp2 and, further, increase of p62/SQSTM1 levels in VSMCR133C compared to the VSMCWT. In addition, Western blot analysis indicated phosphorylation of p-ERK, p-S6RP, and p-P70 S6K. Altogether, these results suggested a dysfunction in the autophagy-lysosomal pathway in VSMCR133C.The present study provides an interesting avenue of the research investigating the molecular mechanism of CADASIL.  相似文献   

20.
中国人Ⅱ型MPS家系IDS基因的一种新突变的鉴定   总被引:1,自引:0,他引:1  
郭奕斌  潘宏达  郭春苗  李咏梅  陈路明 《遗传》2009,31(11):1101-1106
为了研究粘多糖贮积症Ⅱ型(MPSⅡ)患者发病的分子遗传学机制, 以便为今后的产前基因诊断等创造必要的前提条件, 文章先采用尿糖胺聚糖(GAGs)定性检测法对疑似MPSⅡ的先证者进行初诊, 然后采用PCR、PCR 产物直接测序法对先证者及其家系成员进行突变检测。在检出IDS基因c.876del2新突变后, 对随机采集的120例正常对照和其他非II型MPS患者包括MPSⅠ, Ⅳ, Ⅵ三型的病人共15例的IDS基因exon 6进行序列分析, 同时采用不同物种突变点序列的保守性分析法, 以及直接测定患儿及其家庭相关成员IDS酶活性的方法对该新突变进行致病性分析。结果显示: 先证者尿检呈强阳性(GAGs +++); 其IDS基因exon 6编码区内存在c.876-877 del TC新缺失突变, 为半合子突变, 而其母、其姐为杂合突变; 正常对照和其他非II型MPS患者的IDS基因exon 6的检测结果均未发现该突变; 不同物种氨基酸序列的同源性比对显示: c.876-877 del TC突变所在的位置即p.292-293的苯丙氨酸(F)谷氨酰胺(Q)高度保守; 酶活性测定的结果显示: 先证者的IDS酶活性仅为2.3 nmol/4 h/mL, 大大低于正常值, 而其父的为641.9 nmol/4 h/mL, 其母的血浆酶活性为95.8 nmol/ 4h/mL, 其姐的为103.2 nmol/4 h/mL。说明所发现的c.876-877 del TC缺失移码突变是一种新的病理性突变, 是该MPSⅡ患儿发病的根本内因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号