首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
天山林区不同类型群落土壤氮素对冻融过程的动态响应   总被引:1,自引:0,他引:1  
季节性冻融过程对北方温带森林土壤氮素的转化与流失具有重要影响,但不同类型群落对冻融过程响应的差异尚不明确。通过在林地、草地、灌丛上设置系列监测样地,采用原位培养的方法,利用林冠遮挡形成的自然雪被厚度差异,监测分析了冻融期天山林区不同群落表层土壤(0—15 cm)的氮素动态及净氮矿化速率间的差异。结果表明:(1)不同类型群落土壤的铵态氮(NH+4-N)含量、微生物量氮(MBN)含量基本与土壤(5 cm)温度呈正相关,深冻期林地土壤铵态氮含量低于其他群落类型而硝态氮含量高于其他群落类型;(2)硝态氮(NO-3-N)为天山林区季节性冻融期间土壤矿质氮的主体,占比达78.4%。灌丛土壤硝态氮流失风险较大,融化末期较融化初期灌丛土壤硝态氮含量下降了64.6%;(3)冻融时期对整体氮素矿化速率影响显著,群落类型对氨化速率影响显著;(4)天山林区土壤氮素在冻结期主要以氮固持为主。通过揭示不同类型群落土壤氮素对冻融格局的响应,能够助益于对北方林区冬季土壤氮素循环的认识。  相似文献   

2.
天山林区土壤总氮矿化过程对季节性冻融的响应   总被引:1,自引:0,他引:1  
陈磊  常顺利  张毓涛  张云云 《生态学报》2020,40(12):3968-3978
森林土壤总氮矿化对冻融过程的响应机制尚不明确,氮矿化速率和转化情况尚缺乏定量刻画。通过土壤原位法与室内培养分析相结合,利用~(15)N同位素稀释技术,研究冻融期间天山林区乔木林地、灌丛、草地3种群落类型土壤总氮矿化及转化累积量的动态,分析土壤总氮矿化速率与土壤温度、含水率及微生物量氮(MBN)的相互关系。结果表明:(1)冻融过程及群落类型对总氮矿化速率和MBN含量有极显著的影响(P0.01),秋、春季冻融期的总氮矿化速率相比冻结期更高;(2)季节性冻融期间,乔木林地土壤总氨化累积量在3种群落类型中最高(163.9 kg N hm~(-2) a~(-1)),秋、春冻融期占整个时期的比值约为66%;而总硝化累积量在3种群落类型中相差较小,秋、春冻融期占比均约为77.4%;(3)土壤温度和含水率显著影响总氮矿化速率、净氮矿化速率和MBN速率,随土壤温度增加,总氨化速率(林地和灌丛)显著升高(P0.05);随土壤含水率增加,净氨化速率(灌丛)和净硝化速率(灌丛)显著降低(P0.05)。通过揭示天山林区土壤总氮矿化速率(总氨化速率和总硝化速率)及转化累积量对冻融过程的响应情况,本研究为天山森林土壤中氮的生物地球化学过程提供了有价值的基础数据。  相似文献   

3.
谭波  吴庆贵  吴福忠  杨万勤 《生态学报》2015,35(15):5175-5182
为深入了解川西亚高山-高山森林冬季生态学过程,于2008年11月—2009年10月,在土壤冻结初期、冻结期和融化期及植被生长季节,研究了不同海拔(3582 m、3298 m和3023 m)岷江冷杉林土壤养分动态及其对季节性冻融的响应。3个海拔森林土壤冬季具有较高养分含量,且随土壤冻融过程不断变化。土壤有机层可溶性碳和氮、铵态氮、硝态氮含量在冻结初期显著增加后快速降低,并随融化过程迅速增加后再次降低,而土壤可溶性碳和氮、硝态氮含量在冻结期变化不明显,铵态氮显著增加。矿质土壤层可溶性碳和氮、铵态氮含量也在冻结初期显著增加后降低,而土壤可溶性氮、铵态氮和硝态氮在冻结期显著增加,并在融化期经历一个明显的含量高峰。海拔和土层的交互作用显著影响土壤可溶性碳和硝态氮含量,土壤养分含量与土壤温度的相关性随海拔差异而不同。这表明季节性冻融期是土壤生态过程的重要时期,土壤冻融格局显著影响川西亚高山-高山森林土壤养分动态。  相似文献   

4.
为了解高山森林林窗对土壤氮动态的影响,于2012—2013年在川西高山冷杉原始林大、中、小林窗以及林下采集了4个关键时期(初冻期、深冻期、初融期和融化末期)的土样,测定其铵态氮、硝态氮、微生物生物量氮和可溶性有机氮含量。结果表明:各林窗内土壤铵态氮、硝态氮含量在融化末期显著高于其他3个关键时期;土壤微生物生物量氮在初融期最低,土壤可溶性有机氮含量在深冻期最低,而这两者含量在初冻期均最高;土壤硝态氮含量占土壤矿质氮总量的67.26%~83.59%;冬季林窗通过改变土壤微环境进而引起氮素组分的改变,林窗大小与可溶性有机氮含量呈显著正相关;土壤温度与铵态氮、硝态氮及可溶性有机氮含量呈显著正相关;冻结深度与硝态氮和可溶性有机氮呈显著负相关。经过季节性冻融期,小林窗和林下土壤具有更高的矿质氮和可溶性有机氮,为生长季内植被与土壤微生物奠定了良好的生长条件。  相似文献   

5.
晋西北不同年限小叶锦鸡儿灌丛土壤氮矿化和硝化作用   总被引:1,自引:0,他引:1  
白日军  杨治平  张强  张训忠 《生态学报》2016,36(24):8008-8014
利用PVC管顶盖埋管法研究了晋西北黄土高原区小叶锦鸡儿人工灌丛不同定植年限(5,10,20,30,40a)土壤氮矿化与硝化速率的动态和净矿化与硝化总量。结果表明,⑴小叶锦鸡儿灌丛土壤无机氮主要以NO_-~3-N形式存在,不同生长年限相同月份的土壤硝态氮(NO-3-N)含量分别是铵态氮(NH+4-N)含量的1.5—15.4倍;⑵土壤氮素硝化速率和矿化速率随生长年限延长而加快,30年生时达到高峰,数值达40.2,44.1 mg m~(-2)d~(-1)。从季节性变化看,7—8月份是硝化速率和矿化速率快速增长期,30年生小叶锦鸡儿灌丛土壤硝化速率和矿化速率分别达到86.9,93.1 mg m~(-2)d~(-1),显著高于其它生长年限(P0.05);(3)土壤氮素硝化与矿化总量同样随小叶锦鸡儿生长年限延长而增加,30年生时达到最高,与5年生相比,分别增加了3.7和3.1倍。(4)5—10月份小叶锦鸡儿生长期内,各年限土壤全氮量的2.3%被矿化成无机氮,其中87%最终被转化成NO-3-N形式存在于土体中。  相似文献   

6.
植被类型与坡位对喀斯特土壤氮转化速率的影响   总被引:4,自引:0,他引:4  
土壤氮素转化对于植物氮素营养具有重要作用,尤其是对于受氮素限制的喀斯特退化生态系统。选取植被恢复过程中4种典型喀斯特植被类型(草丛、灌丛、次生林、原生林)和3个坡位(上、中、下坡位)表层土壤(0—15cm)为对象,利用室内培养的方法,研究不同植被类型和坡位下土壤氮素养分与氮转化速率(氮净矿化率、净硝化率和净氨化率)的特征及其影响因素。结果表明,植被类型对土壤硝态氮含量、无机氮含量、氮净矿化率、净硝化率和净氨化率均有显著影响(P0.01),即随着植被的正向演替(草丛—灌丛—次生林—原生林),土壤硝态氮含量、无机氮含量、土壤氮净矿化速率和净硝化速率整体上呈增加趋势,而坡位以及坡位与植被类型的交互作用对上述土壤氮素指标无显著影响(P0.05)。冗余分析结果表明凋落物氮含量、凋落物C∶N比和硝态氮含量对土壤氮转化速率有显著影响,其中凋落物氮含量是影响土壤氮转化速率的主要因子(F=35.634,P=0.002)。可见,尽管坡位影响喀斯特水土再分配过程,但植被类型决定的凋落物质量(如凋落物氮含量等)对喀斯特土壤氮素转化速率的作用更为重要。因此,在喀斯特退化生态系统植被恢复初期,应注重植被群落的优化配置(如引入豆科植物)和土壤质量的改善(如降低土壤C∶N),促进土壤氮素转化及氮素的有效供给。  相似文献   

7.
为了揭示气候变暖背景下高寒灌丛土壤氮转化过程, 该文研究了青藏高原东缘窄叶鲜卑花(Sibiraea angustata)灌丛生长季节土壤硝态氮和铵态氮含量对增温和去除植物的响应。结果表明: 窄叶鲜卑花灌丛土壤硝态氮和铵态氮含量具有明显的季节动态。整个生长季节, 土壤硝态氮含量呈先增加后降低的趋势, 而铵态氮含量均表现为一直增加的趋势。在生长季初期和中期, 各处理土壤硝态氮含量均显著高于铵态氮含量, 而在生长季末期土壤硝态氮含量均显著低于铵态氮含量, 说明该区域土壤氮转化过程在生长季初期和中期以硝化作用为主, 而在生长季末期以氨化作用为主。不同时期土壤硝态氮和铵态氮含量对增温和去除植物的响应不同: 增温对硝态氮的影响主要发生在生长季中期和末期, 且因植物处理的不同而有显著差异, 增温仅在生长季中期使不去除植物样方铵态氮含量显著升高。去除植物对土壤硝态氮的影响仅表现在对照样方(不增温), 去除植物显著提高了生长季初期和中期土壤硝态氮含量, 显著降低了生长季末期土壤硝态氮含量; 同时去除植物显著降低了增温样方生长季中期土壤铵态氮含量。灌丛植被在生长季初期和中期可能主要吸收土壤硝态氮, 其吸收过程不受土壤增温的影响。  相似文献   

8.
为了揭示气候变暖背景下高寒灌丛土壤氮转化过程, 该文研究了青藏高原东缘窄叶鲜卑花(Sibiraea angustata)灌丛生长季节土壤硝态氮和铵态氮含量对增温和去除植物的响应。结果表明: 窄叶鲜卑花灌丛土壤硝态氮和铵态氮含量具有明显的季节动态。整个生长季节, 土壤硝态氮含量呈先增加后降低的趋势, 而铵态氮含量均表现为一直增加的趋势。在生长季初期和中期, 各处理土壤硝态氮含量均显著高于铵态氮含量, 而在生长季末期土壤硝态氮含量均显著低于铵态氮含量, 说明该区域土壤氮转化过程在生长季初期和中期以硝化作用为主, 而在生长季末期以氨化作用为主。不同时期土壤硝态氮和铵态氮含量对增温和去除植物的响应不同: 增温对硝态氮的影响主要发生在生长季中期和末期, 且因植物处理的不同而有显著差异, 增温仅在生长季中期使不去除植物样方铵态氮含量显著升高。去除植物对土壤硝态氮的影响仅表现在对照样方(不增温), 去除植物显著提高了生长季初期和中期土壤硝态氮含量, 显著降低了生长季末期土壤硝态氮含量; 同时去除植物显著降低了增温样方生长季中期土壤铵态氮含量。灌丛植被在生长季初期和中期可能主要吸收土壤硝态氮, 其吸收过程不受土壤增温的影响。  相似文献   

9.
季节性冻融期间川西亚高山/高山森林土壤净氮矿化特征   总被引:3,自引:0,他引:3  
气候变暖情景下季节性冻融格局的改变可能显著影响高寒森林土壤氮素矿化过程.本文采用原状土壤移位培养的方法,以海拔梯度形成的温度差异模拟气候变暖,研究了川西亚高山/高山森林在生长季节和季节性冻融期间土壤的净氮矿化量和净氮矿化速率.结果表明: 在川西亚高山/高山森林,土壤铵态氮和硝态氮含量均表现为从生长季节至冻结初期明显下降,完全冻结期明显增加,而在融化初期明显降低的变化过程.季节性冻融期土壤的净氮矿化量和净氮矿化速率显著低于生长季节,并且出现明显的氮素固持现象.与低海拔相比,中海拔森林土壤的氮素固持作用相对较大,高海拔相对较小,可能与不同海拔梯度土壤温度变化及引起的冻融循环密切相关.在生长季节,土壤净氮矿化量和矿化速率均随海拔的降低呈明显增加趋势,尤其在低海拔处土壤的氮素矿化作用最为强烈.在气候变暖背景下,温度的增加明显促进了生长季节土壤氮素矿化,并且通过提高冻融循环频次、缩短冻结时间来影响土壤氮素矿化速率.这一过程可能受到微环境的影响.  相似文献   

10.
枣粮间作生态系统土壤氮空间分布特性   总被引:8,自引:1,他引:7  
基于枣粮间作复合生态系统内部异质性,通过在不同位置采样测定,探讨了枣粮间作系统内土壤氮素空间分布特性.结果表明:(1)枣粮间作生态系统中,在小麦收获期和玉米收获期两个时期,土壤全氮和硝态氮含量均存在明显的垂直和水平两个方向空间变异性.而土壤铵态氮含量极低且没有明显的空间变异;(2)与全氮相比,枣粮间作系统中硝态氮空间变异性更强,且随着时间变化其空间分布特性有明显变化;(3)氮素施用量对土壤全氮和硝态氮空间变异有正向作用,而植株对氮的吸收利用可以降低土壤氮素分布空间差异程度.各因子对土壤全氮空间变异影响强弱顺序为氮吸收量>氮素施用量>土壤含水量;对土壤硝态氮空间变异影响强弱顺序为氮素施用量>土壤全氮含量>氮素吸收量>土壤含水量.  相似文献   

11.
河岸带是水陆交错地带氮素生物地球化学循环的热点区域,春季融雪时期的气温变化引起的冻融交替是影响土壤氮素转化过程和氮素流失重要因素之一.通过室内模拟,研究了河岸带珍珠梅、落叶松和农田3种植被类型土壤可溶性氮含量与净氮矿化速率对不同冻结温度和冻融频次的响应.结果表明,冻融频次对3种植被类型河岸带土壤可溶性氮影响显著(P<0.05),不同植被类型土壤可溶性氮含量变化趋势相似,在第1次冻融之后达到峰值,在第10次冻融之后稳定.3种植被类型土壤无机氮含量受冻融交替影响显著升高(P<0.05).冻融温度对土壤净氮矿化速率影响显著(P<0.05),土壤净氮矿化速率在第1次冻融之后达到最大值,随冻融次数增加而下降.3种植被类型土壤受冻融交替影响均有一定程度的氮素流失风险,农田土壤无机氮含量本底值较高,土壤氮素随冰雪融水流失风险较大.  相似文献   

12.
在大田试验条件下,研究了施肥方式(滴灌施肥和沟施)和施氮量(单次每株25、50、75 g)对欧美108杨人工林土壤氮素垂向运移动态的影响.结果表明:不同施肥方式和施氮量下,土壤中铵态氮和硝态氮含量均随土层深度的增加而降低;滴灌施肥下铵态氮和硝态氮主要集中在0~40 cm土层,随时间变化呈先升后降的变化趋势,分别于施肥后第5天和第10 天达到最大值(211.1和128.8 mg·kg-1).沟施下铵态氮和硝态氮主要集中在0~20 cm土层,硝态氮含量随时间呈逐渐增加的变化趋势,于施肥后第20天达到最大值(175.7 mg·kg-1),但铵态氮随时间无显著变化;滴灌施肥下氮素在土壤中的有效时长约为20 d,而沟施下氮素在土壤中有效时长超过20 d.滴灌施肥下,土壤中铵态氮和硝态氮的含量和运移距离均随施氮量的增加而增加;沟施下,施氮量越高土壤中硝态氮含量越高,但对铵态氮含量无显著影响.滴灌施肥下林地土壤中尿素的水解、硝化速率和运移深度均高于沟施,且施氮量越大,氮素在深层土壤的积累量越高.结合欧美108杨根系和土壤氮素分布特征,滴灌施肥能够为更大的细根分布区提供氮素,更适用于人工林培育.当单次施氮量为每株50 g时,既可保证细根主要分布区内有较高含量的氮分布又不会造成淋溶,肥料利用效率可能更高.  相似文献   

13.
以黄土丘陵区子午岭林区裸露地为对照,选择撂荒地、白羊草草地、油松、山杨和辽东栎林地五种典型植被群落下0—10cm和10—20 cm土层的土壤为研究对象,对土壤无机氮、有机氮、微生物量氮含量和脲酶、蛋白酶以及硝酸还原酶的活性进行了研究。结果表明,土壤中各种氮素基本表现为乔木林,尤其是辽东栎和油松下含量最高,而有机氮则在白羊草地富集明显。铵态氮为子午岭林区速效氮的主要形式。土壤铵态氮与微生物氮极显著正相关;有机氮和亚硝态氮、矿化氮、微生物氮均显著正相关。脲酶和硝酸还原酶活性在辽东栎群落下最高,蛋白酶在白羊草地下较高,且脲酶活性在土壤上层高于下层,而蛋白酶和硝酸还原酶并没有表现出明显规律。脲酶活性和铵态氮、有机氮含量显著正相关,与微生物量氮极显著正相关;硝酸还原酶活性与铵态氮含量显著正相关;蛋白酶活性和土壤各种氮素含量无相关性。  相似文献   

14.
研究了高产栽培条件下,不同施氮量和底施追施比例对土壤硝态氮和铵态氮含量时空变化的影响,同时计算了不同生育阶段土壤氮素的表观盈亏量.结果表明,与氮肥分期施用处理比较,氮肥全部用于拔节期追施处理降低了拔节期之前的土壤硝态氮含量,减少了拔节期之前土壤氮素的表观盈余量,降低了氮素向深层的淋洗;而挑旗期土壤硝态氮含量与氮肥分期施用处理无显著差异,但提高了土壤铵态氮含量;增加了成熟期0~60 cm土壤各土层土壤硝态氮含量和0~20 cm土壤铵态氮含量.氮肥全部用于拔节期追施的两处理间比较,在240 kg·hm-2的基础上降低施氮量至168 kg·hm-2,降低了挑旗期土壤硝态氮和铵态氮的含量,减少了挑旗期到成熟期土壤氮素的亏缺量,也使成熟期土壤硝态氮的含量降低.不同处理间籽粒产量和蛋白质产量无显著差异,施氮量为168 kg·hm-2且全部用于拔节期追施的处理籽粒蛋白质含量最高.  相似文献   

15.
邢肖毅  黄懿梅  安韶山  张宏 《生态学报》2013,33(22):7181-7189
为了探讨在黄土高原退耕还林还草过程中植物群落对土壤氮素含量及形态分布的影响,本文选择退耕历史较长的黄土高原沟壑区——安塞县洞子沟流域8种典型植物群落下0-10cm和10-20cm的土壤为对象,测定了土壤中有机氮、矿化氮、微生物量氮、硝态氮和铵态氮的含量。结果表明,从草本群落到乔灌草群落,土壤各形态氮素含量均增加,整体表现为乔灌草群落>灌草群落>草本群落。然而人工刺槐林的土壤氮素水平远低于自然恢复的乔灌草群落,甚至低于灌草群落。0-10cm 土层各形态氮素均高于10-20cm 土层。硝态氮对植物群落的变化最为敏感,可作为土壤氮素水平的敏感指标。土壤有机质、pH、容重与氮素含量极显著相关,各种氮素间极显著正相关。各种氮素占总氮的比例对总氮的变化有着不同的响应,有机氮、可矿化氮和微生物量氮占总氮的比例相对稳定,硝态氮占总氮的比例随总氮含量的增加而增加,铵态氮占总氮的比例随总氮含量的增加而降低。  相似文献   

16.
高原鼠兔挖掘活动对土壤中氮素含量的影响   总被引:1,自引:1,他引:1  
本文通过测定不同类型高原鼠兔鼠丘和鼠丘下0 ~ 10 cm 土壤中总氮、铵态氮和硝态氮的含量变化,分析了高原鼠兔挖掘活动对土壤中无机氮含量的影响,并通过测定高原鼠兔鼠丘密度,计算了每只高原鼠兔对氮素循环的贡献。研究结果表明:不同类型鼠丘土壤中总氮含量无明显变化,铵态氮、硝态氮和无机氮含量处理间变化趋势为当年鼠丘>两年鼠丘> 多年鼠丘> 对照。方差分析结果表明,硝态氮含量在5 月时差异显著,当年鼠丘和两年鼠丘显著大于多年鼠丘和对照,无机氮含量在5 月和9 月表现为当年鼠丘显著高于对照。在不同月份,铵态氮含量月间变化趋势为5 ~ 8 月逐渐降低,至9 月略有增加,硝态氮和无机氮含量呈现“高- 低- 高-低- 高”的“W”变化趋势。方差分析结果显示,铵态氮、硝态氮和无机氮含量月间变化显著。不同类型鼠丘下0 ~ 10 cm 土壤中铵态氮、硝态氮和无机氮含量处理间和月份间变化趋势与鼠丘土壤中变化趋势基本一致,但硝态氮和无机氮含量在当年鼠丘中均显著高于对照,且不同月份间铵态氮、硝态氮和无机氮的含量差异显著(P
< 0.05)。每只高原鼠兔挖掘活动所形成的鼠丘土壤中的铵态氮、硝态氮和无机氮分别增加了162.6 mg/ kg、355.1 mg/kg 和497.7 mg/ kg。  相似文献   

17.
以文峪河上游河岸带不同演替阶段的8种植被类型五花草甸(WH)、沙棘林(HR)、柳树林(SS)、山杨林(PC)、山杨白桦林(PQ)、山杨白桦落叶松林(PQL)、落叶松云杉林(LP)和云杉林(PM)土壤为研究对象,采用高通量测序技术测定nirS反硝化细菌群落组成及相对丰度,乙炔抑制法测定反硝化酶活性(DEA)。对其土壤理化性质及反硝化细菌群落组成及相对丰度进行方差分析,采用冗余分析(RDA)和Spearman相关性分析不同植被类型及土层反硝化细菌群落结构及功能及土壤理化因子的关联性。结果表明:1)不同植被类型及土层土壤理化因子存在显著差异,柳树林(SS)0—15 cm土层硝态氮(NO~+_3-N)含量显著高于其他植被类型各土层;2)土壤反硝化菌群多样性指数在五花草甸(WH)、山杨白桦林(PQ)和云杉林(PM)中较其他植被类型高;3)沙棘林(HR)及柳树林(SS)反硝化酶活性(DEA)显著高于其他植被类型;4)不同植被类型反硝化优势菌群分布存在显著差异及特异性,如浮霉菌门(Planctomycetes)仅在落叶松云杉混交林(LP)和云杉林(PM)植被类型15—30 cm土层中分布;5)土壤pH、土壤有机碳(SOC)、土壤铵态氮(NH~+_4-N)和硝态氮(NO~+_3-N)等是影响土壤反硝化细菌群落结构及组成的重要因子,其中土壤铵态氮和硝态氮含量变化是导致土壤反硝化菌群多样性和反硝化酶活性差异的关键因子。本研究揭示了文峪河上游河岸带不同植被类型土壤反硝化细菌群落结构及功能的变化和分布特征,为进一步研究该区域河岸带氮素循环及水体污染防治提供重要参考依据。  相似文献   

18.
不同植被覆盖度土壤氮素含量变化规律的研究可作为评价生态退化区植被恢复的指标之一。以福建省长汀县濯田镇黄泥坑崩岗群中三种不同植被覆盖度的毗邻崩岗为研究对象, 比较其氮素含量的变化及不同部位氮素含量的变化规律。结果表明: 植被覆盖度的提高能有效地减少土壤侵蚀, 且与土壤的全氮含量及各部位的全氮含量均达到显著正相关, 但同时也会增加硝态氮和铵态氮的流失, 从而导致土壤中硝态氮、铵态氮的含量反而减少。而这三种不同植被覆盖度崩岗的全氮含量最高值均出现在集水坡面部位。与裸露崩岗和低覆盖崩岗不同的是, 高覆盖崩岗的硝态氮与铵态氮的最大值也均出现在集水坡面部位。  相似文献   

19.
通过室内模拟试验,研究40%、70%和110%土壤饱和持水量(WHC)下,不同形态氮(硝态氮和铵态氮)添加对亚热带森林红壤氮素转化的影响.结果表明:70%WHC下土壤净矿化和氨化速率最高,40%WHC下最低;与对照相比,70%WHC下添加硝态氮使土壤净矿化和氨化速率分别降低56.1%和43.0%,110%WHC下分别降低68.2%和19.0%,但提高了氨化速率占矿化速率的比例,表明添加硝态氮抑制了硝化.110%WHC下,添加硝态氮后,土壤净硝化速率最低,但氧化亚氮(N2O)浓度最高,最大值出现在第3~7天,表明N2O产生自反硝化途径,硝态氮也在同时段降低;而40%WHC和70%WHC下,N2O浓度在培养初期最大,即使在铵态氮和硝态氮添加处理下,试验后期N2O浓度也没有显著变化,表明自氧硝化是试验前期N2O产生的主要途径.40%WHC下,土壤可溶性有机碳含量增加最多,且在铵态氮添加处理下增加最多,可见添加铵态氮促进土壤有机质矿化,增加可溶性有机碳,但是土壤水分含量增多不利于有机质矿化.在40%WHC和110%WHC下,铵态氮添加处理土壤可溶性有机氮(SON)变化速率分别显著高于对照73.6%和176.6%,而在硝态氮添加处理下,只有40%WHC下显著高于对照78.7%,表明高水分条件和添加铵态氮有利于SON的形成.  相似文献   

20.
祁连山中段土壤有机碳和氮素的剖面分布   总被引:4,自引:0,他引:4  
以祁连山中段地区主要土壤类型(棕钙土、灰褐土、栗钙土、高山草甸土)为对象,研究了不同土壤剖面上有机碳、全氮、铵态氮和硝态氮含量的分布规律.结果表明:在祁连山中段地区,随剖面深度增加,不同土壤类型的有机碳、全氮、铵态氮和硝态氮含量均逐渐降低,且其有机碳、氮素的累积和分解存在差异.其中,有机碳含量的全剖面平均值在14.01~41.17g·kg-1,大小顺序为灰褐土>高山草甸土>栗钙土>棕钙土;全氮含量在1.28~2.73 g·kg-1,为高山草甸土>灰褐土>栗钙土>棕钙土;铵态氮含量在5.80~8.40 mg·kg-1,为棕钙土>高山草甸土>栗钙土>灰褐土;硝态氮含量在6.57~15.11 mg·kg-1,为栗钙土>高山草甸土>棕钙土>灰褐土;土壤C/N在11.33~19.22,为灰褐土>栗钙土>高山草甸土>棕钙土;硝铵比在1.00~2.69,为灰褐土>栗钙土>高山草甸土>棕钙土.在不同的气候、植被和地形(坡位、坡向等)条件下,同一土壤类型的有机碳和氮素含量有很大差别.土壤有机碳、全氮和铵态氮含量之间存在极显著正相关,而这三者与硝态氮之间相关性不显著.土壤速效钾含量与铵态氮、硝态氮呈极显著正相关,速效磷含量与土壤有机碳、全氮和铵态氮呈极显著、显著正相关,而pH值、全钾、全磷含量与有机碳和氮素之间无明显相关性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号