首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The siderophore production of the facultative anaerobe Pseudomonas stutzeri, strain CCUG 36651, grown under both aerobic and anaerobic conditions, was investigated by liquid chromatography and mass spectrometry. The bacterial strain has been isolated at a 626-m depth at the Äspö Hard Rock Laboratory, where experiments concerning the geological disposal of nuclear waste are performed. In bacterial culture extracts, the iron in the siderophore complexes was replaced by gallium to facilitate siderophore identification by mass spectrometry. P. stutzeri was shown to produce ferrioxamine E (nocardamine) as the main siderophore together with ferrioxamine G and two cyclic ferrioxamines having molecular masses 14 and 28 atomic mass units lower than that of ferrioxamine E, suggested to be ferrioxamine D2 and ferrioxamine X1, respectively. In contrast, no siderophores were observed from anaerobically grown P. stutzeri. None of the siderophores produced by aerobically grown P. stutzeri were found in anaerobic natural water samples from the Äspö Hard Rock Laboratory.In order to facilitate iron(III) acquisition, plants and microorganisms, such as fungi and bacteria, produce and excrete strong iron(III) chelators, i.e., siderophores (18, 22, 23, 33, 34). While fungal siderophores bind to iron(III) by hydroxamate ligands, bacterial siderophores are more structurally diverse, and common ligands are catecholates, hydroxamates, and carboxylates (21). The iron(III) stability constants for bacterial siderophores vary in the range of 1020 to 1052 (6). In addition to iron(III), other metals can be complexed by siderophores. For the trihydroxamate siderophore desferrioxamine B, sometimes called proferrioxamine B (10), some actinides have been shown to have stability constants in the same range as the ferric stability constant (1030.6), e.g., 1026.6 with thorium(IV) and 1030.8 with plutonium(VI) (32), while the stability constant for uranium(VI) was lower, i.e., 1018 (2).Concerning bacteria, there are several reports on siderophore production by Pseudomonas spp. (1, 3, 4, 19). More than 50 structurally related siderophores, i.e., pyoverdins, produced by the fluorescent Pseudomonas spp., especially Pseudomonas fluorescens and Pseudomonas aeruginosa, have been characterized (3). All pyoverdins emit yellow fluorescent light due to the presence of a 5-amino-2,3-dihydro-8,9-dihydroxy-1-H-pyrimido-quinoline-carboxylic chromophore, to which a peptide chain and a carboxyl chain are attached (1, 3). Nonfluorescent Pseudomonas has also been shown to produce siderophores, such as ferrioxamine E, also called nocardamine (Fig. (Fig.1),1), which was produced by one strain of Pseudomonas stutzeri (19). In addition to ferrioxamines, the P. stutzeri strain KC produced a smaller siderophore, i.e., pyridine-2,6-bis(thiocarboxylic acid) (35). Conversely, a catecholate-type siderophore was shown to be produced by another strain of P. stutzeri, which did not produce any hydroxamate siderophores (4).Open in a separate windowFIG. 1.Structures, molecular masses (mw), and stability constants (Ks) of ferric complexes of the three ferrioxamines: ferrioxamine B (B), ferrioxamine E (E), and ferrioxamine G (G) (5, 18).Most of the studies on bacterial siderophore production have been conducted on microorganisms growing under aerobic conditions. One field-based report, however, indicates the occurrence of putative siderophores in anaerobic environments also (29). In the present study, siderophore production has been studied with both aerobic and anaerobic cultures of P. stutzeri. This species is a facultative aerobe, able to grow with oxygen or nitrate as the electron acceptor, meaning that it can be active under both anaerobic and aerobic conditions. The P. stutzeri strain CCUG 36651, studied here, has been isolated from a depth of 626 m below ground at the Äspö Hard Rock Laboratory (16), where research concerning the geological disposal of nuclear waste is performed. The possibility of mobilizing radionuclides by complexing compounds from bacteria is an important research area in the context of nuclear waste disposal research. It is unknown if such compounds are produced in aquifers under conditions relevant to a disposal site, which would be approximately 500 m underground in granitic rock (27).A study from 2004 shows that P. stutzeri growing aerobically in the presence of uranium-containing shale leached Fe, Mo, V, and Cr from the shale material (17). More recently it was shown that the supernatant of aerobically and anaerobically cultured P. stutzeri was able to increase the partitioning of added Fe, Pm, Am, and Th into the aqueous phase in samples where quartz sand was used as a solid surface (16). Aerobic supernatants maintained 60% or more of the added metals in solution, while anaerobic supernatants were best at maintaining Am in solution, reaching a value of 40% in solution. The increased partitioning to the aqueous phase in the presence of the supernatants was ascribed to the production of organic ligands. Supernatants of both aerobically and anaerobically grown P. stutzeri strain CCUG 36651 yielded a positive response on the universal siderophore assay, the CAS assay (16). This assay is based on ligand competition for iron bound to the colored chrome azurol complex (25, 30).In this study, siderophore production by P. stutzeri strain CCUG 36651 was investigated using mass spectrometry (MS) and liquid chromatography (LC) followed by mass spectrometric detection. Electrospray ionization mass spectrometry (ESI-MS) and electrospray ionization tandem mass spectrometry (ESI-MS/MS) are useful tools in characterizing siderophores such as ferrioxamines (10, 13, 14, 28, 31). In order to detect iron(III)-chelating compounds, the ferric iron can be replaced by gallium(III) through ascorbate-mediated reduction of iron(III) (8, 20). In mass spectra, gallium-bound substances are easily recognized due to the characteristic isotope pattern of gallium, where the intensity of the 71Ga signal is about 66% of that of the 69Ga signal. The use of ESI provides so-called soft ionization; thus, information about the molecular weight is obtained. However, by employing MS/MS, fragmentation is achieved, providing more information about the compound structure.In order to verify the chemical difference between the siderophores found by ESI-MS, chromatographic separation was performed. In this case, one reversed-phase C18 column and one column containing a porous graphitic carbon (PGC) stationary phase were used. The separation mechanism of PGC is a combination of hydrophobic interactions, as in C18, and electrostatic interactions between π-electrons. In order to detect substances at low concentrations, column-switched capillary chromatography with MS detection was used. The detection limits of the combined LC-MS/MS system used in this study are in the range of 1 to 5 nM for hydroxamate siderophores of the ferrichrome and ferrioxamine families (9). In order to facilitate analysis of lower concentrations of ferrioxamines, natural water samples were preconcentrated by solid-phase extraction (SPE), resulting in minimum detectable concentrations in the range of 0.02 to 0.1 nM, depending on the initial sample volume.  相似文献   

2.
Summary Under conditions of iron-deprivationHafnia alvei (Enterobacteriaceae) produces ferrioxamine G as the principal siderophore. Maximum hydroxamate siderophore production occurred at medium iron limitation. The ferrioxamines were extracted, purified by gel filtration and chromatography on silica gel yielding a major and a minor siderophore fraction. The minor siderophore fraction contained three siderophores, among which ferrioxamine E could be identified by HPLC and FAB mass spectrometry. Reductive hydrolysis of the ferrioxamine G fraction yielded succinic acid and a mixture of diaminopentane and diaminobutane, as determined by gas-liquid chromatography and GLC/MS. HPLC and FAB mass spectrometry confirmed that the ferrioxamine G fraction consisted of two different species, G1 and G2, possessing molecular masses of 671 Da and 658 Da respectively.  相似文献   

3.
The siderophore of Pseudomonas stutzeri KC, pyridine-2,6-bis(thiocarboxylic acid) (pdtc), is shown to detoxify selenium and tellurium oxyanions in bacterial cultures. A mechanism for pdtc's detoxification of tellurite and selenite is proposed. The mechanism is based upon determination using mass spectrometry and energy-dispersive X-ray spectrometry of the chemical structures of compounds formed during initial reactions of tellurite and selenite with pdtc. Selenite and tellurite are reduced by pdtc or its hydrolysis product H2S, forming zero-valent pdtc selenides and pdtc tellurides that precipitate from solution. These insoluble compounds then hydrolyze, releasing nanometer-sized particles of elemental selenium or tellurium. Electron microscopy studies showed both extracellular precipitation and internal deposition of these metalloids by bacterial cells. The precipitates formed with synthetic pdtc were similar to those formed in pdtc-producing cultures of P. stutzeri KC. Culture filtrates of P. stutzeri KC containing pdtc were also active in removing selenite and precipitating elemental selenium and tellurium. The pdtc-producing wild-type strain KC conferred higher tolerance against selenite and tellurite toxicity than a pdtc-negative mutant strain, CTN1. These observations support the hypothesis that pdtc not only functions as a siderophore but also is involved in an initial line of defense against toxicity from various metals and metalloids.  相似文献   

4.
Summary Several strains of the enterobacterial groupErwinia herbicola (Enterobacter agglomerans) were screened for siderophore production. After 3 days of growth in a low-iron medium, all strains studied produced hydroxamate siderophores. The retention values of the main siderophore during thin-layer chromatography on silica gel plates and on HPLC reversed-phase columns were identical with those of an authentic sample of ferrioxamine E (norcardamine). Gas-chromatographic analysis of the HI hydrolyzate yielded succinic acid and 1,5-diaminopentane in equimolar amounts; fast-atom-bombardment (FAB) mass spectroscopy showed a molecular mass of 653 Da. Iron from55Fe-labelled ferrioxamine E was well taken up by iron-starved cells ofE. herbicola (K m=0.1 M,V max=8 pmol mg–1 min–1). However, besides ferrioxamine E (100%), several exogenous siderophores such as enterobactin (94.5%), ferric citrate (78.5%), coprogen (63.5%) and ferrichrome (17.5%) served as siderophores, suggesting the presence of multiple siderophore receptors in the outer membrane ofE. herbicola.  相似文献   

5.
Iron is a micronutrient required by almost all living organisms, including fungi. Although this metal is abundant, its bioavailability is low either in aerobic environments or within mammalian hosts. As a consequence, pathogenic microorganisms evolved high affinity iron acquisition mechanisms which include the production and uptake of siderophores. Here we investigated the utilization of these molecules by species of the Paracoccidioides genus, the causative agents of a systemic mycosis. It was demonstrated that iron starvation induces the expression of Paracoccidioides ortholog genes for siderophore biosynthesis and transport. Reversed-phase HPLC analysis revealed that the fungus produces and secretes coprogen B, which generates dimerumic acid as a breakdown product. Ferricrocin and ferrichrome C were detected in Paracoccidioides as the intracellular produced siderophores. Moreover, the fungus is also able to grow in presence of siderophores as the only iron sources, demonstrating that beyond producing, Paracoccidioides is also able to utilize siderophores for growth, including the xenosiderophore ferrioxamine. Exposure to exogenous ferrioxamine and dimerumic acid increased fungus survival during co-cultivation with macrophages indicating that these molecules play a role during host-pathogen interaction. Furthermore, cross-feeding experiments revealed that Paracoccidioides siderophores promotes growth of Aspergillus nidulans strain unable to produce these iron chelators. Together, these data denote that synthesis and utilization of siderophores is a mechanism used by Paracoccidioides to surpass iron limitation. As iron paucity is found within the host, siderophore production may be related to fungus pathogenicity.  相似文献   

6.
Nonfluorescent highly virulent strains of Pseudomonas syringae pv. aptata isolated in different European countries and in Uruguay produce a nonfluorescent peptide siderophore, the production of which is iron repressed and specific to these strains. The amino acid composition of this siderophore is identical to that of the dominant fluorescent peptide siderophore produced by fluorescent P. syringae strains, and the molecular masses of the respective Fe(III) chelates are 1,177 and 1,175 atomic mass units. The unchelated nonfluorescent siderophore is converted into the fluorescent siderophore at pH 10, and colors and spectral characteristics of the unchelated siderophores and of the Fe(III)-chelates in acidic conditions are similar to those of dihydropyoverdins and pyoverdins, respectively. The nonfluorescent siderophore is used by fluorescent and nonfluorescent P. syringae strains. These results and additional mass spectrometry data strongly suggest the presence of a pyoverdin chromophore in the fluorescent siderophore and a dihydropyoverdin chromophore in the nonfluorescent siderophore, which are both ligated to a succinamide residue. When chelated, the siderophores behave differently from typical pyoverdins and dihydropyoverdins in neutral and alkaline conditions, apparently because of the ionization occurring around pH 4.5 of carboxylic acids present in β-hydroxyaspartic acid residues of the peptide chains. These differences can be detected visually by pH-dependent changes of the chelate colors and spectrophotochemically. These characteristics and the electrophoretic behavior of the unchelated and chelated siderophores offer new tools to discriminate between saprophytic fluorescent Pseudomonas species and fluorescent P. syringae and P. viridiflava strains and to distinguish between the two siderovars in P. syringae pv. aptata.  相似文献   

7.
The occurrence of ferrichrome-type hydroxamate siderophores in soil was confirmed. In the presence of the iron-scavenging chelator ethylenediamine[di(o-hydroxyphenylacetic)acid], soil extract stimulated the growth of an Escherichia coli strain possessing the ferrichrome transport protein (TonA) but did not stimulate growth of a strain lacking this protein (TonA). The siderophore concentration in a 1:1 (soil-water) extract was estimated to be approximately 78 nM. Specificity of the assay was supported by the absence of significant differential strain responses to ferric citrate, ferric 2,3-dihydroxybenzoate, enterochelin, ferrioxamine B, coprogen, and triacetylfusigen.  相似文献   

8.
High-performance liquid chromatography of siderophores from fungi   总被引:8,自引:0,他引:8  
Summary A reversed-phase HPLC separation of iron(III) chelates of 16 representative fungal siderophores including ferrichromes, coprogens and triacetylfusarinine C was established in order to investigate siderophore production of fungi. For comparison purposes, the widely used bacterial siderophore ferrioxamine B was included. Culture filtrates of the fungiPenicillium resticulosum, Fusarium dimerum, Aspergillus fumigatus andNeurospora crassa were quantitatively analyzed for the presence of known and unknown siderophores after growth in low-iron culture media and adsorption on XAD-2 columns using this HPLC separation system. Photodiode array detection allowed the distinction between siderophores and non-siderophores. According to their ultraviolet/visible spectra, a further classification of the siderophores into four types due to the number of anhydromevalonic acid residues per molecule (0–3) was possible.  相似文献   

9.
Ferrioxamine-Mediated Iron(III) Utilization by Salmonella enterica   总被引:1,自引:0,他引:1       下载免费PDF全文
Utilization of ferrioxamines as sole sources of iron distinguishes Salmonella enterica serotypes Typhimurium and Enteritidis from a number of related species, including Escherichia coli. Ferrioxamine supplements have therefore been used in preenrichment and selection media to increase the bacterial growth rate while selectivity is maintained. We characterized the determinants involved in utilization of ferrioxamines B, E, and G by S. enterica serotype Typhimurium by performing siderophore cross-feeding bioassays. Transport of all three ferric siderophores across the outer membrane was dependent on the FoxA receptor encoded by the Fur-repressible foxA gene. However, only the transport of ferrioxamine G was dependent on the energy-transducing protein TonB, since growth stimulation of a tonB strain by ferrioxamines B and E was observed, albeit at lower efficiencies than in the parental strain. Transport across the inner membrane was dependent on the periplasmic binding protein-dependent ABC transporter complex comprising FhuBCD, as has been reported for other hydroxamate siderophores of enteric bacteria. The distribution of the foxA gene in the genus Salmonella, as indicated by DNA hybridization studies and correlated with the ability to utilize ferrioxamine E, was restricted to subspecies I, II, and IIIb, and this gene was absent from subspecies IIIa, IV, VI, and VII (formerly subspecies IV) and Salmonella bongori (formerly subspecies V). S. enterica serotype Typhimurium mutants with either a transposon insertion or a defined nonpolar frameshift (+2) mutation in the foxA gene were not able to utilize any of the three ferrioxamines tested. A strain carrying the nonpolar foxA mutation exhibited a significantly reduced ability to colonize rabbit ileal loops compared to the foxA+ parent. In addition, a foxA mutant was markedly attenuated in mice inoculated by either the intragastric or intravenous route. Mice inoculated with the foxA mutant were protected against subsequent challenge by the foxA+ parent strain.  相似文献   

10.
《Phytochemistry》1987,26(5):1317-1320
Under iron-deficient conditions Stemphylium botryosum f. sp. lycopersici produces three major siderophores; dimerum acid, coprogen B and an unidentified monohydroxamate siderophore designated as A. The system of siderophores mediating uptake of iron was characterized. It exhibits active transport, saturation kinetics and an optimum at pH 6 and 30°. The rate of iron uptake via dimerum acid and coprogen B was four times higher than siderophore A. S. botryosum was capable of taking up iron from hydroxamate siderophores produced by other fungi, e.g. ferrichrome, fusigen, rhodotorulic acid but not ferrioxamine B. Double labelling experiments suggest that ferric coprogen B accumulates in mycelial cells as an intact chelate.  相似文献   

11.
Utilization of microbial siderophores in iron acquisition by oat   总被引:9,自引:3,他引:6       下载免费PDF全文
Iron uptake by oat (Avena sativa cv Victory) was examined under hydroponic chemical conditions that required direct utilization of microbial siderophores for iron transport. Measurements of iron uptake rates by excised roots from the hydroxamate siderophores, ferrichrome, ferrichrome A, coprogen, ferrioxamine B (FOB), and rhodotorulic acid (RA) showed all five of the siderophores supplied iron, but that FOB and RA were preferentially utilized. FOB-mediated iron uptake increased four-fold when roots were preconditioned to iron stress and involved an active, iron-stress induced transport system that was inhibited by 5 millimolar sodium azide or 0.5 millimolar dinitrophenol. Kinetic studies indicated partial saturation with an apparent Km of 5 micromolar when FOB was supplied at 0.1 to 50 micromolar concentrations. Whole plant experiments confirmed that 5 micromolar FOB was sufficient for plant growth. Siderophore-mediated iron transport was inhibited by Cr-ferrichrome, an analog of ferrated siderophore. Our results confirm the existence of a microbial siderophore iron transport system in oat which functions within the physiological concentrations produced and used by soil microorganisms.  相似文献   

12.
A screening for siderophores produced by the ectomycorrhizal fungi Laccaria laccata and Laccaria bicolor in synthetic low iron medium revealed the release of several different hydroxamate siderophores of which four major siderophores could be identified by high resolution mass spectrometry. While ferricrocin, coprogen and triacetylfusarinine C were assigned as well as other known fungal siderophores, a major peak of the siderophore mixture revealed an average molecular mass of 797 for the iron-loaded compound. High resolution mass spectrometry indicated an absolute mass of m/z = 798.30973 ([M + H]+). With a relative error of Δ = 0.56 ppm this corresponds to linear fusigen (C33H52N6O13Fe; MW = 797.3). The production of large amounts of linear fusigen by these basidiomycetous mycorrhizal fungi may possibly explain the observed suppression of plant pathogenic Fusarium species. For comparative purposes Fusarium roseum was included in this study as a well known producer of cyclic and linear fusigen.  相似文献   

13.
More than 60% of species examined from a total of 421 strains of heterotrophic marine bacteria which were isolated from marine sponges and seawater were observed to have no detectable siderophore production even when Fe(III) was present in the culture medium at a concentration of 1.0 pM. The growth of one such non-siderophore-producing strain, alpha proteobacterium V0210, was stimulated under iron-limited conditions with the addition of an isolated exogenous siderophore, N,N′-bis (2,3-dihydroxybenzoyl)-O-serylserine from a Vibrio sp. Growth was also stimulated by the addition of three exogenous siderophore extracts from siderophore-producing bacteria. Radioisotope studies using 59Fe showed that the iron uptake ability of V0210 increased only with the addition of exogenous siderophores. Biosynthesis of a hydroxamate siderophore by V0210 was shown by paper electrophoresis and chemical assays for the detection of hydroxamates and catechols. An 85-kDa iron-regulated outer membrane protein was induced only under iron-limited conditions in the presence of exogenous siderophores. This is the first report of bacterial iron uptake through an induced siderophore in response to exogenous siderophores. Our results suggest that siderophores are necessary signaling compounds for growth and for iron uptake by some non-siderophore-producing marine bacteria under iron-limited conditions.  相似文献   

14.
The intermediate and terminal products of cyanide and thiocyanate decomposition by individual strains of the genus Pseudomonas, P. putida strain 21 and P. stutzeri strain 18, and by their association were analyzed. The activity of the enzymes of nitrogen and sulfur metabolism in these strains was compared with that of the collection strains P. putida VKM B-2187T and P. stutzeri VKM B-975T. Upon the introduction of CN and SCN into cell suspensions of strains 18 and 21 in phosphate buffer (pH 8.8), the production of NH 4 + was observed. Due to the high rate of their utilization, NH3, NH 4 + , and CNO were absent from the culture liquids of P. putida strain 21 and P. stutzeri strain 18 grown with CN or SCN. Both Pseudomonas strains decomposed SCN via cyanate production. The cyanase activity was 0.75 μmol/(min mg protein) for P. putida strain 21 and 1.26 μmol/(min mg protein) for P. stutzeri strain 18. The cyanase activity was present in the cells grown with SCN but absent in cells grown with NH 4 + . Strain 21 of P. putida was a more active CN decomposer than strain 18 of P. stutzeri. Ammonium and CO2 were the terminal nitrogen and carbon products of CN and SCN decomposition. The terminal sulfur products of SCN decomposition by P. stutzeri strain 18 and P. putida strain 21 were thiosulfate and tetrathionate, respectively. The strains utilized the toxic compounds in the anabolism only, as sources of nitrogen (CN and SCN) and sulfur (SCN). The pathway of thiocyanate decomposition by the association of bacteria of the genus Pseudomonas is proposed based on the results obtained. Original Russian Text ? N.V. Grigor’eva, T.F. Kondrat’eva, E.N. Krasil’nikova, G.I. Karavaiko, 2006, published in Mikrobiologiya, 2006, Vol. 75, No. 3, pp. 320–328.  相似文献   

15.

Background

Bacteria produce small molecule iron chelators, known as siderophores, to facilitate the acquisition of iron from the environment. The synthesis of more than one siderophore and the production of multiple siderophore uptake systems by a single bacterial species are common place. The selective advantages conferred by the multiplicity of siderophore synthesis remains poorly understood. However, there is growing evidence suggesting that siderophores may have other physiological roles besides their involvement in iron acquisition.

Methods and Principal Findings

Here we provide the first report that pyochelin displays antibiotic activity against some bacterial strains. Observation of differential sensitivity to pyochelin against a panel of bacteria provided the first indications that catecholate siderophores, produced by some bacteria, may have roles other than iron acquisition. A pattern emerged where only those strains able to make catecholate-type siderophores were resistant to pyochelin. We were able to associate pyochelin resistance to catecholate production by showing that pyochelin-resistant Escherichia coli became sensitive when biosynthesis of its catecholate siderophore enterobactin was impaired. As expected, supplementation with enterobactin conferred pyochelin resistance to the entE mutant. We observed that pyochelin-induced growth inhibition was independent of iron availability and was prevented by addition of the reducing agent ascorbic acid or by anaerobic incubation. Addition of pyochelin to E. coli increased the levels of reactive oxygen species (ROS) while addition of ascorbic acid or enterobactin reduced them. In contrast, addition of the carboxylate-type siderophore, citrate, did not prevent pyochelin-induced ROS increases and their associated toxicity.

Conclusions

We have shown that the catecholate siderophore enterobactin protects E. coli against the toxic effects of pyochelin by reducing ROS. Thus, it appears that catecholate siderophores can behave as protectors of oxidative stress. These results support the idea that siderophores can have physiological roles aside from those in iron acquisition.  相似文献   

16.
While social interactions play an important role for the evolution of bacterial siderophore production in vitro, the extent to which siderophore production is a social trait in natural populations is less clear. Here, we demonstrate that siderophores act as public goods in a natural physical environment of Pseudomonas fluorescens: soil-based compost. We show that monocultures of siderophore producers grow better than non-producers in soil, but non-producers can exploit others'' siderophores, as shown by non-producers'' ability to invade populations of producers when rare. Despite this rare advantage, non-producers were unable to outcompete producers, suggesting that producers and non-producers may stably coexist in soil. Such coexistence is predicted to arise from the spatial structure associated with soil, and this is supported by increased fitness of non-producers when grown in a shaken soil–water mix. Our results suggest that both producers and non-producers should be observed in soil, as has been observed in marine environments and in clinical populations.  相似文献   

17.
In this study, we performed a detailed characterization of the siderophore metabolome, or “chelome,” of the agriculturally important and widely studied model organism Azotobacter vinelandii. Using a new high-resolution liquid chromatography-mass spectrometry (LC-MS) approach, we found over 35 metal-binding secondary metabolites, indicative of a vast chelome in A. vinelandii. These include vibrioferrin, a siderophore previously observed only in marine bacteria. Quantitative analyses of siderophore production during diazotrophic growth with different sources and availabilities of Fe showed that, under all tested conditions, vibrioferrin was present at the highest concentration of all siderophores and suggested new roles for vibrioferrin in the soil environment. Bioinformatic searches confirmed the capacity for vibrioferrin production in Azotobacter spp. and other bacteria spanning multiple phyla, habitats, and lifestyles. Moreover, our studies revealed a large number of previously unreported derivatives of all known A. vinelandii siderophores and rationalized their origins based on genomic analyses, with implications for siderophore diversity and evolution. Together, these insights provide clues as to why A. vinelandii harbors multiple siderophore biosynthesis gene clusters. Coupled with the growing evidence for alternative functions of siderophores, the vast chelome in A. vinelandii may be explained by multiple, disparate evolutionary pressures that act on siderophore production.  相似文献   

18.
Pseudomonas stutzeri RC 7 grown under iron-deficient conditions produced catecholtype siderophore, which was identified to be arginine conjugate of 2,3-dihydroxy-benzoic acid. Hydroxamic acids were not detected. The concentration of siderophore in the culture supernatant was maximal after 24 h of growth. Addition of iron to the medium increased bacterial growth but repressed the production of siderophore.  相似文献   

19.
Schizosaccharomyces pombe has been assumed not to produce siderophores. Nevertheless, the genomic sequence of this fission yeast revealed the presence of siderophore biosynthetic genes for hydroxamates. Applying a bioassay based on an Aspergillus nidulans strain deficient in siderophore biosynthesis, and using reversed-phase HPLC and mass spectrometry analysis, we demonstrate that S. pombe excretes and accumulates intracellularly the hydroxamate-type siderophore ferrichrome. Under iron-limiting conditions, the cellular ferrichrome pool was present in the desferri-form, while under iron-rich conditions, in the ferri-form. In contrast to S. pombe, hydroxamate-type siderophores could not be detected in two other yeast species, Saccharomyces cerevisiae and Candida albicans.  相似文献   

20.
Iron is one of the essential elements for a proper plant development. Providing plants with an accessible form of iron is crucial when it is scant or unavailable in soils. Chemical chelates are the only current alternative and are highly stable in soils, therefore, posing a threat to drinking water. The aim of this investigation was to quantify siderophores produced by two bacterial strains and to determine if these bacterial siderophores would palliate chlorotic symptoms of iron-starved tomato plants. For this purpose, siderophore production in MM9 medium by two selected bacterial strains was quantified, and the best was used for biological assay. Bacterial culture media free of bacteria (S) and with bacterial cells (BS), both supplemented with Fe were delivered to 12-week-old plants grown under iron starvation in hydroponic conditions; controls with full Hoagland solution, iron-free Hoagland solution and water were also conducted. Treatments were applied twice along the experiment, with a week in between. At harvest, plant yield, chlorophyll content and nutritional status in leaves were measured. Both the bacterial siderophore treatments significantly increased plant yield, chlorophyll and iron content over the positive controls with full Hoagland solution, indicating that siderophores are effective in providing Fe to the plant, either with or without the presence of bacteria. In summary, siderophores from strain Chryseobacterium C138 are effective in supplying Fe to iron-starved tomato plants by the roots, either with or without the presence of bacteria. Based on the amount of siderophores produced, an effective and economically feasible organic Fe chelator could be developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号