首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 961 毫秒
1.
The phycoerythrin-deficient strain (green phenotype) of Hypnea musciformis (Rhodophyta) originated from a green branch, which had arisen as a spontaneous mutation in a wild plant (brown phenotype) collected from the Brazilian coast. The present study describes the growth responses to irradiance, photoperiod and temperature variations, pigment contents, and photosynthetic characteristics of the brown and green strains of H. musciformis. The results showed that growth rates increased as a function of irradiance (up to 40 μmol photons m−2 s−1) but, with further increase in irradiance (from 40 to 120 μmol photons m−2 s−1), became light-saturated and remained almost unchanged. The highest growth rates of the brown and green strains were observed in temperatures of 20–25°C under long (14:10 h LD) and short (10:14 h LD) photoperiods. The brown strain had higher growth rates than the green strain in the short photoperiod, which could be related to the high concentrations of phycobiliproteins. Phycoerythrin was not detected in the green strain. The brown strain had higher concentrations of allophycocyanin and phycoerythrin in the short photoperiod while the green strain had higher concentrations of phycocyanin. The brown strain presented higher photosynthetic efficiency (α), and lower saturation parameter (Ik) and compensation irradiance (Ic) than the green strain. The brown strain exhibited the characteristics of shade-adapted plants, and its higher value of photosynthetic efficiency could be attributed to the higher phycoerythrin concentrations. Results of the present study indicate that both colour strains of H. musciformis could be selected for aquaculture, since growth rates were similar (although in different optimal light conditions), as the green strain seems to be adapted to higher light levels than the brown strain. Furthermore, these colour strains could be a useful experimental system to understand the regulation of biochemical processes of photosynthesis and metabolism of light-harvesting pigments in red algae.  相似文献   

2.
Hypnea musciformis (Wulfen in Jacqu.) J.V. Lamour. is the main source for carrageenan production in Brazil and strains with selected characteristics could improve the production of raw material. The effects of kinetin on growth rates, morphology, protein content, and concentrations of pigments (chlorophyll a, phycoerythrin, phycocyanin, and allophycocyanin) were assessed in the wild strain (brown phenotype) and in the phycoerythrin-deficient strain (green phenotype) of H. musciformis. Concentrations of kinetin ranging from 0 to 50 μM were tested in ASP 12-NTA synthetic medium with 10 μM nitrate (N-limited) and 100 μM nitrate (N-saturated). In N-limited condition, kinetin stimulated growth rates of the phycoerythrin-deficient strain and formation of lateral branches in both colour strains. Kinetin stimulated protein biosynthesis in both strains. However, differences between both nitrogen conditions were significant only in the phycoerythrin-deficient strain. In the wild strain, effects of kinetin on concentrations of phycobiliproteins were not significant in both nitrogen conditions, except for chlorophyll content. However, the phycoerythrin-deficient strain showed an opposite response, and kinetin stimulated the phycobiliprotein biosynthesis, with the highest concentrations of phycoerythrin in N-saturated medium, while the highest concentrations of allophycocyanin and phycocyanin were observed in N-limited medium. These results indicate that the effects of kinetin on growth, morphology, protein and phycobiliprotein contents are influenced by nitrogen availability, and the main nitrogen storage pools in phycoerythrin-deficient strain of H. musciformis submitted to N-limited conditions were phycocyanin and allophycocianin, the biosynthesis of which was enhanced by kinetin.  相似文献   

3.
Abies faxoniana is a key species in reforestation processes in the southeast of the Qinghai-Tibetan Plateau of China. The changes in growth, photosynthesis and nutrient status of A. faxoniana seedlings exposed to enhanced ultraviolet-B (UV-B), nitrogen supply and their combination were investigated. The experimental design included two levels of UV-B treatments (ambient UV-B, 11.02 KJ m−2 day−1; enhanced UV-B, 14.33 KJ m−2 day−1) and two nitrogen levels (0; 20 g N m−2). The results indicated that: (1) enhanced UV-B significantly caused a marked decline in growth parameters, net photosynthetic rate (Pn), photosynthetic pigments and F v/F m, (2) supplemental nitrogen supply increased the accumulation of total biomass, Pn, photosynthetic pigments and F v/F m under ambient UV-B, whereas supplemental nitrogen supply reduced Pn, and not affect biomass under enhanced UV-B, (3) enhanced UV-B or nitrogen supply changed the concentration of nutrient elements of various organs.  相似文献   

4.
Sowing experiments were used to study seedling recruitment, growth and biomass allocation patterns in the perennial forest herbs Aconitum septentrionale and Actaea spicata in relation to the microbial soil community. Glucose and nutrients were added every second week over a 3-year period to manipulate soil microbial activity and nutrient availability. The glucose was added (400 g glucose m−2 yr−1) to reduce the nutrient availability to the plants by increasing soil microbial demands. A full nutrient solution was used to increase the nutrient availability. The experiments were performed in a deciduous forest and in an open field in South East Norway, and our study is based on a consecutive sampling of whole plants with intact root systems to be able to estimate growth and allocation patterns. Both species recruited best in the forest while their growth in the open field was ca. 100 times larger than in the forest. Shoot:root ratios were surprisingly similar in the forest and the open field sites and were only marginally affected by the glucose and nutrient treatments. However, the shoot:root ratios were characterised by highly significant seasonal variations. This was the case for both species and indicates that the shoot:root ratios were under strong ontogenetic control. Recruitment was negatively affected by glucose additions, in particular in the open field. Growth was significantly and negatively affected by glucose additions in the forest. Nutrient additions gave, as expected, a significant increase in growth. The failure of seedling recruitment and inferior growth following glucose additions support the assumption that the soil microbial community is an important determinant of plant recruitment and growth.  相似文献   

5.
The interactive effects of three levels of N (mM) (low 0.36, medium 2.1 and high 6.4) and two levels of P (mM) (low 0.10 and high 0.48) on growth and resource allocation of Canna indica Linn. were studied in wetland microcosms. After 91 days of plant growth, there was a significant interactive effect of N and P on plant growth, but not on resource allocation (except for allocation of N to leaves and allocation of P to the stems). The plant growth positively responded to the relatively higher nutrient availability (taller plants with more stems, leaves and flowers), but the growth performance was not significantly different between the medium N-low P and high N-low P treatments. At high P, the total biomass in the high N was about 51% higher than that in the medium N and about 348% higher than that in the low N. The growth performance was related to the physiological responses. The photochemical efficiency (Fv/Fm) increased from 0.843 to 0.855 with an increase in N additions. The photosynthetic rate increased from 13 to 16 μmol m−2 s−1 in the low P levels and from 14 to 20 μmol m−2 s−1 in the high P levels with an increase in N applications, but significant difference was only between the low and medium N levels, regardless of the P levels. The tissue concentrations of N increased with an increase in N applications and decreased with an increase in P additions, whereas reverse was true for tissue concentrations of P. The highest concentrations of N and P in leaves were 30.8 g N kg−1 in the high N-low P treatment and 4.9 g P kg−1 in the low N-high P treatment. The percent biomass allocation to aboveground tissues in the high N was nearly twice that in the low N treatments. The N allocation to aboveground tissues was slightly larger in high N than in low N treatments, whereas the P allocation to aboveground tissues increased with an increase in the N addition. Although some patterns of biomass allocation were similar to those of nutrient allocation, they did not totally reflect the nutrient allocation. These results imply that in order to enhance the treatment performance, appropriately high nutrient availability of N and P are required to stimulate the growth of C. indica in constructed wetlands.  相似文献   

6.
In order to study the influence of nutrients on the growth characteristics of the dominant dinoflagellates, Ceratium furca and Ceratium fusus, in the temperate coastal area of Sagami Bay, Japan, we conducted field monitoring from January 2000 to December 2005 and performed laboratory culture experiments. In the field study, population densities of C. furca and C. fusus were high, even in low nutrient concentrations (N: 1.58 μM, P: 0.17 μM). Both species were more abundant in the surface and sub-surface layers than in the bottom layers during the stratification periods. In the laboratory study, the specific growth rates of C. furca and C. fusus increased gradually along with increasing nutrients up to the T5 (N: 5 μM, P: 0.5 μM) and T10 (N: 10 μM, P: 1 μM) concentration levels, after which the growth rate plateaued at the T50 (N: 50 μM, P: 5 μM) concentration level. In contrast, the nutrient uptake rates of both species continuously increased, indicating “luxury consumption”, i.e., excessive cellular storage not related to growth rate. The half-saturation constants (Ks) of C. furca for nitrate (0.49 μM) and phosphate (0.05 μM) were slightly higher than C. fusus (0.32 and 0.03 μM, respectively). We offer two reasons why the two Ceratium population densities were maintained at high levels in low nutrient conditions. First, these two species have a competitive advantage over other algal species because of low Ks values and specific characteristics for nutrient uptake such as luxury consumption. Their ability to obtain nutrients through alternative methods, such as phagotrophy, might contribute to bloom formation and population persistence. Second, the cell densities of both Ceratium species increased along with nitrate concentrations in the media even when phosphorus was held constant. In particular, the growth of C. furca was directly supported by various nitrogen sources such as nitrate, ammonium, and urea, although the highest growth rates were observed only in the nitrate-enriched cultures. Our field and laboratory results revealed that the growth rates of the two Ceratium species increased readily in high N:P nutrient conditions (i.e., conditions of P limitation) indicating an advantage over other algal species in phosphorus-limited environments such as Sagami Bay.  相似文献   

7.
The red macroalgae Hydropuntia cornea, Gracilariopsis longissima and Halopithys incurva were cultured for 14 d under laboratory conditions, in enriched seawater with a high nutrient content (N‐NH4+ and P‐PO43?) and two radiation regimes: PAR (400–700 nm) and PAB (280–700 nm). The UV radiation effects under high availability of nutrients on growth, photosynthetic pigments (chlorophyll a, carotenoids and phycobiliproteins), photosynthetic activity and biochemical composition were studied. Maximum quantum yield (Fv/Fm) was not significantly different among the PAR and PAB treatments during the experiment. However, the maximum electronic transport rate (ETRmax) increased over time, showing the highest values in PAR for H. incurva and H. cornea, whereas for G. longissima it was found in PAB. Photosynthetic efficiency (αETR) decreased over time in the first two species, but increased in G. longissima. Saturation irradiance (EkETR) and maximum nonphotochemical quenching (NPQmax) increased in PAB with time up to 80% and 30%, respectively, indicating a photosynthetic acclimatization like that of sun‐type algae. Five MAAs were identified in all species using high performance liquid chromatography (HPLC). The total content of MAAs increased over time, being 30% higher in H. incurva, 40% in G. longissima and 50% in H. cornea in PAB than in the PAR treatment. Finally, the antioxidant activity was also higher in the PAB treatment. All of the species presented an effective mechanism of photoprotection based on the accumulation of photoprotective compounds with antioxidant activity, as well as a high dissipation of excitation energy (high NPQmax).  相似文献   

8.
Plants in nutrient-poor environments typically have low foliar nitrogen (N) concentrations, long-lived tissues with leaf traits designed to use nutrients efficiently, and low rates of photosynthesis. We postulated that increasing N availability due to atmospheric deposition would increase photosynthetic capacity, foliar N, and specific leaf area (SLA) of bog shrubs. We measured photosynthesis, foliar chemistry and leaf morphology in three ericaceous shrubs (Vaccinium myrtilloides, Ledum groenlandicum and Chamaedaphne calyculata) in a long-term fertilization experiment at Mer Bleue bog, Ontario, Canada, with a background deposition of 0.8 g N m−2 a−1. While biomass and chlorophyll concentrations increased in the highest nutrient treatment for C. calyculata, we found no change in the rates of light-saturated photosynthesis (A max), carboxylation (V cmax), or SLA with nutrient (N with and without PK) addition, with the exception of a weak positive correlation between foliar N and A max for C. calyculata, and higher V cmax in L. groenlandicum with low nutrient addition. We found negative correlations between photosynthetic N use efficiency (PNUE) and foliar N, accompanied by a species-specific increase in one or more amino acids, which may be a sign of excess N availability and/or a mechanism to reduce ammonium (NH4) toxicity. We also observed a decrease in foliar soluble Ca and Mg concentrations, essential minerals for plant growth, but no change in polyamines, indicators of physiological stress under conditions of high N accumulation. These results suggest that plants adapted to low-nutrient environments do not shift their resource allocation to photosynthetic processes, even after reaching N sufficiency, but instead store the excess N in organic compounds for future use. In the long term, bog species may not be able to take advantage of elevated nutrients, resulting in them being replaced by species that are better adapted to a higher nutrient environment.  相似文献   

9.
A frog endemic to Puerto Rico, Eleutherodactylus coqui, invaded Hawaii in the late 1980s, where it can reach densities of 50,000 individuals ha−1. Effects of this introduced insectivore on invertebrate communities and ecosystem processes, such as nutrient cycling, are largely unknown. In two study sites on the Island of Hawaii, we studied the top-down effects of E. coqui on aerial, herbivorous, and leaf litter invertebrates; herbivory, plant growth, and leaf litter decomposition rates; and leaf litter and throughfall chemistry over 6 months. We found that E. coqui reduced all invertebrate communities at one of the two study sites. Across sites, E. coqui lowered herbivory rates, increased NH4+ and P concentrations in throughfall, increased Mg, N, P, and K in decomposing leaf litter, increased new leaf production of Psidium cattleianum, and increased leaf litter decomposition rates of Metrosideros polymorpha. In summary, E. coqui effects on invertebrates differed by site, but E. coqui effects on ecosystem processes were similar across sites. Path analyses suggest that E. coqui increased the number of new P. cattleianum leaves and leaf litter decomposition rates of M. polymorpha by making nutrients more available to plants and microbes rather than through changes in the invertebrate community. Results suggest that E. coqui in Hawaii has the potential to reduce endemic invertebrates and increase nutrient cycling rates, which may confer a competitive advantage to invasive plants in an ecosystem where native species have evolved in nutrient-poor conditions.  相似文献   

10.
Growth, survivorship, recruitment, and reproduction of Halimeda tuna, a dominant green alga in many reef systems of the Florida Keys, were monitored at a shallow back reef (4–7m) and deep reef slope (15–22 m) on Conch Reef. Despite lower light intensities and similar grazing pressures, amphipod infestations, and epiphyte loads at both sites, the deeper site exhibited significantly higher growth rates in summer months over a 4-year period than found for the shallow population, possibly because of higher nutrient levels at depth and photoinhibition of shallow plants. Sexual reproductive events occurred simultaneously across the entire reef, with up to 5% of the population at both sites developing gametangia. New upright axes formed from zygotes, asexual fragmentation, or vegetative runners. Plants appear to have persistent basal stumps that survive harsh environmental conditions, even if upright, photosynthetic axes are removed. Sexual reproduction and smothering by epiphyte overgrowth are hypothesized to be two causes of death for individuals.  相似文献   

11.
Elevated atmospheric CO2 generally enhances plant growth, but the magnitude of the effects depend, in part, on nutrient availability and plant photosynthetic pathway. Due to their pivotal role in nutrient cycling, changes in abundance of detritivores could influence the effects of elevated atmospheric CO2 on essential ecosystem processes, such as decomposition and primary production. We conducted a field survey and a microcosm experiment to test the influence of changes in detritus‐based food chains on litter mass loss and plant growth response to elevated atmospheric CO2 using two wetland plants: a C3 sedge (Scirpus olneyi) and a C4 grass (Spartina patens). Our field study revealed that organism's sensitivity to climate increased with trophic level resulting in strong inter‐annual variation in detritus‐based food chain length. Our microcosm experiment demonstrated that increased detritivore abundance could not only enhance decomposition rates, but also enhance plant growth of S. olneyi in elevated atmospheric CO2 conditions. In contrast, we found no evidence that changes in the detritus‐based food chains influenced the growth of S. patens. Considered together, these results emphasize the importance of approaches that unite traditionally subdivided food web compartments and plant physiological processes to understand inter‐annual variation in plant production response to elevated atmospheric CO2.  相似文献   

12.
We measured diurnal changes in photosynthetic rate, transpiration rate, stomatal conductance and water use efficiency in three species of herbaceous climbing plants (Luffa cylindrica, Trichosanthes kirilowii and Dioscorea opposita) exposed to two intensities of UV-B radiation: 3.0 μw cm?2 (R1) and 8.0 μw cm?2 UV-B (R2) radiation under ambient growth conditions. Responses differed per species and per treatment. In Luffa all values increased compared to the Control in both treatments, except for stomatal conductance in R2. In Trichosanthes photosynthetic rates and water use efficiency increased, while the transpiration rates decreased under both treatments, and stomatal conductance was lower in R1. In Dioscorea photosynthetic rates and water use efficiency decreased under both treatments, while the transpiration rates and stomatal conductance increased. The results suggested that to some extent increased UV-B radiation was beneficial to the growth of L. cylindrica and T. kirilowii, but detrimental to D. opposita.  相似文献   

13.
The photosynthetic performance, pigmentation, and growth of a Halimeda community were studied over a depth gradient on Conch Reef, Florida Keys, USA during summer–fall periods of 5 consecutive years. The physiology and growth of H. tuna (Ellis & Solander) Lamouroux and H. opuntia (L.) Lamouroux on this algal dominated reef were highly variable. Maximum rate of net photosynthesis (Pmax), respiration rate, and quantum efficiency (α) did not differ between populations of either species at 7 versus 21 m, even though the 21‐m site received a 66% lower photon flux density (PFD). Physiological parameters, as well as levels of photosynthetic pigments, varied temporally. Pmax, saturation irradiance, compensation irradiance, and growth were greatest in summer months, whereas α, chl a, chl b, and carotenoid concentrations were elevated each fall. Halimeda tuna growth rates were higher at 7 m compared with 21 m for only two of five growth trials. This may have arisen from variability in light and nutrient availability. Individuals growing at 7 m received a 29% greater PFD in August 2001 than in 1999. In August 1999 and 2001 seawater temperatures were uniform over the 14‐m gradient, whereas in August 2000 cold water regularly intruded upon the 21‐m but not the 7‐m site. These results illustrate the potentially dynamic relationship between nutrients, irradiance, and algal productivity. This suggests the necessity of long‐term monitoring over spatial and temporal gradients to accurately characterize factors that impact productivity.  相似文献   

14.
Recent novel mixed blooms of several species of toxic raphidophytes have caused fish kills and raised health concerns in the highly eutrophic Inland Bays of Delaware, USA. The factors that control their growth and dominance are not clear, including how these multi-species HAB events can persist without competitive exclusion occurring. We compared and contrasted the relative environmental niches of sympatric Chattonella subsalsa and Heterosigma akashiwo isolates from the bays using classic Monod-type experiments. C. subsalsa grew over a temperature range from 10 to 30 °C and a salinity range of 5–30 psu, with optimal growth occurring from 20 to 30 °C and 15 to 25 psu. H. akashiwo had similar upper temperature and salinity tolerances but also lower limits, with growth occurring from 4 to 30 °C and 5 to 30 psu and optimal growth between 16 and 30 °C and 10 and 30 psu. These culture results were confirmed by field observations of bloom occurrences in the Inland Bays. Maximum nutrient-saturated growth rates (μmax) for C. subsalsa were 0.6 d−1 and half-saturation concentrations for growth (Ks) were 9 μM for nitrate, 1.5 μM for ammonium, and 0.8 μM for phosphate. μmax of H. akashiwo (0.7 d−1) was slightly higher than C. subsalsa, but Ks values were nearly an order of magnitude lower at 0.3 μM for nitrate, 0.3 μM for ammonium, and 0.2 μM for phosphate. H. akashiwo is able to grow on urea but C. subsalsa cannot, while both can use glutamic acid. Cell yield experiments at environmentally relevant levels suggested an apparent preference by C. subsalsa for ammonium as a nitrogen source, while H. akashiwo produced more biomass on nitrate. Light intensity affected both species similarly, with the same growth responses for each over a range from 100 to 600 μmol photons m−2 s−1. Factors not examined here may allow C. subsalsa to persist during multi-species blooms in the bays, despite being competitively inferior to H. akashiwo under most conditions of nutrient availability, temperature, and salinity.  相似文献   

15.
Hizikia fusiformis thalli experience dynamic incident light conditions during the period of growth. The present study was designed to examine how changing photon irradiance affects the photosynthesis both in the short and long terms by culturing H. fusiformis under three different light levels: 35 μmol photons m-2 s-1 (low light, LL), 85 μmol photons m-2 s-1 (intermediate light, IL), and 165 μmol photons m-2 s-1 (high light, HL). A similar relative growth rate was observed between IL- and HL-grown algae, but the growth rate was significantly reduced in LL-grown algae. The photosynthetic rates (P n) measured at their respective growth light levels were found to be lowest in the thalli grown at LL and highest at HL. However, LL-grown algae exhibited much higher P n in comparison with IL- and the HL-grown thalli at the same measuring photosynthetic photon flux density, indicating the photosynthetic acclimation to low growth light in H. fusiformis. The photosynthesis–light curves showed that LL-grown algae had a highest light-saturating maximum P n (P max) in comparison with IL- or HL-grown algae when the photosynthetic rates were expressed on the biomass basis. However, P max was highest in HL-grown algae compared to IL- or LL-grown algae when the rates were normalized to chlorophyll a. The photosynthesis–inorganic carbon (Ci) response curves were also significantly affected by the growth light conditions. The highest value of apparent photosynthetic conductance occurred in LL-grown algae while the lowest value in HL-grown algae. Additionally, the activity of external carbonic anhydrase (CA) tended to increase while the total CA activity inclined to decrease in H. fusiformis thalli when the growth light level altered from 35 to 165 μmol photons per square meter per second. The external CA inhibitors showed a higher inhibition in HL-grown algae compared with LL-grown algae. It was proposed that photosynthetic acclimation to low light condition in H. fusiformis was achieved through an increase in the number of reaction centers and increased capacities of electron transport and of Ci transport within cells. The ability of photosynthetic acclimation to low light confers H. fusiformis thalli to overcome the environmental low light condition as a result of the attenuation of seawater or self-shading through enhancing its photosynthetic performance and carbon assimilation necessary for growth.  相似文献   

16.
 Coral reef degradation may involve shifts from coral to algal dominance and may be caused in part by increased sediment loads. Inshore fringing reef flats in the central Great Barrier Reef region are often subjected to periods of high sedimentation and are often dominated by macroalgae such as Sargassum. Experiments reported here examine the impacts of sediments on the recruitment, growth, survival, degeneration and vegetative regeneration of Sargassum microphyllum on a fringing coral reef flat in the central Great Barrier Reef. Comparison of three levels of sediment deposition (experimental addition, control (ambient condition) and experimental removal) showed that increased amounts of sediment significantly decreased rates of recruitment, growth, survival and vegetative regeneration, but not degeneration of S. microphyllum. In addition, the regenerative ability of S. microphyllum thalli with short, persistent erect branches (untreated) was compared with that of thalli experimentally cut back to the holdfast. This experimental damage significantly reduced regeneration. Accepted: 6 October 1997  相似文献   

17.
Due to the worldwide degradation of coral reefs, the active restoration of these ecosystems has received considerable attention in recent decades. This study investigated (1) the feasibility of using coral nurseries for restoration projects, (2) the minimum size required for a Pocillopora damicornis (Pocilloporidae) coral fragment to survive and grow in a nursery, and (3) the optimal transplant size of a fragment when transplanted to a degraded reef at Gorgona Island (Colombian Pacific). For this investigation, 230 fragments were transplanted directly to El Remanso reef, and another 150 fragments were maintained in in situ nurseries. Every 2 months, the length, weight, and survival of the fragments were recorded. After growing for 134 days in the nurseries, the 52 surviving fragments were transplanted to El Remanso reef, and after 5 months, the same variables were measured. Among the nursery‐reared fragments, the largest (4 to <8 cm) had the highest survival and growth rates, whereas among the directly transplanted fragments, the smallest fragments (<2 cm) had the highest survival and growth rates. However, the nursery‐reared fragments acquired greater structural complexity (arborescent morphology), and they were all alive 156 days after transplantation and presented a maximum linear growth rate of over 2 cm, which was higher than that of the directly transplanted fragments. Apparently, the arborescent morphology acquired during the nursery period provides advantages to the colonies that favor greater success when transplanted. Therefore, nursery‐reared fragments of P. damicornis between 2 and 4 cm are the most appropriate for use in restoration projects.  相似文献   

18.
Efforts to restore the Eastern oyster (Crassostrea virginica) reef habitats in Chesapeake Bay typically begin with the placement of hard substrata to form three‐dimensional mounds on the seabed to serve as a base for oyster recruitment and growth. A shortage of oyster shell for creating large‐scale reefs has led to widespread use of other materials such as Surf clamshell (Spisula solidissima), as a substitute for oyster shell. Oyster recruitment, survival, and growth were monitored on intertidal reefs constructed from oyster and Surf clamshell near Fisherman’s Island, Virginia, U.S.A. and on a subtidal Surf clamshell reef in York River, Virginia, U.S.A. At the intertidal reefs, oyster larvae settlement occurred at similar levels on both substrate types throughout the monitoring period but higher levels of post‐settlement mortality occurred on clamshell reefs. The oyster shell reef supported greater oyster growth and survival and offered the highest degree of structural complexity. On the subtidal clamshell reef, the quality of the substrate varied with reef elevation. Large shell fragments and intact valves were scattered around the reef base, whereas small, tightly packed shell fragments paved the crest and flank of the reef mound. Oysters were more abundant and larger at the base of this reef and less abundant and smaller on the reef crest. The availability of interstitial space and appropriate settlement surfaces is hypothesized to account for the observed differences in oyster abundance across the reef systems. Patterns observed emphasize the importance of appropriate substrate selection for restoration activities to enhance natural recovery where an underlying habitat structure is destroyed.  相似文献   

19.
The effects of global change on the emission rates of isoprene from plants are not clear. A factor that can influence the response of isoprene emission to elevated CO2 concentrations is the availability of nutrients. Isoprene emission rate under standard conditions (leaf temperature: 30°C, photosynthetically active radiation (PAR): 1000 μmol photons m?2 s?1), photosynthesis, photosynthetic capacity, and leaf nitrogen (N) content were measured in Quercus robur grown in well‐ventilated greenhouses at ambient and elevated CO2 (ambient plus 300 ppm) and two different soil fertilities. The results show that elevated CO2 enhanced photosynthesis but leaf respiration rates were not affected by either the CO2 or nutrient treatments. Isoprene emission rates and photosynthetic capacity were found to decrease with elevated CO2, but an increase in nutrient availability had the converse effect. Leaf N content was significantly greater with increased nutrient availability, but unaffected by CO2. Isoprene emission rates measured under these conditions were strongly correlated with photosynthetic capacity across the range of different treatments. This suggests that the effects of CO2 and nutrient levels on allocation of carbon to isoprene production and emission under near‐saturating light largely depend on the effects on photosynthetic electron transport capacity.  相似文献   

20.
Exposing plants to long-term CO2 enrichment generally leads to increases in plant biomass, total leaf area and alterations on leaf net photosynthetic rates, stomatal conductance and water use efficiency. However, the magnitude of such effects is dependent on the availability of other potentially limiting resources. The aim of our study was to elucidate the effects of elevated CO2, applied at different temperature and water availability regimes, on nodulated alfalfa plants. Regardless of water supply, elevated CO2 enhanced plant growth, especially when combined with increased temperature although no differences were detected until 30 days of treatment. Absence of differences in leaf relative growth rate, and gas exchange measurements, suggested that plants grown in a low water regime adjusted their growth to the amount of available water. Elevated CO2 enhanced water use efficiency because of reduced water consumption and a greater dry mass production. Increased dry matter production of plants grown under elevated CO2 and temperature was the result of stimulated photosynthetic rates, greater leaf area and water use efficiency. Lack of CO2 effect on photosynthesis of plants grown at ambient temperature might be consequence of down-regulation phenomena. Plants grown at 700 μmol mol−1 CO2 maintained control nitrogen levels, discarding enhanced nitrogen availability as the main factor explaining enhanced dry matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号