首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When added alone, the arylamine procarcinogens N-acetyl-aminofluorene, 4-acetyl-aminobiphenyl or their N-hydroxy derivatives failed to alter partially purified soluble guanylate cyclase from rat liver or particulate guanylate cyclase activity from colonic mucosa. However, addition of linoleic acid hydroperoxide to the enzyme preparation in the presence N-OH-acetyl-aminofluorene or N-OH-acetyl-aminobiphenyl significantly increased guanylate cyclase activity. With linoleic acid hydroperoxide plus N-OH-acetyl-aminofluorene, both the activation of hepatic guanylate cyclase and the formation of the carcinogen oxidation product 2-nitrosofluorene required hematin but not molecular O2. Both processes were inhibited by ascorbic acid. These data strongly imply that guanylate cyclase activation was dependent upon hematin catalyzed oxidation of N-OH-acetyl-aminofluorene by the lipid peroxide. The results provide the first evidence that guanylate cyclase activation can occur during the conversion of a procarcinogen to a more reactive chemical species, and thereby emphasize the importance of examining carcinogen interaction with the GC system under conditions which permit such chemical conversion.  相似文献   

2.
This study examined effects of fatty acids on the metabolism of 1,3 diphenylisobenzofuran (DPBF) and benzo(α) pyrene (BP) by rat or human colonic mucosal microsomes. Arachidonate, linoleate (25 μM) or their hydroperoxides increased oxidation of DPBF or BP 4 to 5-fold, whereas saturated fatty acids and NADPH had no effect. Studies of the influence of O2 exclusion and indomethacin on DPBF and BP oxidation were consistent with the existence of both cyclooxygenase dependent and independent pathways for fatty acid stimulation of colonic microsomal drug oxidation. These results may have a bearing on the increased prevalence of colon cancer in populations with high fat intakes.  相似文献   

3.
Plasma fibronectin was chemically modified by 4-maleimido-2,2,6,6-tetramethylpiperidinooxyl (maleimide spin label). Only the free sulfhydryl groups of plasma fibronectin were modified by the label under the experimental conditions. The ESR spectrum of spin-labeled fibronectin showed that the sites of labeling were highly immobilized, suggesting that the sulfhydryl groups of the protein are in small, confined environments. The conversion of the strongly immobilized ESR spectrum into a weakly immobilized one was observed when the spin-labeled protein was heated from 30 to 60 degrees C, indicating the thermal unfolding of the protein molecules. The midpoint temperature for the thermal unfolding of plasma fibronectin is about 50 degrees C. The results suggest that plasma fibronectin is stable to about 40 degrees C and starts unfolding above this temperature. The rotational correlation time estimated from the ESR spectrum of spin-labeled fibronectin at 21 degrees C was about 2.0 X 10(-8) s. The rotational correlation time calculated from the Stokes-Einstein equation, assuming a rigid globular configuration for fibronectin with a Stokes radius of 10 nm, was about 7.8 X 10(-7) s. The differences in rotational correlation time by a factor of 39 between experimental and calculated values do not support a globular configuration for plasma fibronectin.  相似文献   

4.
Prostaglandin (PG) synthesis and degradation were examined in different regions (epithelial versus non-epithelial structures) of the rat distal colon by both HPLC analysis of [14C] arachidonate (AA) metabolites and by specific radioimmunoassays. Intact isolated colonic epithelial cells synthesized mainly PGF2α and TXA2, as monitored from the formation of its stable degradation product TXB2 (PGF2α > TXB2 > 6-keto-PGF1α, the stable degradation product of PGI2=PGD2=PGE2=13,14-dihydro-15-keto-PGF2α). The profile of PG products of isolated surface epithelial cells was identical to that of proliferative epithelial cells. However, generation of PGs by surface epithelium was 2 to 3-fold higher than by proliferative cells both basally and in the presence of a maximal stimulating concentration (0.1 mM) of AA. The latter implied a greater synthetic capacity of surface epithelium, rather than differences due to endogenous AA availability. The major sites of PG synthesis in colon clearly resided in submucosal structures; the residual colon devoid of epithelial cells accounted for at least 99% of the total PGs produced by intact distal colon. The profile of AA metabolites formed by submucosal structures also differed markedly from that of the epithelium. The dominant submucosal product was PGE2. PGE2 and its degradation product 13,14-dihydro-15-keto-PGE2 accounted for 63% of the PG products formed by submucosal structures (PGE2 PGD2 > 13,14-dihydro-15-keto-PGE2 > PGF2α=TXB2=6-keto-PGF1α > 13,14-dihydro- 15-keto-PGF2α). By contrast, epithelial cells, and particularly surface epithelium, contributed disproportionately to the PG degradative capacity of colon, as assessed from the metabolism of either PGE2 or PGF. When expressed as a percentage, epithelial cells accounted for 71% of total colonic PGE2 degradative capacity but only 23% of total colonic protein. Approximately 15% of [3H] PGE2 added to the serosal side of everted colonic loops crossed to the mucosal side intact. Thus, at least a portion of the PGE2 formed in the submucosa reaches, and thereby can potentially influence functions of the epithelium.  相似文献   

5.
Observations on the properties of the guanylate cyclase (GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2) of the social amoeba Dictyostelium discoideum are reported. On the basis of similarities in kinetic and fractionation properties, it is shown that the activity from vegetative cells and the sixfold higher activity from starved cells appear to be due to the same enzyme. Most of the activity is found to be soluble, and by gel exclusion chromatography a molecular weight of 250,000 has been estimated for this form. As the enzyme shows considerably more activity with Mn+2 than Mg+2, the Km for Mn+2 activation was determined (700 microM), and compared to the levels of total cell Mn+2 (10 microM) and Mg+2 (3mM). These data suggest that Mg+2 is probably the physiological cofactor. A previous report [J. M. Mato, (1979) Biochem. Biophys. Res. Commun. 88, 569-574] that the enzyme is activated about twofold by ATP was confirmed; but contrary to that report, activation by the ATP analog 5'-adenylyl-imidodiphosphate was also obtained. Since this analog does not donate its phosphate in kinase reactions, it is likely that ATP activates the guanylate cyclase by direct binding rather than by phosphorylation. The known in vivo agonist of the guanylate cyclase, cAMP, did not activate the enzyme in vitro, either alone or in various combinations with calcium, calmodulin, ATP, and phospholipids.  相似文献   

6.
The physical state of mitochondrial membranes has been investigated by means of stearic acid spin labels and of a maleimide spin label covalently bound to protein sulfhydryl groups. Stearic acid spin labels 5-NS and 16-NS show that n-butanol enhances the lipid fluidity of mitochondrial membranes in the whole temperature range between 4 and 37 degrees C; the effects in the hydrophobic membrane core, probed by 16-NS, are already apparent at 10 mM butanol. In liposomes formed of mitochondrial phospholipids, a fluidizing effect appears only at much higher concentration. Such results are compatible with the idea that butanol destabilizes lipid-protein interactions. On the other hand, the ratio between weakly and strongly immobilized SH groups probed by maleimide spin label is only slightly affected in the temperature range of 4-37 degrees C by addition of high concentrations of n-butanol, indicating that the environments probed are stable to agents inducing fluidity changes in the lipids. There are, however, indications that the environment probed by maleimide is affected by lipids, since the spin label, when bound to lipid-depleted mitochondria, becomes more immobilized, reconstitution of such lipid-depleted membranes with phospholipids restores the original spectra.  相似文献   

7.
Adenylate cyclase activation by GTP analogs   总被引:1,自引:0,他引:1  
Benznidazole (a nitroimidazole derivative used for the treatment of Chagas' disease) is reduced by rat liver microsomes to the nitro anion radical, as indicated by ESR spectroscopy. Addition of benznidazole to rat liver microsomes produced an increase of electron flow from NADPH to molecular oxygen, and generation of both superoxide anion and hydrogen peroxide. The benznidazole-stimulated O2 consumption and O2? formation was greatly inhibited by NADP+ and p-chloromercuribenzoate but not by SKF-525-A and metyrapone. The former inhibitions indicated the involvement of NADPH-cytochrome P-450 (c) reductase, while the lack of inhibition by SKF-525-A and metyrapone ruled out any major role for cytochrome P-450 in benznidazole reduction. In contrast to nifurtimox, a nitrofuran derivative (R. Docampo and A. O. M. Stoppani, 1979, Arch. Biochem. Biophys.197, 317–321), benznidazole was not reduced to the nitro anion radical, nor did it stimulate oxygen consumption, O2? production, and H2O2 generation by Trypanosoma cruzi cells or microsomal fractions. A different mechanism of benznidazole toxicity in T. cruzi and the mammalian host is postulated.  相似文献   

8.
An adenosine-sensitive adenylate cyclase has been characterized in cultured mesenteric artery smooth muscle cells. N-Ethylcarboxamide-adenosine (NECA), N-Methylcarboxamide-adenosine (MECA), L-N6-phenylisopropyladenosine (PIA) and 2-chloroadenosine (2-cl-Ado) all stimulated adenylate cyclase in a concentration dependent manner. NECA was the most potent analog (EC50, 1 microM), whereas PIA (EC50, 15 microM), 2-Cl-Ado (EC50, 15 microM) and MECA (EC50, 24 microM), were less potent and had efficacies relative to NECA of 0.61, 0.61 and 0.65, respectively. Adenosine showed a biphasic effect: stimulation at lower concentrations and inhibition at higher concentrations, whereas 2' deoxyadenosine only inhibited adenylate cyclase activity. The stimulatory effect of NECA on adenylate cyclase was dependent on metal ion concentration and was blocked by 3-isobutyl-l-methylxanthine (IBMX) and 8-phenyltheophylline (8-PT). Adenylate cyclase from these cultured cells was also stimulated by other agonists such as epinephrine, norepinephrine, prostaglandins, dopamine, NaF and forskolin. The stimulation of adenylate cyclase by isoproterenol, epinephrine and norepinephrine was blocked by propranolol but not by phentolamine. On the other hand, phentolamine, propranolol and flupentixol all inhibited dopamine-stimulated adenylate cyclase activity. In addition, the stimulation by an optimal concentration of PIA was additive or almost additive with maximal stimulation caused by catecholamines and prostaglandins. These data indicate the presence of adenosine (Stimulatory "Ra"), catecholamine and prostaglandin receptors in mesenteric artery smooth muscle cells and suggest that these agents may exert their physiological actions through their interaction with their respective receptors coupled to adenylate cyclase.  相似文献   

9.
The interaction of the neurotoxic natural products, kainic and ibotenic acids, both of which are also excitatory neurotransmitters and amino acid analogues of glutamic acid, along with the latter compound, with human erythrocyte membranes has been investigated by electron spin resonance methods. Only ibotenic acid caused a statistically significant alteration in the physical state of membrane proteins (P = 0.01) while none of these excitotoxins measurably affected motion of membrane lipids. In order to further investigate some of the molecular characteristics of ibotenic acid that may have contributed to its effect on the conformation of membrane proteins, similar spin labeling studies were performed employing the decarboxylation product and parent ring compound of this excitotoxin, muscimol and isoxazole, respectively. No effect of either of these latter compounds was observed suggesting that the carboxylic acid group of ibotenic acid is essential for its interaction with membrane proteins. These results are discussed in relation to the known different neurotoxic and physiological effects of kainic and ibotenic acids and muscimol.  相似文献   

10.
Electron spin resonance spectra at 9.5, 24. and 35 GHz were obtained for a cholestane spin probe in oriented multibilayers of egg lecithin of varying cholesterol content. In agreement with earlier studies, cholesterol induced a higher degree of spectral anisotropy in the multibilayers—the variation of the hyperfine separations with cholesterol content was in agreement with the model of Lapper et al. (Can. J. Biochem.50, 969 (1972)) where the amplitude of anisotropic probe motion decreased with increasing cholesterol content. Analysis of the electron spin resonance line shapes was done using the relatively simple modified Bloch equation approach, and correlation times for anisotropic probe motion were extracted from the spectra at three frequencies. The data demonstrate that increasing cholesterol content results in a decreased rate of anisotropic motion of the probe, providing further insight into the molecular mechanism of the condensing effect of cholesterol.  相似文献   

11.
An oxidase activity utilizing reduced nicotinamide adenine dinucleotide phosphate (NADPH) and producing H2O2 was observed in intact adipocytes of rat, as well as in the isolated plasma membranes of these cells. A stoichiometry of 1 mol of H2O2 production per mole of NADPH disappearance was found with isolated plasma membranes. Activation of this enzyme (R) was produced by pretreatment of cells with insulin, dithiothreitol, or sulfhydryl inhibitors, e.g., p-chloromercuribenzoate or tosyl-l-lysine chloromethyl ketone. All of these agents also stimulated glucose oxidation via the hexose monophosphate shunt. Activation of R was also observed with biologically active derivatives of insulin, e.g., proinsulin or desalanine insulin, but not with an inactive derivative, desoctapeptide insulin. The enzyme could not be activated by exposing the cells to membrane perturbants, e.g., hypotonic conditions or Triton X-100 (0.01–0.1%). The enzyme activity in the plasma membrane had a pH optimum at 6.0 and, from the Lineweaver-Burke plot, V was determined at 230 nmol and Km for NADPH was at 5.8 × 10?5, m. The activity remained unaltered in the presence of sodium azide or cyanide. Preincubation of adipocytes with insulin or SH reagents or direct addition of oxidants, e.g., H2O2, potassium ferricyanide, or phenazine methosulfate, to the membranes also caused inhibition of adenylate cyclase (AC). This enzyme activity could be restored in these preparations by adding thiols. It is suggested that inhibition of AC in whole cells in response to insulin may be caused by oxidation of its SH groups by the H2O2 generated from the activated NADPH oxidase. Reversal of this inhibition may involve cellular reducing equivalents. The evidence suggests that the plasma membrane enzymes, i.e., NADPH oxidase and adenylate cyclase, are controlled, in part, by the intracellular redox potential.  相似文献   

12.
Electron paramagnetic resonance studies have provided evidence for metmyoglobin initiation of the radical decomposition of cumene hydroperoxide, carried out in buffered aqueous solutions at ambient temperatures. The radicals formed oxidize aminopyrine to a free radical, readily detected at acidic pH, or react with the spin trap nitrosobenzene. The only species so trapped was the cumyl radical (optimal pH, 9.0), previously observed in a similar spin-trapping study of the chemical decomposition of cumene hydroperoxide in organic solvents. The earlier proposal that the cumyl radical arises from breakdown of an initially formed, unstable phenylcumyloxy nitroxide is consistent with the experimental findings of this study. Moreover, it was shown that the decomposition of cumene hydroperoxide initiated by ferrous ion or by other heme compounds occurs by the same mechanism. Thus, the very low peroxidatic activities of several hemeproteins with cumene hydroperoxide involve oxidizing free radicals, unlike H2O2-dependent oxidations catalyzed by true hemeprotein peroxidases, in which enzyme species are the functional oxidants.  相似文献   

13.
The ability of Dictyostelium discoideum amoebae to synthesize and secrete cAMP in response to exogenous cAMP is called cAMP signaling. Concanavalin A is a potent, rapid, noncompetitive inhibitor of this response, with the rate of inhibition consistent with its rate of binding. The concanavalin A does not deplete cellular ATP, alter cAMP binding to its surface receptors, or affect basal adenylate cyclase activity, but blocks the cAMP-stimulated activation of adenylate cyclase. Therefore, concanavalin A appears to inhibit a step between the receptor and the adenylate cyclase which is necessary for the transduction of the cAMP signal. Wheat germ agglutinin, a polyclonal antibody against an 80-kDa glycoprotein, four monoclonal antibodies against the amoebal surface, and a chemical cross-linking agent which reacts with cell surface primary amines also inhibit signaling. To determine the importance of cross-linking in the inhibition, succinylated concanavalin A and the unlinked, reactive portion of the chemical cross-linker were tested and found to be relatively ineffective inhibitors. Thus it appears that ligands capable of cross-linking molecules on the external surface of D. discoideum amoebae inhibit cAMP signaling. It is proposed that these cross-linking agents prevent membrane or cytoskeletal rearrangement and that this rearrangement must occur before the adenylate cyclase is activated.  相似文献   

14.
Guanylate cyclase of human platelets was separated from cyclic nucleotide and GTP hydrolytic activities with a 104-fold purification over the homogenate. The purified guanylate cyclase preparation requires neither the GTP regenerating system nor cyclic GMP but is stimulated by about 2-fold by 2.5 mM cyclic GMP. The molecular weight of the enzyme was estimated as 180,000 and the Km value for GTP was 95 μM. Arachidonic acid peroxide stimulated the purified enzyme by increasing maximum velocity without changing Km value.  相似文献   

15.
M Basset  E M Chambaz  G Defaye  B Metz 《Biochimie》1978,60(8):715-724
Interaction of a spin labeled corticosteroid (desoxycorticosterone nitroxyde: DOC -NO) with three purified proteins (albumin, transcortin, progesterone binding protein: PBG) was studied by electron spin resonance (ESR) spectroscopy. DOC-NO was competitive with natural corticosteroids and therefore bound at the same site to specific binding proteins. ESR spectra in the presence of each of the proteins showed an immobilized (bound) form of the spin labeled steroid and allowed the calculation of the corresponding association constant (Ka) at equilibrium. The three binding proteins could be characterized by the ESR parameters of the DOC-NO bound form. The thermodynamic parameters (deltaH, deltaS) of the steroid-protein interactions were calculated from the ESR data obtained within a wide temperature range (3--40 degrees C). The ESR spectra width (2T) was used to evaluate the polarity of the spin label environment within the steroid binding site: a hydrophobic character was observed for transcortin whereas PBG exhibited a more hydrophilic steroid binding sits. The rotational correlation time of the three protein DOC-NO complexes at equilibrium were calculated from ESR data; the results were correlated with the protein molecular size and suggested a non spherical shape for the binding macromolecule in solution. Spin labelling of biologically active steroids thus provides a novel approach for the study of the interaction of these hormones with their binding protein. Providing a suitable spin label, the ESR parameters may allow the characterization of several types of binding sites of different biological significance for the same hormone, in biological fluids as well as in target tissues.  相似文献   

16.
Nitrobenzene-DNA intercalation mechanisms have been studied by means of electron spin resonance spin label techniques. Of the seven derivatives prepared and examined, 2,4-dinitrobenzene analogs with amine linkage to the nitroxide reporter demonstrate the strongest binding with DNA by intercalation, and the reporter nitroxide is oriented 45 ° to the plane of the benzene ring and is due primarily to the steric hindrance of the 2-nitro substituent. This binding is found to be largely dependent upon the number of nitrosubstituents, their relative position on the benzene ring, and the type of linkage between the ligand and the nitroxide reporter, suggesting that polarization bonding is a major driving force in their complex formation with DNA.  相似文献   

17.
Conformational transitions of nitroxide labeled and unlabeled nucleic acids were analyzed by esr and uv spectroscopy to evaluate potential perturbation effects caused by chemical modifications of nucleic acids with spin labels. The melting temperature (Tm) determined by uv or esr melting profiles of 2 → 1 or 3 → 1 transitions is similar for labeled and unlabeled polyadenylic acid [(A)n] and polyuridylic acid [(U)n] complexes provided spin-labeled (A)n with a nitroxide to nucleotide ratio of 0.002 is used. Complexes formed with spin-labeled (A)n of greater spin-labeling extent display a noticeable perturbation of their thermal melting profiles. The studies reconfirm the existence of a low temperature esr transition at about 20 °C with calf thymus and T4 DNA duplexes spin-labeled with a nitroxide to nucleotide ratio of about 0.006. The uv melting profiles of the spin-labeled duplexes reveal no low-temperature discontinuity, but the Tm values reflecting the 2 → 1 transitions were reduced by several degrees versus those of the unlabeled duplexes. Thus, these studies suggest that with homopolymers, chemically modified to a low extent with nitroxides, the monitoring of local conformational transitions of duplexes or triplexes reflect the overall 2 → 1 or 3 → 1 transitions. In the case of the heteropolymers the possibility that the chemical modification is responsible for the low-temperature phenomenon cannot be ruled out.  相似文献   

18.
Mouse peritoneal macrophages respond to environmental stimuli in different ways depending on their state of differentiation. Macrophages from mice with bacillus Calmette--Guerin (BCG) infection produced large amounts of H2O2 in response to phorbol diesters (PDEs), while those from noninfected mice produced little or no H2O2. The effects of PDEs on cells are mediated by specific cellular receptors for these ligands. The purpose of this study was to determine if the varying responses of macrophages from different groups of mice were caused by differences in their receptors for the PDE ligands. By all parameters studied, the binding of [20-3H]phorbol 12,13-dibutyrate ( [3H]PDBu) was similar in all macrophages irrespective of their ability to produce H2O2 in response to PDEs. Binding of [3H]PDBu was rapid at 23 degrees C reaching a maximum at 10-20 min with a subsequent decline to 50-60% of maximum by 30-60 min. Binding was slower at 0 degrees C reaching a maximum at 90-120 min. The binding was reversible, with dissociation kinetics paralleling association kinetics. The binding was saturable; the Kd's (45 to 91 nM) and number of binding sites (about 7-14 X 10(5)/cell or 11-12 pmol/mg protein) were essentially the same for the different classes of macrophages. The binding was specific, and analogs of PDBu inhibited [3H]PDBu binding to macrophages with potencies comparable to their potencies in causing in vivo tumor promotion and elicitation of other cellular responses in vitro. The ligands [3H]PDBu and [3H]PMA were degraded to comparable degrees by macrophages from normal or BCG-infected mice. Macrophages from C3H/HeJ and C3H/HeN mice, although known to differ in their abilities to respond to stimuli such as lymphokines and LPS, did not differ in their ability to produce H2O2 in response to PDEs or in their receptors for PDEs. Results of this study suggest that in vivo "activation" of macrophages in mice infected with BCG is not associated with a change in the cells' receptors for PDEs, but may be associated with "postreceptor" changes such as linkage of the PDE receptor with NAD(P)H oxidase, a change in NAD(P)H oxidase, or induction of synthesis of NAD(P)H oxidase.  相似文献   

19.
Metabolite-induced activation of hepatic phosphofructokinase   总被引:1,自引:0,他引:1  
Hepatic phosphofructokinase, isolated in a medium containing 100 mM (NH4)2SO4, can be activated by ATP. This metabolite-induced activation was investigated in view of the suggestion that it is related to phosphorylation of phosphofructokinase. The results obtained do not support this interpretation. Inhibitors of protein phosphatases (NaF) and kinases (the Mg++-chelator, ethylene diamine tetraacetic acid) did not affect the recovery of phosphofructokinase. In contrast, media of high ionic strength reduced the phosphofructokinase activity and rendered the enzyme sensitive to ATP-induced activation. Activation was also induced by other known effectors of phosphofructokinase (nucleoside triphosphates, fructose bisphosphates) and was not dependent on Mg++-ions. It is suggested that activation represents ligand-induced reversal of the inactivation of phosphofructokinase which occurs at high ionic strength. The differential sensitivity of phosphofructokinase from fed or starved animals to inactivation and reactivation is discussed.  相似文献   

20.
Adenylate cyclase was extracted from the rat uterus with Lubrol PX in a form which remained soluble following centrifugation for 60 min at 100,000g. The soluble enzyme was stimulated by both Mn+2 and by guanyl-5'-yl-imidodiphosphate (Gpp(NH)p), indicating that both the catalytic subunit (C) and the guanyl nucleotide-binding coupling factor (N) had been extracted. Catalytic activity was bound by a GTP-affinity resin only under conditions which resulted in irreversible activation of the native (particulate) form of the enzyme and could be eluted under acidic conditions shown to reverse the activated state. The S020,w of the soluble enzyme in both its activated and unactivated state was determined by linear sucrose gradient centrifugation. Activation by prolonged treatment with Gpp(NH)p did not alter the S020,w of the enzyme whether treatment was carried out before or after solubilization. The chaotrope LiBr (0.4 M) reduced the S020,w of the soluble enzyme but its smaller size was still not altered by activation with Gpp(NH)p. These results indicate that most adenylate cyclase activity in uterine membranes exists as a preformed complex between the catalytic subunit and the coupling factor: NC. The existence of this complex explains some of the temperature-dependent properties previously described for this form of the enzyme and suggests that dissociable interactions between the subunits do not play a role in the activation of C by guanyl nucleotides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号