共查询到20条相似文献,搜索用时 15 毫秒
1.
Mala Rao Vasanti Deshpande Sulbha Keskar M.C. Srinivasan 《Enzyme and microbial technology》1983,5(2):133-136
Two strains of Neurospora crassa have been identified which utilize cellulase and produce extracellular cellulase [see 1,4-(1,3; 1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] and β-d-glucosidase [β-d-glucoside glucohydrolase, EC 3.2.1.21]. The activities were detected as early as 48 h in the culture broth. These cultures also fermented d-glucose, d-xylose and cellulosic materials to ethanol as the major product of fermentation. The conversion of cellulose to ethanol was >60%, indicating the potential of using Neurospora for the direct conversion of cellulose to ethanol. 相似文献
2.
The production of pectinase was studied in Neurospora crassa, using the hyperproducer mutant exo-1, which synthesized and secreted five to six times more enzyme than the wild-type. Polygalacturonase, pectin lyase and pectate lyase were induced by pectin, and this induction was glucose-repressible. Polygalacturonase was induced by galactose four times more efficiently than by pectin; in contrast the activity of lyases was not affected by galactose. The inducing effect of galactose on polygalacturonase was not glucose-repressible. Extracellular pectinases were separated by ion exchange chromatography. Pectate and pectin lyases eluted into three main fractions containing both activities; polygalacturonase eluted as a single, symmetrical peak, apparently free of other protein contaminants, and was purified 56-fold. The purified polygalacturonase was a monomeric glycoprotein (38% carbohydrate content) of apparent molecular mass 36.6-37.0 kDa (Sephadex G-100 and urea-SDS-PAGE, respectively). The enzyme hydrolysed predominantly polypectate. Pectin was also hydrolysed, but at 7% of the rate for polypectate. Km and Vmax for polypectate hydrolysis were 5.0 mg ml-1 and 357 mumol min-1 (mg protein)-1, respectively. Temperature and pH optima were 45 degrees C and 6.0, respectively. The purified polygalacturonase reduced the viscosity of a sodium polypectate solution by 50% with an increase of 7% in reducing sugar groups. The products of hydrolysis at initial reaction times consisted of oligogalacturonates without detectable monomer. Thus, the purified Neurospora crassa enzyme was classified as an endopolygalacturonase [poly(1,4-alpha-D-galacturonide) glycanohydrolase; EC 3.2.1.15]. 相似文献
3.
Mycelia and ungerminated conidia of Neurospora crassa were found to secrete extracellular endocellulase (EC 3.2.1.4). A simple induction system of potassium phosphate buffer (ph 6.0) plus inducer relied on the internal metabolic reserves of conicia or mycelia to provide energy and substrates for protein synthesis. Buffer concentration for optimum enzyme production was 100 mM, but at higher buffer concentrations enzyme production was inhibited. Cellobiose was clearly the best inducer, with an optimum effect from 0.05 to 1 mM. In deionized water, cellulase remained mostly associated with the cell, but a variety of salts stimulated the release of cellulase into the medium. 相似文献
4.
5.
6.
7.
A net purification of 9·46-, 18·6- and 16·7-fold for filter paper (FP) hydrolytic activity, carboxymethyl (CM) cellulase and β-glucosidase, respectively was achieved through ion exchange and gel chromatographies. The purified enzyme preparation showed an optimal pH of 5·0 for CM cellulase and 5·5 for the other two components. The enzyme activities increased up to 60°–65°C for the three enzyme components and they were stable at 30° or 40°C and pH 4·5 to 5·0 after 20–30 min treatment. The four enzyme components, that is, two FP activities (unadsorbed and adsorbed), a CM cellulase and a β-glucosidase, had Km values of 47·6 mg, 33·3 mg, 4·0 mg and 0·18 mmol/l with V max of 4, 1·28, 66·5 and 1·28 units per mg protein. The molecular weights as determined with SDS-PAGE were found to be 44000, 38000, 55000 and 63000 for the above four enzyme components in the same sequence. A distinct type of synergistic action was observed between these components by their action on dewaxed cotton. Glycerol at 1% strongly repressed the formation of all the cellulolytic enzymes. The role of proteolytic enzymes in in vitro inactivation of cellulases was not apparent. 相似文献
8.
Nucleotide degrading enzymes in Neurospora crassa 总被引:1,自引:0,他引:1
9.
Molecular Genetics and Genomics - The abilities of purine- and pyrimidinerequiring mutants to produce six orthophosphate repressible extracellular enzymes, alkaline phosphatase,... 相似文献
10.
11.
12.
G A Scarborough 《The Journal of biological chemistry》1975,250(3):1106-1111
The isolation and characterization of plasma membranes from a cell wall-less mutant of Neurospora crassa are described. The plasma membranes are stabilized against fragmentation and vesiculation by treatment of intact cells with concanavalin A just prior to lysis. After lysis, the concanavalin A-stabilized plasma membrane ghosts are isolated by low speed centrifugation techniques and the purified ghosts subsequently converted to vesicles by removal of the bulk of the concanavalin A. The yield of ghosts is about 50% whereas the yield of vesicles is about 20%. The isolated plasma membrane vesicles have a characteristically high sterol to phospholipid ratio, Mg2+-dependent ATPase activity and (Na+ plus K+)-stimulated Mg2+ATPase activity. Only traces of succinate dehydrogenase and 5'-nucleotidase are present in the plasma membrane preparations. 相似文献
13.
J A Hautala B H Conner J W Jacobson G L Patel N H Giles 《Journal of bacteriology》1977,130(2):704-713
A procedure was developed for isolating nuclei from either the conidial or germinated conidial growth phase of Neurospora crassa. A frozen conidial suspension was lysed by passage through a French pressure cell, and the nuclei were freed from the broken cells by repeated homogenization in an Omni-Mixer. Pure nuclei were obtained from the crude nuclear fraction by density banding in a Ludox gradient. The final nuclear yield was 20 to 30%. The nuclei had a deoxyribonucleic acid (DNA):ribonucleic acid (RNA):protein ratio of 1:3.5:7 and were active in RNA synthesis. The nuclei, stained with the DNA stain 4,6-diamidino-2-phenylindole, appeared under fluorescence microscopy as bright blue spheres, 1 micron in diameter, essentially free from cytoplasmic attachments. Chromatin extracted from the nuclei in a 70 to 75% yield by dissociation with 2 M sodium chloride and 5 M urea had a DNA:RNA:protein ratio of 1:1.05:1.7. Chromatin reconstituted from this preparation exhibited a level of RNA polymerase template activity lower than that of pure Neurospora DNA, but the maximum level of reconstitution obtained was only 10%. Fractionation of Neurospora chromatin on hydroxylapatite separated the histones from the chromatin acidic proteins. The normal complement of histone proteins was present in both the reconstituted and dissociated chromatin preparations. The acidic protein fraction exhibited a variety of bands on sodium dodecyl sulfate gel electrophoresis ranging in molecular weight from 15,000 to 70,000. The gel pattern was much more complex for total dissociated chromatin than for reconstituted chromatin. 相似文献
14.
Summary Twelve fungal cultures belonging to the genera ofAspergillus, Tricboderma, Chaetomium, Stachybotrys, andHypocrea were screened for the production of cellulolytic activity. All twelve were found to degrade xylan, avicel, and carboxymethylcellulose, More cellulolytic activity was obtained with shaken cultures than with still cultures and the addition of citrate-phosphate buffer to the media greatly depressed the levels of cellulolytic activity. Varying the composition of the mineral salts in the medium had no effect on the cellulolytic activity.The growth ofAspergillus wentii under controlled conditions in a bioreactor showed that the cellulolytic activity was not affected by the aeration rate or the type of stirrer. The rate of stirring, however, did effect the cellulolytic activity, as at lower stirring speeds considerable wall growth occurred which resulted in low levels of cellulolytic activity.Culture supernatant fromAspergillus wentii was found to hydrolyze from 30–32% of Solka-Floc and from 2–10% of corn cobs, wheat straw, and newsprint. The extensive hydrolysis of the Solka-Floc indicates that with suitably treated cellulosic wastes and appropriate enzymes, appreciable amounts of sugars could be obtained. 相似文献
15.
An insulin-binding metal- and thiol-dependent proteinase has been purified 1491-fold from high speed cytosolic fractions of the fungus Neurospora crassa. This enzyme resembles insulin-degrading enzymes (insulinases) present in mammalian cells and in Drosophila melanogaster in the following ways: (i) it degrades radiolabeled insulin with a specificity similar to that of rat muscle insulinase, as demonstrated by HPLC analysis of the degradation products; (ii) it is inhibited by bacitracin, EDTA, 1,10-phenanthroline, and the sulfhydryl-reactive compounds N-ethylmaleimide and p-chloromercuribenzoate, but not by inhibitors of serine proteases or by lysosomal protease inhibitors. Cross-linking with 125I-insulin labels a band of ca. 120 kDa, and several smaller bands which may represent degradation products. The N. crassa insulinase is stimulated by Mn2+ and strongly inhibited by Zn2+; Mn2+ can also reactivate the enzyme after inhibition by EDTA, but Zn2+ is ineffective. The N. crassa protein differs in this regard from mammalian and insect insulinases which are generally activated by both Mn2+ and Zn2+. This finding extends the apparent evolutionary conservation of these metal- and thiol-dependent proteases into the microbial realm. 相似文献
16.
The early enzymes of arginine biosynthesis in Neurospora crassa are localized in the mitochondrion and catalyze the conversion of glutamate to citrulline. The final conversion of citrulline to arginine occurs via two enzymatic steps in the cytoplasm. We have devised a method for the isolation and purification of three of the mitochondrial arginine biosynthetic enzymes from a single extract. Acetylglutamate kinase and acetylglutamyl-phosphate reductase (both products of the complex arg-6 locus) were purified to homogeneity and near homogeneity, respectively. The large catalytic subunit of carbamoyl-phosphate synthetase was also purified to homogeneity. The three enzymes were resolved into separate fractions by chromatography on three dye-ligand affinity resins, which are specific for nucleotide binding enzymes and have a high protein binding capacity. High performance liquid chromatography was employed in the final stages of purification and was extremely effective in fractionating both acetylglutamate kinase and acetylglutamyl-phosphate reductase from proteins with very similar properties, which were not removed by other techniques. The purified proteins were used to raise specific antisera against these proteins. Acetylglutamate kinase and acetylglutamyl-phosphate reductase were shown to be immunologically unrelated. This finding suggests that the arg-6 locus encompasses two nonoverlapping cistrons. The antisera raised against carbamoyl-phosphate synthetase has been shown to cross-react with related enzymes in Saccharomyces cerevisiae, Escherichia coli, and rat liver (Ness, S. A., and Weiss, R. L. (1985) J. Biol. Chem. 260, 14355-14362). Acetylglutamate kinase is a regulatory enzyme and has been shown to be feedback-inhibited by arginine. We have determined the submitochondrial localization of acetylglutamate kinase and the second arg-6 product, acetylglutamyl-phosphate reductase. Both enzymes were shown to be soluble matrix enzymes. We discuss the relevance of this finding with respect to possible mechanisms for end product inhibition of a mitochondrial enzyme by a cytoplasmic effector. 相似文献
17.
18.
The centromere locus from linkage group VII of Neurospora crassa has been cloned, characterized, and physically mapped. The centromeric DNA is contained within a 450-kb region that is recombination deficient, A+T-rich, and contains repetitive sequences. Repetitive sequences from within this region hybridize to a family of repeats located at or near centromeres in all seven linkage groups of N. crassa. Genomic Southern blots and sequence analysis of these repeats revealed a unique centromere structure containing a divergent family of centromere-specific repeats. The predominantly transitional differences between copies of the centromere-specific sequence repeats and their high A+T content suggest that their divergence was mediated by repeat-induced point (RIP) mutations. 相似文献
19.
A gene encoding cellobiose dehydrogenase (CDH) from Neurospora crassa strain FGSC 2489 has been cloned and expressed in the heterologous host Pichia pastoris, under the control of the AOX1 methanol inducible promoter. Recombinant CDH without the native signal sequence and fused with a His6-tag (rNC-CDH1) was successfully expressed and secreted. rNC-CDH1 was produced at the level of 652 IU/L after 2 days of cultivation in the induction medium. The His6-tagged rNC-CDH1 was purified through a one-step Ni–NTA affinity column under non-denaturing conditions. The purified rNC-CDH1 has a CDH activity of 7451 IU/L (0.89 mg protein/mL), with a specific CDH activity of 8.37 IU/mg. The purity of the enzyme was examined by SDS–PAGE, and a single band corresponding to a molecular weight of about 120 kDa was observed. Activity staining confirmed the CDH activity of the protein band. The purified rNC-CDH1 has maximum CDH activity at pH 4.5, and a rather broad temperature optimum of 25–70 °C. Kinetic analysis showed cellobiose and cellooligosaccharides are the best substrates for rNC-CDH1. The Km value of the rNC-CDH1 for cellooligosaccharide increases with the elongation of glucosyl units. kcat remains relatively constant when the chain length changes. 相似文献
20.
Purification and characterization of cellulolytic enzymes produced by Aspergillus nidulans 总被引:1,自引:0,他引:1
Three exo-glucanases, two endo-glucanases and two beta-glucosidases were separated and purified from the culture medium of Aspergillus nidulans. The optimal assay conditions for all forms of cellulase components ranged from pH 5.0 to 6.0 and 50 degrees C and 65 degrees C for exo-glucanases and endo-glucanases but 35 degrees C and 65 degrees C for beta-glucosidases. A close relation of enzyme stability to their optimal pH range was observed. All the cellulase components were stable for 10 min at 40-50 degrees C. Exo-II and Exo-III (Km, 38.46 and 37.71 mg/ml) had greater affinity for the substrate than Exo-I (Km, 50.00 mg/ml). The Km values of Endo-I and Endo-II (5.0 and 4.0 mg/ml) and their maximum reaction velocities (Vmax, 12.0 and 10.0 IU/mg protein) were comparable. beta-Glucosidases exhibited Km values of 0.24 and 0.12 mmol and Vmax values of 8.00 and 0.67 IU/mg protein. The molecular weights recorded for various enzyme forms were: Exo-I, 29,000; Exo-II, 72,500; Exo-III, 138,000; Endo-I, 25,000; Endo-II, 32,500; beta-Gluco-I, 14,000 and beta-Gluco-II, 26,000. Exo- and endo-glucanases were found to require some metal ions as co-factors for their catalytic activities whereas beta-glucosidases did not. Hg2+ inhibited the activity of all the cellulase components. The saccharification studies demonstrated a high degree of synergism among all the three cellulase components for hydrolysis of dewaxed cotton. 相似文献