首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The quadruple bacteriorhodopsin (BR) mutant E9Q+E74Q+E194Q+E204Q shows a lambda(max) of about 500 nm in water at neutral pH and a great influence of pH and salts on the visible absorption spectrum. Accessibility to the Schiff base is strongly increased, as detected by the rapid bleaching effect of hydroxylamine in the dark as well as in light. Both the proton release kinetics and the photocycle are altered, as indicated by a delayed proton release after proton uptake and changed M kinetics. Moreover, affinity of the color-controlling cation(s) is found to be decreased. We suggest that the four Glu side chains are essential elements of the extracellular structure of BR.  相似文献   

2.
Methylation of the nonactive site lysines of bacteriorhodopsin to form permethylated bacteriorhodopsin does not interfere with the formation of the short wavelength intermediate M412 or light-induced proton release/uptake. The absorption spectrum is similar to that of the native bacteriorhodopsin. However, additional monomethylation of the active site lysine of bacteriorhodopsin causes a red shift of the absorption maximum from 568 nm in light-adapted bacteriorhodopsin [BR] to 630 nm. The photochemistry of active-site methylated BR does not proceed beyond the L-photointermediate. In particular, the photointermediate corresponding to M412 does not form, and there is no proton pumping. Moreover, there is no tyrosine deprotonation. Thus, the formation of an M-type photointermediate is required for proton pumping by BR.  相似文献   

3.
A spectroscopic and functional analysis of two point-mutated bacteriorhodopsins (BRs) from phototrophic negative halobacterial strains is reported. Bacteriorhodopsin from strain 384 contains a glutamic acid instead of an aspartic acid at position 85 and BR from strain 326 contains asparagine instead of aspartic acid at position 96. Compared to wild-type BR, the M formation in BR Asp85---Glu is accwelerated approximately 10-fold, whereas the M decay in BR Asp96---Asn is slowed down approximately 50-fold at pH6. Purple membrane sheets containing the mutated BRs were oriented and immobilized in polyacrylamide gels or adsorbed to planar lipid films. The measured kinetics of the photocurrents under various conditions agree with the observed photocycle kinetics. The ineffectivity of BR Asp85---Glu resides in the dominance of an inactive species absorbing maximally at approximately 610 nm, while BR Asp96---Asn is ineffective due to its slow photocycle. These experimental results suggest that aspartic acid 96 plays a crucial role for the reprotonation of the Schiff base. Both residues are essential for an effective proton pump.  相似文献   

4.
Tyrosine-83, a residue which is conserved in all halobacterial retinal proteins, is located at the extracellular side in helix C of bacteriorhodopsin. Structural studies indicate that its hydroxyl group is hydrogen bonded to Trp189 and possibly to Glu194, a residue which is part of the proton release complex (PRC) in bacteriorhodopsin. To elucidate the role of Tyr83 in proton transport, we studied the Y83F and Y83N mutants. The Y83F mutation causes an 11 nm blue shift of the absorption spectrum and decreases the size of the absorption changes seen upon dark adaptation. The light-induced fast proton release, which accompanies formation of the M intermediate, is observed only at pH above 7 in Y83F. The pK(a) of the PRC in M is elevated in Y83F to about 7.3 (compared to 5.8 in WT). The rate of the recovery of the initial state (the rate of the O --> BR transition) and light-induced proton release at pH below 7 is very slow in Y83F (ca. 30 ms at pH 6). The amount of the O intermediate is decreased in Y83F despite the longer lifetime of O. The Y83N mutant shows a similar phenotype in respect to proton release. As in Y83F, the recovery of the initial state is slowed several fold in Y83N. The O intermediate is not seen in this mutant. The data indicate that the PRC is functional in Y83F and Y83N but its pK(a) in M is increased by about 1.5 pK units compared to the WT. This suggests that Tyr83 is not the main source for the proton released upon M formation in the WT; however, Tyr83 is involved in the proton release affecting the pK(a) of the PRC in M and the rate of proton transport from Asp85 to PRC during the O --> bR transition. Both the Y83F and the Y83N mutations lead to a greatly decreased functionality of the pigment at high pH because most of the pigment is converted into the inactive P480 species, with a pK(a) 8-9.  相似文献   

5.
Bacteriorhodopsin (BR) with the single-site substitutions Arg-82----Gln (R82Q), Asp-85----Asn (D85N), and Asp-96----Asn (D96N) is studied with time-resolved absorption spectroscopy in the time regime from nanoseconds to seconds. Time-resolved spectra are analyzed globally by using multiexponential fitting of the data at multiple wavelengths and times. The photocycle kinetics for BR purified from each mutant are determined for micellar solutions in two detergents, nonyl glucoside and CHAPSO, and are compared to results from studies on delipidated BR (d-BR) in the same detergents. D85N has a red-shifted ground-state absorption spectrum, and the formation of an M intermediate is not observed. R82Q undergoes a pH-dependent transition between a purple and a blue form with different pKa values in the two detergents. The blue form has a photocycle resembling that for D85N, while the purple form of R82Q forms an M intermediate that decays more rapidly than in d-BR. The purple form of R82Q does not light-adapt to the same extent as d-BR, and the spectral changes in the photocycle suggest that the light-adapted purple form of R82Q contains all-trans- and 13-cis-retinal in approximately equal proportions. These results are consistent with the suggestions of others for the roles of Arg-82 and Asp-85 in the photocycle of BR, but results for D96N suggest a more complex role for Asp-96 than previously suggested. In nonyl glucoside, the apparent decay of the M-intermediate is slower in D96N than in d-BR, and the M decay shows biphasic kinetics. However, the role of Asp-96 is not limited to the later steps of the photocycle. In D96N, the decay of the KL intermediate is accelerated, and the rise of the M intermediate has an additional slow phase not observed in the kinetics of d-BR. The results suggest that Asp-96 may play a role in regulating the structure of BR and how it changes during the photocycle.  相似文献   

6.
The photochemical and subsequent thermal reactions of phoborhodopsin (pR490), which mediates the negative phototaxis (phobic reaction) of Halobacterium halobium, were investigated by low-temperature spectrophotometry. At room temperature, the absorption spectrum of pR490 displayed vibrational structure with a maximum at 490 nm and a shoulder at 460 nm, which were remarkably sharpened by cooling, resulting in the appearance of two well-separated peaks. On irradiation of pR490 at -170 degrees C, a photo-steady-state mixture composed of pR490 and two photoproducts, P520 and P480, was formed. P480 had an absorption maximum at 480 nm and thermally converted to pR490 above -160 degrees C, while P520 had an absorption maximum at 515 nm and thermally converted to P350, the next intermediate, above -60 degrees C. Above -30 degrees C, P350 was converted to P530, and then reverted to pR490. P520, P350, and P530 may correspond to K, M, and O intermediates of bacteriorhodopsin, respectively, on the basis of their absorption spectra, but the intermediates corresponding to L and N intermediates were not observed. On the basis of these results, a new scheme of the photoreaction cycle of pR490 was presented.  相似文献   

7.
实验证实,在适当的酸度调节下暗适应菌紫质(BR)的光致变色反应由B→蓝膜→P→Q→B的循环转换构成。在无光照下,B、Q态在中性介质中,蓝膜、P态在酸性介质中均呈高化学稳定性;蓝膜→P和Q→B的态转换须分别用650nm和400nm可见光激励,用紫外-可见光谱对两个光化学过程的动力学特性进行监测,证实它们均为一级反应。菌紫质的四个稳态在可见光区具有不同的特征吸收波长,在信息记录方面可望有一定应用前景。  相似文献   

8.
By means of high-intensity 532 nm laser pulses, a photochemical conversion of the initial B(570) state of bacteriorhodopsin (BR) to a stable photoproduct absorbing maximally at approximately 620 nm in BR suspensions and at approximately 610 nm in BR films is induced. This state, which we named F(620), is photochemically further converted to a group of three products with maximal absorptions in the wavelength range from 340 nm to 380 nm, which show identical spectral properties to the so-called P(360) state reported in the literature. The photoconversion from B(570) to F(620) is most likely a resonant two-photon absorption induced step. The formation of F(620) and P(360) leads to a distinguished photo-induced permanent optical anisotropy in BR films. The spectral dependence of the photo-induced anisotropy and the anisotropy orientations at the educt (B(570)) and product (F(620)) wavelengths are strong indicators that F(620) is formed in a direct photochemical step from B(570). The chemical nature of the P(360) products probably is that of a retro-retinal containing BR, but the structural characteristics of the F(620) state are still unclear. The photo-induced permanent anisotropy induced by short laser pulses in BR films helps to better understand the photochemical pathways related to this transition, and it is interesting in view of potential applications as this feature is the molecular basis for permanent optical data storage using BR films.  相似文献   

9.
The molecular events during the photocycle of bacteriorhodopsin have been studied by the method of time-resolved and static infrared difference spectroscopy. Characteristic spectral changes involving the C=O stretching vibration of protonated carboxylic groups were detected. To identify the corresponding groups with either glutamic or aspartic acid, BR was selectively labeled with [4-13C]aspartic acid. An incorporation of ca. 70% was obtained. The comparison of the difference spectra in the region of the CO2- stretching vibrations of labeled and unlabeled BR indicates that ionized aspartic acids are influenced during the photocycle, the earliest effect being observed already at the K610 intermediate. Taken together, the results provide evidence that four internal aspartic acids undergo protonation changes and that one glutamic acid, remaining protonated, is disturbed. The results are discussed in relation to the various aspects of the proton pumping mechanism, such as retinal isomerization, charge separation, pK changes, and proton pathway.  相似文献   

10.
The photoreaction of the E194Q mutant of bacteriorhodopsin has been investigated at various pH values by time-resolved step-scan Fourier-transform infrared difference spectroscopy employing the attenuated total reflection technique. The difference spectrum at pH 8.4 is comparable to the N-BR difference spectra of the wild type with the remarkable exception that D85 is deprotonated. Since the retinal configuration is not perturbed by the E194Q mutation, it is concluded that there is no interaction of D85 with retinal during the lifetime of the N state. At pH 6, a consecutive state to the O intermediate is detected in which D212 is transiently protonated. The comparison with wild-type bacteriorhodopsin reveals that protonation of D212 represents an intermediate step during proton transfer from D85 to the proton release group in the final stage of the reaction cycle. The described effects are more pronounced in the E194Q mutant than in the E204Q mutant demonstrating different roles of these two glutamates/glutamic acids at least in the final stages of the catalytic cycle of bacteriorhodopsin.  相似文献   

11.
The role of the extracellular Glu side chains of bacteriorhodopsin in the proton transport mechanism has been studied using the single mutants E9Q, E74Q, E194Q, and E204Q; the triple mutant E9Q/E194Q/E204Q; and the quadruple mutant E9Q/E74Q/E194Q/E204Q. Steady-state difference and deconvoluted Fourier transform infrared spectroscopy has been applied to analyze the M- and N-like intermediates in membrane films maintained at a controlled humidity, at 243 and 277 K at alkaline pH. The mutants E9Q and E74Q gave spectra similar to that of wild type, whereas E194Q, E9Q/E194Q/E204Q, and E9Q/E74Q/E194Q/E204Q showed at 277 K a N-like intermediate with a single negative peak at 1742 cm(-1), indicating that Asp(85) and Asp(96) are deprotonated. Under the same conditions E204Q showed a positive peak at 1762 cm(-1) and a negative peak at 1742 cm(-1), revealing the presence of protonated Asp(85) (in an M intermediate environment) and deprotonated Asp(96). These results indicate that in E194Q-containing mutants, the second increase in the Asp(85) pK(a) is inhibited because of lack of deprotonation of the proton release group. Our data suggest that Glu(194) is the group that controls the pK(a) of Asp(85).  相似文献   

12.
The gene coding for bacteriorhodopsin was modified in vitro to replace Asp212 with asparagine and expressed in Halobacterium halobium. X-ray diffraction measurements showed that the major lattice dimension of purple membrane containing the mutated bacteriorhodopsin was the same as wild type. At pH greater than 7, the Asp212----Asn chromophore was blue (absorption maximum at 585 nm) and exhibited a photocycle containing only the intermediates K and L, i.e. a reaction sequence very similar to that of wild-type bacteriorhodopsin at pH less than 3 and the blue form of the Asp85----Glu protein at pH less than 9. Since in the latter cases these effects are attributed to protonation of residue 85, it now appears that removal of the carboxylate of Asp212 has similar consequences as removing the carboxylate of Asp85. However, an important difference is that only Asp85 affects the pKa of the Schiff base. At pH less than 7, the Asp212----Asn protein was purple (absorption maximum at 569 nm) but photoexcitation produced only 15% of the normal amount of M and the transport activity was partial. The reactions of the blue and purple forms after photoexcitation are both quantitatively accounted for by a proposed scheme, K in equilibrium with L1 in equilibrium with L2----BR, but with the addition of an L1 in equilibrium with M reaction with unfavorable pKa for Schiff base deprotonation in the purple form. The latter hinders the transient accumulation of M, and the consequent branching at L1 allows only partial proton transport activity. The results are consistent with the existence of a complex counterion for the Schiff base proposed earlier (De Groot, H. J. M., Harbison, G. S., Herzfeld, J., and Griffin, R. G. (1989) Biochemistry 28, 3346-3353) and suggest that Asp85, Asp212, and at least one other protonable residue participate in it.  相似文献   

13.
In a light-driven proton-pump protein, bacteriorhodopsin (BR), protonated Schiff base of the retinal chromophore and Asp85 form ion-pair state, which is stabilized by a bridged water molecule. After light absorption, all-trans to 13-cis photoisomerization takes place, followed by the primary proton transfer from the Schiff base to Asp85 that triggers sequential proton transfer reactions for the pump. Fourier transform infrared (FTIR) spectroscopy first observed O-H stretching vibrations of water during the photocycle of BR, and accurate spectral acquisition has extended the water stretching frequencies into the entire stretching frequency region in D(2)O. This enabled to capture the water molecules hydrating with negative charges, and we have identified the water O-D stretch at 2171 cm(-1) as the bridged water interacting with Asp85. We found that retinal isomerization weakens the hydrogen bond in the K intermediate, but not in the later intermediates such as L, M, and N. On the basis of the observation particularly on the M intermediate, we proposed a model for the mechanism of proton transfer from the Schiff base to Asp85. In the "hydration switch model", hydration of a water molecule is switched in the M intermediate from Asp85 to Asp212. This will have raised the pK(a) of the proton acceptor, and the proton transfer is from the Schiff base to Asp85.  相似文献   

14.
Rhodopsins possess retinal chromophore surrounded by seven transmembrane α-helices, are widespread in prokaryotes and in eukaryotes, and can be utilized as optogenetic tools. Although rhodopsins work as distinctly different photoreceptors in various organisms, they can be roughly divided according to their two basic functions, light-energy conversion and light-signal transduction. In microbes, light-driven proton transporters functioning as light-energy converters have been modified by evolution to produce sensory receptors that relay signals to transducer proteins to control motility. In this study, we cloned and characterized two newly identified microbial rhodopsins from Haloquadratum walsbyi. One of them has photochemical properties and a proton pumping activity similar to the well known proton pump bacteriorhodopsin (BR). The other, named middle rhodopsin (MR), is evolutionarily transitional between BR and the phototactic sensory rhodopsin II (SRII), having an SRII-like absorption maximum, a BR-like photocycle, and a unique retinal composition. The wild-type MR does not have a light-induced proton pumping activity. On the other hand, a mutant MR with two key hydrogen-bonding residues located at the interaction surface with the transducer protein HtrII shows robust phototaxis responses similar to SRII, indicating that MR is potentially capable of the signaling. These results demonstrate that color tuning and insertion of the critical threonine residue occurred early in the evolution of sensory rhodopsins. MR may be a missing link in the evolution from type 1 rhodopsins (microorganisms) to type 2 rhodopsins (animals), because it is the first microbial rhodopsin known to have 11-cis-retinal similar to type 2 rhodopsins.  相似文献   

15.
Proton translocation activity of bacteriorhodopsin mutants lacking the proton acceptor Asp-85 was investigated using the black lipid membrane technique. Mutants D85N, D85T, and D85,96N were constructed and homologously expressed in Halobacterium salinarium to yield a membrane fraction with a buoyant density of 1.18 g/cm3, i.e., identical to that of wild-type purple membrane. In all mutants, the absorbance maximum was red-shifted between 27 and 49 nm compared with wild type, and the pKa values of the respective Schiff bases were reduced to between 8.3 and 8.9 compared with the value of > 13 in wild type. Therefore, a mixture of chromophores absorbing at 410 nm (deprotonated form) and around 600 nm (protonated form) exists at physiological pH. In continuous blue light, the deprotonated form generates stationary photocurrents. The currents are enhanced by a factor of up to 50 upon addition of azide in D85N and D85,96N mutants, whereas D85T shows no azide effect. The direction of these currents is the same as in wild type in yellow light. Yellow light alone is not sufficient to generate stationary currents in the mutants, but increasing yellow light intensity in the presence of blue light leads to an inversion of the current. Because all currents are carried by protons, this two-photon process demonstrates an inverted proton translocation by BR mutants.  相似文献   

16.
Sensory rhodopsin II (SRII), a repellent phototaxis receptor found in Halobacterium salinarum, has several homologous residues which have been found to be important for the proper functioning of bacteriorhodopsin (BR), a light-driven proton pump. These include Asp73, which in the case of bacteriorhodopsin (Asp85) functions as the Schiff base counterion and proton acceptor. We analyzed the photocycles of both wild-type SRII and the mutant D73E, both reconstituted in Halobacterium salinarum lipids, using FTIR difference spectroscopy under conditions that favor accumulation of the O-like, photocycle intermediate, SII540. At both room temperature and -20 degrees C, the difference spectrum of SRII is similar to the BR-->O640 difference spectrum of BR, especially in the configurationally sensitive retinal fingerprint region. This indicates that SII540 has an all-trans chromophore similar to the O640 intermediate in BR. A positive band at 1761 cm-1 downshifts 40 cm-1 in the mutant D73E, confirming that Asp73 undergoes a protonation reaction and functions in analogy to Asp85 in BR as a Schiff base proton acceptor. Several other bands in the C=O stretching regions are identified which reflect protonation or hydrogen bonding changes of additional Asp and/or Glu residues. Intense bands in the amide I region indicate that a protein conformational change occurs in the late SRII photocycle which may be similar to the conformational changes that occur in the late BR photocycle. However, unlike BR, this conformational change does not reverse during formation of the O-like intermediate, and the peptide groups giving rise to these bands are partially accessible for hydrogen/deuterium exchange. Implications of these findings for the mechanism of SRII signal transduction are discussed.  相似文献   

17.
Early Picosecond Events in the Photocycle of Bacteriorhodopsin   总被引:1,自引:3,他引:1       下载免费PDF全文
The primary processes of the photochemical cycle of light-adapted bacteriorhodopsin (BR) were studied by various experimental techniques with a time resolution of 5 × 10-13 s. The following results were obtained. (a) After optical excitation the first excited singlet state S1 of bacteriorhodopsin is observed via its fluorescence and absorption properties. The population of the excited singlet state decays with a lifetime τ1 of ~0.7 ps (430 ± 50 fs) (52). (b) With the same time constant the first ground-state intermediate J builds up. Its absorption spectrum is red-shifted relative to the spectrum of BR by ~30 nm. (c) The second photoproduct K, which appears with a time constant of τ2 = 5 ps shows a red-shift of 20 nm, relative to the peak of BR. Its absorption remains constant for the observation time of 300 ps. (d) Upon suspending bacteriorhodopsin in D2O and deuterating the retinal Schiff base at its nitrogen (lysine 216), the same photoproducts J and K are observed. The relaxation time constants τ1 and τ2 remain unchanged upon deuteration within the experimental accuracy of 20%.  相似文献   

18.
Shibata M  Kandori H 《Biochemistry》2005,44(20):7406-7413
In a light-driven proton pump protein, bacteriorhodopsin (BR), three water molecules participate in a pentagonal cluster that stabilizes an electric quadrupole buried inside the protein. Previously, low-temperature Fourier-transform infrared (FTIR) difference spectra between BR and the K photointermediate in D(2)O revealed six O-D stretches of water in BR at 2690, 2636, 2599, 2323, 2292, and 2171 cm(-)(1), while five water bands were observed at 2684, 2675, 2662, 2359, and 2265 cm(-)(1) for the K intermediate. The frequencies are widely distributed over the possible range of stretching vibrations of water, and water molecules at <2400 cm(-)(1) were suggested to hydrate negative charges because of their extremely strong hydrogen bonds. In this paper, we aimed to reveal the origin of these water bands in the K minus BR spectra by use of various mutant proteins. The water bands were not affected by the mutations at the cytoplasmic side, such as T46V, D96N, and D115N, implying that the water molecules in the cytoplasmic domain do not change their hydrogen bonds in the BR to K transition. In contrast, significant modifications of the water bands were observed for the mutations in the Schiff base region and at the extracellular side, such as R82Q, D85N, T89A, Y185F, D212N, R82Q/D212N, and E204Q. From these results, we concluded that the six O-D stretches of BR originate from three water molecules, water401, -402, and -406, involved in the pentagonal cluster. Two stretching modes of each water molecule are highly separate (300-470 cm(-)(1) for O-D stretches and 500-770 cm(-)(1) for O-H stretches), which is consistent with the previous QM/MM calculation. The small amplitudes of vibrational coupling are presumably due to strong association of the waters to negative charges of Asp85 and Asp212. Among various mutant proteins, only D85N and D212N lack strongly hydrogen-bonded water molecules (<2400 cm(-)(1)) and proton pumpimg activity. We thus infer that the presence of a strong hydrogen bond of water is a prerequisite for proton pumping in BR. Internal water molecules in such a specific environment are discussed in terms of functional importance for rhodopsins.  相似文献   

19.
Sensory rhodopsin I (SR-I lambda(max) 587 nm) is a phototaxis receptor in the archaeon Halobacterium salinarium. Photoisomerization of retinal in SR-I generates a long-lived intermediate with lambda(max) 373 nm which transmits a signal to the membrane-bound transducer protein HtrI. Although SR-I is structurally similar to the electrogenic proton pump bacteriorhodopsin (BR), early studies showed its photoreactions do not pump protons, nor result in membrane hyperpolarization. These studies used functionally active SR-I, that is, SR-I complexed with its transducer HtrI. Using recombinant DNA methods we have expressed SR-I protein containing mutations in ionizable residues near the protonated Schiff base, and studied wild-type and site-specifically mutated SR-I in the presence and absence of the transducer protein. UV-Vis kinetic absorption spectroscopy, FT-IR, and pH and membrane potential probes reveal transducer-free SR-I photoreactions result in vectorial proton translocation across the membrane in the same direction as that of BR. This proton pumping is suppressed by interaction with transducer which diverts the proton movements into an electroneutral path. A key step in this diversion is that transducer interaction raises the pK(a) of the aspartyl residue in SR-I (Asp76) which corresponds to the primary proton-accepting residue in the BR pump (Asp85). In transducer-free SR-I, our evidence indicates the pK(a) of Asp76 is 7.2, and ionized Asp76 functions as the Schiff base proton acceptor in the SR-I pump. In the SR-I/HtrI complex, the pK(a) of Asp76 is 8.5, and therefore at physiological pH (7.4) Asp76 is neutral. Protonation changes on Asp76 are clearly not required for signaling since the SR-I mutants D76N and D76A are active in phototaxis. The latent proton-translocation potential of SR-I may reflect the evolution of the SR-I sensory signaling mechanism from the proton pumping mechanism of BR.  相似文献   

20.
Single and multiple mutants of extracellular Glu side chains of bacteriorhodopsin were analyzed by acid and calcium titration, differential scanning calorimetry, and thermal difference spectrophotometry. Acid titration spectra show that the second group protonating with Asp(85) is revealed in E204Q in the absence of Cl(-) but is not observed in the triple mutant E9Q/E194Q/E204Q or in the quadruple mutant E9Q/E74Q/E194Q/E204Q. The results point to Glu(9) as the second group protonating cooperatively with Asp(85). Comparison of the apparent pK(a) of Asp(85) protonation in water and in the deionized forms and results of calcium titration suggest that cation-binding sites are of low affinity in the multiple Glu mutants. Like for deionized wild type bacteriorhodopsin, differential scanning calorimetry reveals a lack of the pretransition in the multiple mutants, whereas in E9Q it appears at lower temperature and with lower cooperativity. Additionally, at neutral pH the band at 630 nm arising from cation release upon temperature increase is absent for the multiple mutants. Based on these results, we propose the presence of two cation-binding sites in the extracellular region of bacteriorhodopsin having as ligands Glu(9), Glu(194), Glu(204), and water molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号