首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interleukin (IL)-1 is an important mediator of acute brain injury and inflammation, and has been implicated in chronic neurodegeneration. The main source of IL-1 in the CNS is microglial cells, which have also been suggested as targets for its action. However, no data exist demonstrating expression of IL-1 receptors [IL-1 type-I receptor (IL-1RI), IL-1 type-II receptor (IL-1RII) and IL-1 receptor accessory protein (IL-1RAcP)] on microglia. In the present study we investigated whether microglia express IL-1 receptors and whether they present target or modulatory properties for IL-1 actions. RT-PCR analysis demonstrated lower expression of IL-1RI and higher expression of IL-1RII mRNAs in mouse microglial cultures compared with mixed glial or pure astrocyte cultures. Bacterial lipopolysaccharide (LPS) caused increased expression of IL-1RI, IL-1RII and IL-1RAcP mRNAs, induced the release of IL-1beta, IL-6 and prostaglandin-E2 (PGE2), and activated nuclear factor kappaB (NF-kappaB) and the mitogen-activated protein kinases (MAPKs) p38, and extracellular signal-regulated protein kinase (ERK1/2), but not c-Jun N-terminal kinase (JNK) in microglial cultures. In comparison, IL-1beta induced the release of PGE2, IL-6 and activated NF-kappaB, p38, JNK and ERK1/2 in mixed glial cultures, but failed to induce any of these responses in microglial cell cultures. IL-1beta also failed to affect LPS-primed microglial cells. Interestingly, a neutralizing antibody to IL-1RII significantly increased the concentration of IL-1beta in the medium of LPS-treated microglia and exacerbated the IL-1beta-induced IL-6 release in mixed glia, providing the first evidence that microglial IL-1RII regulates IL-1beta actions by binding excess levels of this cytokine during brain inflammation.  相似文献   

2.
Minocycline inhibits LPS-induced retinal microglia activation   总被引:3,自引:0,他引:3  
  相似文献   

3.
Microglia are resident brain macrophages that become activated and proliferate following brain damage or stimulation by immune mediators, such as IL-1beta or TNF-alpha. We investigated the mechanisms by which microglial proliferation is regulated in primary cultures of rat glia. We found that basal proliferation of microglia was stimulated by proinflammatory cytokines IL-1beta or TNF-alpha, and this proliferation was completely inhibited by catalase, implicating hydrogen peroxide as a mediator of proliferation. In addition, inhibitors of NADPH oxidase (diphenylene iodonium or apocynin) also prevented microglia proliferation, suggesting that this may be the source of hydrogen peroxide. IL-1beta and TNF-alpha rapidly stimulated the rate of hydrogen peroxide produced by isolated microglia, and this was inhibited by diphenylene iodonium, implying that the cytokines were acting directly on microglia to stimulate the NADPH oxidase. Low concentrations of PMA or arachidonic acid (known activators of NADPH oxidase) or xanthine/xanthine oxidase or glucose oxidase (generating hydrogen peroxide) also increased microglia proliferation and this was blocked by catalase, showing that NADPH oxidase activation or hydrogen peroxide was sufficient to stimulate microglia proliferation. In contrast to microglia, the proliferation of astrocytes was unaffected by the presence of catalase. In conclusion, these findings indicate that microglial proliferation in response to IL-1beta or TNF-alpha is mediated by hydrogen peroxide from NADPH oxidase.  相似文献   

4.
5.
Murine microglial cells produce and respond to interleukin-18   总被引:5,自引:0,他引:5  
Interleukin (IL)-18 (interferon-gamma-inducing factor or IL-1gamma) belongs structurally to the IL-1 cytokine family and shares biological properties with IL-12. Expression, intracellular signaling, and functional relevance of IL-18 within the CNS are mostly unknown. We show that IL-18 protein is synthesized within mouse brain, preferentially during early postnatal stages, and that microglial cells but not astrocytes are a potential source. IL-18 is produced by cultured microglia on exposure to lipopolysaccharide (LPS). Microglia also express major components of the IL-1/IL-18 receptor system. On IL-18 stimulation, microglial IL-1 receptor-associated kinase (IRAK) can be coprecipitated with tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) but not with IL-1 receptor type I, indicating that IRAK recruits TRAF6 during IL-18 signaling. IL-18 inhibits the LPS-induced release of IL-12 and attenuates that of TNF-alpha, whereas the production of IL-6 and macrophage inflammatory protein-1alpha is only marginally affected. IL-18 may play a role during CNS development and can be produced by activated microglia, thus probably contributing to immune and inflammatory processes in the brain.  相似文献   

6.
ATP has been indicated as a primary factor in microglial response to brain injury and inflammation. By acting on different purinergic receptors 2, ATP is known to induce chemotaxis and stimulate the release of several cytokines from these cells. The activation of purinergic receptors 2 in microglia can be triggered either by ATP deriving from dying cells, at sites of brain injury or by ATP released from astrocytes, in the absence of cell damage. By the use of a biochemical approach integrated with video microscopy experiments, we investigated the functional consequences triggered in microglia by ATP released from mechanically stimulated astrocytes, in mixed glial cocultures. Astrocyte-derived ATP induced in nearby microglia the formation and the shedding of membrane vesicles. Vesicle formation was inhibited by the ATP-degrading enzyme apyrase or by P2X(7)R antagonists. Isolation of shed vesicles, followed by IL-1beta evaluation by a specific ELISA revealed the presence of the cytokine inside the vesicular organelles and its subsequent efflux into the extracellular medium. IL-1beta efflux from shed vesicles was enhanced by ATP stimulation and inhibited by pretreatment with the P2X(7) antagonist oxidized ATP, thus indicating a crucial involvement of the pore-forming P2X(7)R in the release of the cytokine. Our data identify astrocyte-derived ATP as the endogenous factor responsible for microvesicle shedding in microglia and reveal the mechanisms by which astrocyte-derived ATP triggers IL-1beta release from these cells.  相似文献   

7.
Microglia-mediated cytotoxicity has been implicated in models of neurodegenerative diseases, such as amyotrophic lateral sclerosis, Parkinson's disease and Alzheimer's disease, but few studies have documented how neuroprotective signals might mitigate such cytotoxicity. To explore the neuroprotective mechanism of anti-inflammatory cytokines, we applied interleukin-4 (IL-4) to primary microglial cultures activated by lipopolysaccharide as well as to activated microglia cocultured with primary motoneurons. lipopolysaccharide increased nitric oxide and superoxide (O(2) (.-)) and decreased insulin-like growth factor-1 (IGF-1) release from microglial cultures, and induced motoneuron injury in microglia-motoneuron cocultures. However, lipopolysaccharide had minimal effects on isolated motoneuron cultures. IL-4 interaction with microglial IL-4 receptors suppressed and nitric oxide release, and lessened lipopolysaccharide-induced microglia-mediated motoneuron injury. The extent of nitric oxide suppression correlated directly with the extent of motoneuron survival. Although IL-4 enhanced release of free IGF-1 from microglia in the absence of lipopolysaccharide, it did not enhance free IGF-1 release in the presence of lipopolysaccharide. These data suggest that IL-4 may provide a significant immunomodulatory signal which can protect against microglia-mediated neurotoxicity by suppressing the production and release of free radicals.  相似文献   

8.
9.
10.
Molecular analyses of the chemokine fractalkine and its receptor CX3C-R1 in the rat brain have revealed a striking polarization: fractalkine is expressed constitutively in neurons and is up-regulated by TNF-alpha and IL-1beta in astrocytes. Expression of its specific receptor, CX3C-R1, is restricted to astrocytes and microglia. We have analyzed the functional correlates of this expression and demonstrate that fractalkine induces microglial cell migration and activation. However, the activity of this chemokine on astrocytes may also be highly relevant in inducing astrocyte-microglia cell interactions through cytokine/mediator release leading to microglial activation.  相似文献   

11.
Brain injuries as well as neurodegenerative diseases, are associated with neuro‐inflammation characterized by astroglial and microglial activation and/or proliferation. Recently, we reported that lipopolysaccharide (LPS)‐activation of microglia inhibits junctional channels and promotes hemichannels, two connexin43 functions in astrocytes. This opposite regulation is mediated by two pro‐inflammatory cytokines, interleukin‐1 beta and tumor necrosis factor‐alpha, released from activated microglia. Because cannabinoids (CBs) have anti‐inflammatory properties and their receptors are expressed by glial cells, we investigated on primary cortical cultures the effects of CB agonists, methanandamide and synthetic CBs on (i) cytokines released from LPS‐activated microglia and (ii) connexin43 functions in astrocytes subjected to pro‐inflammatory treatments. We observed that CBs inhibited the LPS‐induced release of interleukin‐1 beta and tumor necrosis factor‐alpha from microglia. Moreover, the connexin43 dual regulation evoked by the pro‐inflammatory treatments, was prevented by CB treatments. Pharmacological characterizations of CB actions on astrocytic connexin43 channels revealed that these effects were mainly mediated through CB1 receptors activation, although non‐CB1/CB2 receptors seemed to mediate the action of the methanandamide. Altogether these data demonstrate that in inflammatory situations CBs exert, through the activation of different sub‐types of glial CB receptors, a regulation on two functions of connexin43 channels in astrocytes known to be involved in neuron survival.  相似文献   

12.
Airway smooth muscle cells (ASMC) are a source of inflammatory chemokines that may propagate airway inflammatory responses. We investigated the production of the CXC chemokine growth-related oncogene protein-alpha (GRO-alpha) from ASMC induced by cytokines and the role of MAPK and NF-kappaB pathways. ASMC were cultured from human airways, grown to confluence, and exposed to cytokines IL-1beta and TNF-alpha after growth arrest. GRO-alpha release, measured by ELISA, was increased by >50-fold after IL-1beta (0.1 ng/ml) or 5-fold after TNF-alpha (1 ng/ml) in a dose- and time-dependent manner. GRO-alpha release was not affected by the T helper type 2 cytokines IL-4, IL-10, and IL-13. IL-1beta and TNF-alpha also induced GRO-alpha mRNA expression. Supernatants from IL-1beta-stimulated ASMC were chemotactic for neutrophils; this effect was inhibited by anti-GRO-alpha blocking antibody. AS-602868, an inhibitor of IKK-2, and PD-98059, an inhibitor of ERK, inhibited GRO-alpha release and mRNA expression, whereas SP-600125, an inhibitor of JNK, reduced GRO-alpha release without effect on mRNA expression. SB-203580, an inhibitor of p38 MAPK, had no effect. AS-602868 but not PD-98059 or SP-600125 inhibited p65 DNA-binding induced by IL-1beta and TNF-alpha. By chromatin immunoprecipitation assay, IL-1beta and TNF-alpha enhanced p65 binding to the GRO-alpha promoter, which was inhibited by AS-602868. IL-1beta- and TNF-alpha-stimulated expression of GRO-alpha from ASMC is regulated by independent pathways involving NF-kappaB activation and ERK and JNK pathways. GRO-alpha released from ASMC participates in neutrophil chemotaxis.  相似文献   

13.
In the central nervous system, cytokine-primed microglia play a pivotal role in host defence against Acanthamoeba castellani infections. In this study, the effect of rIL-1beta, rIL-6 or rTNF-alpha, combined or not with rIFN-gamma, on A. castellani infection of murine microglia was examined. Priming of microglial cells with either rIL-1beta or rIL-6, in the presence or absence of rIFN-gamma, triggered amebastatic activity, while the treatment of microglia with rTNF-alpha plus rIFN-gamma additively triggered, in a dose-dependent fashion, amebicidal activity. Inasmuch as NGMA affected cytokine-triggered anti-parasitic activity during the priming process, the NO-dependent pathway itself appears not to be directly involved in the anti-amebic capacities. These data suggest that the proinflammatory cytokines IL-1beta, IL-6 or TNF-alpha could trigger anti-microbial activity against A. castellani infection in the brain.  相似文献   

14.
Glial cells orchestrate immunocyte recruitment to focal areas of viral infection within the brain and synchronize immune cell functions through a regulated network of cytokines and chemokines. Since recruitment of T lymphocytes plays a critical role in resolving cytomegalovirus (CMV) infection, we investigated the production of a T-cell chemoattractant, CXCL10 (gamma interferon-inducible protein 10) in response to viral infection of human glial cells. Infection with CMV was found to elicit the production of CXCL10 from primary microglial cells but not from astrocytes. This CXCL10 expression was not dependent on secondary protein synthesis but did require the phosphorylation of p38 mitogen-activated protein (MAP) kinase. In addition, migration of activated lymphocytes toward supernatants from CMV-stimulated microglial cells was partially suppressed by anti-CXCL10 antibodies. Since regulation of central nervous system inflammation is essential to allow viral clearance without immunopathology, microglial cells were then treated with anti-inflammatory cytokines. CMV-induced CXCL10 production from microglial cells was suppressed following treatment with interleukin-10 (IL-10) and IL-4 but not following treatment with transforming growth factor beta. The IL-10-mediated inhibition of CXCL10 production was associated with decreased CMV-induced NF-kappa B activation but not decreased p38 MAP kinase phosphorylation. Finally, CMV infection of fully permissive astrocytes resulted in mRNA expression for the viral homologue to human IL-10 (i.e., cmvIL-10 [UL111a]) in its spliced form and conditioned medium from CMV-infected astrocytes inhibited virus-induced CXCL10 production from microglial cells through the IL-10 receptor. These findings present yet another mechanism through which CMV may subvert host immune responses.  相似文献   

15.
Microglia, major immune effector cells in the central nervous system, become activated during brain injury. In this study we showed that the blood component plasminogen/plasmin activates microglia. Plasminogen-induced IL-1beta, TNF-alpha, and iNOS mRNA expression in primary cultured rat microglia and BV2 murine microglial cells. Plasmin caused a similar response. Serine protease inhibitors suppressed both plasminogen- and plasmin-induced IL-1beta and TNF-alpha expression, indicating the importance of serine protease activity in plasminogen/plasmin activation of microglia. Reactive oxygen species (ROS) appeared to play an important role in plasminogen-induced microglial activation, with ROS being generated within 15min of plasminogen treatment, and antioxidants (100 microM trolox and 10mM NAC) reducing IL-1beta and TNF-alpha expression in plasminogen-treated cells. Furthermore, plasminogen stimulated CREB and NF-kappaB DNA binding activity, and this activation was also reduced by trolox and NAC. These results suggest that plasminogen activates microglia via stimulation of ROS production.  相似文献   

16.
Suh HS  Choi N  Tarassishin L  Lee SC 《PloS one》2012,7(4):e35115

Background

The essential role of progranulin (PGRN) as a neurotrophic factor has been demonstrated by the discovery that haploinsufficiency due to GRN gene mutations causes frontotemporal lobar dementia. In addition to neurons, microglia in vivo express PGRN, but little is known about the regulation of PGRN expression by microglia.

Goal

In the current study, we examined the regulation of expression and function of PGRN, its proteolytic enzyme macrophage elastase (MMP-12), as well as the inhibitor of PGRN proteolysis, secretory leukocyte protease inhibitor (SLPI), in human CNS cells.

Methods

Cultures of primary human microglia and astrocytes were stimulated with the TLR ligands (LPS or poly IC), Th1 cytokines (IL-1/IFNγ), or Th2 cytokines (IL-4, IL-13). Results were analyzed by Q-PCR, immunoblotting or ELISA. The roles of MMP-12 and SLPI in PGRN cleavage were also examined.

Results

Unstimulated microglia produced nanogram levels of PGRN, and PGRN release from microglia was suppressed by the TLR ligands or IL-1/IFNγ, but increased by IL-4 or IL-13. Unexpectedly, while astrocytes stimulated with proinflammatory factors released large amounts of SLPI, none were detected in microglial cultures. We also identified MMP-12 as a PGRN proteolytic enzyme, and SLPI as an inhibitor of MMP-12-induced PGRN proteolysis. Experiments employing PGRN siRNA demonstrated that microglial PGRN was involved in the cytokine and chemokine production following TLR3/4 activation, with its effect on TNFα being the most conspicuous.

Conclusions

Our study is the first detailed examination of PGRN in human microglia. Our results establish microglia as a significant source of PGRN, and MMP-12 and SLPI as modulators of PGRN proteolysis. Negative and positive regulation of microglial PGRN release by the proinflammatory/Th1 and the Th2 stimuli, respectively, suggests a fundamentally different aspect of PGRN regulation compared to other known microglial activation products. Microglial PGRN appears to function as an endogenous modulator of innate immune responses.  相似文献   

17.
Mice challenged with lipopolysaccharide (LPS) produce variable serum levels of pro-inflammatory cytokines, and particularly low levels of interleukin-1 beta (IL-1 beta). Interferon-gamma (IFN-gamma) has been shown to be an important mediator of bacteria-induced hypersensitivity to LPS in mice. In the present study, we show that mice pretreated with IFN-gamma exhibit an enhanced capacity to produce serum IL-1 beta, IL-1 alpha, tumour necrosis factor (TNF-alpha) as well as IL-6 in response to LPS. Priming with intraperitoneal (i.p.) injection of 15 mg rat recombinant IFN-gamma, 18 hours prior to the i.p. LPS (300 mg) challenge resulted in a 4-fold increase in the LPS-stimulated release of IL-1 beta and a 2- to 7-fold increase in the release of IL-1 alpha, TNF-alpha, as well as IL-6 into the serum. LPS induced a concentration-dependent increase in the release of IL-1 beta in isolated peritoneal macrophages from IFN-gamma-primed mice whereas macrophages from unprimed mice released minute amounts of IL-1 beta. In addition, nigericin markedly enhanced the release of IL-1 beta in unprimed mice but not in macrophages from IFN-gamma primed mice. The cytokine synthesis inhibitor SK&F 86002, administered per os (100 mg/kg), 1 hour prior to LPS challenge, strongly inhibited the rise in serum levels of the four cytokines. Furthermore, treatment with the IL-1 beta converting enzyme (ICE) specific reversible inhibitor YVAD-CHO resulted in a sharp dose- and time-dependent inhibition of IL-1 beta secretion in the serum, whereas the other cytokines were not affected. In conclusion, IFN-gamma priming strongly potentiates the release of proinflammatory cytokines in the serum of mice as compared to LPS stimulation alone, and provides therefore a useful way to test the in vivo potency and selectivity of cytokine synthesis inhibitors.  相似文献   

18.
Microglia are the main players of the brain immune response. They act as active sensors that rapidly respond to injurious insults by shifting into different activated states. Elevated levels of unconjugated bilirubin (UCB) induce cell death, immunostimulation and oxidative stress in both neurons and astrocytes. We recently reported that microglial phagocytic phenotype precedes the release of pro-inflammatory cytokines upon UCB exposure. We investigated whether and how microglia microenvironment influences the response to UCB. Our findings revealed that conditioned media derived from UCB-treated astrocytes reduce microglial inflammatory reaction and cell death, suggesting an attempt to curtail microglial over activation. Conditioned medium from UCB-challenged neurons, although down-regulating tumor necrosis factor-α and interleukin-1β promoted the release of interleukin-6 and nitric oxide, the activation of matrix metalloproteinase-9, and cell death, as compared with UCB-direct effects on microglia. Moreover, soluble factors released by UCB-treated neurons intensified the phagocytic properties manifested by microglia under direct exposure to UCB. Results from neuron-microglia mixed cultures incubated with UCB evidenced that sensitized microglia were able to prevent neurite outgrowth impairment and cell death. In conclusion, our data indicate that stressed neurons signal microglial clearance functions, but also overstimulate its inflammatory potential ultimately leading to microglia demise.  相似文献   

19.
目的:研究姜黄素对脂多糖引起的小胶质细胞活化状态的影响,并探讨TOLR4受体在其中的作用。方法:采用体外培养N9小鼠小胶质细胞系,脂多糖作为刺激,激活小胶质细胞。采用ELISA法检测小胶质细胞培养基中TNF-α、IL-1β和IL-6的含量;相差显微镜观测细胞形态;免疫细胞化学和western blot观测小胶质细胞TOLR4受体表达情况。结果:与对照组相比,暴露于100ng/ml脂多糖24 h的小胶质细胞促炎症因子TNF-α、IL1β和IL-6释放量明显增加(P0.05),姜黄素浓度为10μM时,可显著减少小胶质细胞释放TNF-α、IL-1β和IL-6(P0.05),此外,姜黄素还可改善小胶质细胞形态,并降低暴露于脂多糖中的小胶质细胞TOLR4受体的表达。结论:姜黄素可能通过抑制TOLR4表达,减轻了脂多糖对小胶质细胞的激活。  相似文献   

20.
Microglial cells are hematopoietically derived monocytes of the CNS and serve important neuromodulatory, neurotrophic, and neuroimmune roles. Following insult to the CNS, microglia develop a reactive phenotype, migrate to the site of injury, proliferate, and release a range of proinflammatory, anti-inflammatory, and neurotrophic factors. Isolation of primary microglial cell cultures has been an integral step in elucidating the many roles of these cells. In addition to primary microglial cells, several immortalized cell lines have been created to model primary microglia in vitro, including murine-derived BV-2 cells and rat derived highly aggressive proliferating immortalized (HAPI) cells. Here, we compare rat primary microglial, BV-2, and HAPI cells in experiments assessing migration, expression of activation markers, and production and release of nitric oxide, cytokines, and chemokines. BV-2 and HAPI cells responded similarly to primary microglia in experiments assessing migration, ionized calcium binding adaptor molecule 1 expression, and nitric oxide release. However, BV-2 and HAPI cells did not model primary microglia in experiments assessing tumor necrosis factor-alpha, interleukin-1beta, interleukin-6, and monocyte chemoattractant protein-1 expression and release and phospho-extracellular signal-regulated kinase 44/42 expression following lipopolysaccharide treatment. These results indicate that BV-2 and HAPI cell cultures only partially model primary microglia and that their use should therefore be carefully considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号