首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New COP1-binding motifs involved in ER retrieval.   总被引:5,自引:0,他引:5  
Coatomer-mediated sorting of proteins is based on the physical interaction between coatomer (COP1) and targeting motifs found in the cytoplasmic domains of membrane proteins. For example, binding of COP1 to dilysine (KKXX) motifs induces specific retrieval of tagged proteins from the Golgi back to the endoplasmic reticulum (ER). Making use of the two-hybrid system, we characterized a new sequence (deltaL) which interacts specifically with the delta-COP subunit of the COP1 complex. Transfer of deltaL to the cytoplasmic domain of a reporter membrane protein resulted in its localization in the ER, in yeast and mammalian cells. This was due to continuous retrieval of tagged proteins from the Golgi back to the ER, in a manner similar to the ER retrieval of KKXX-tagged proteins. Extensive mutagenesis of deltaL identified an aromatic residue as a critical determinant of the interaction with COP1. Similar COP1-binding motifs containing an essential aromatic residue were identified in the cytoplasmic domain of an ER-resident protein, Sec71p, and in an ER retention motif previously characterized in the CD3epsilon chain of the T-cell receptor. These results emphasize the role of the COP1 complex in retrograde Golgi-to-ER transport and highlight its functional similarity with clathrin-adaptor complexes.  相似文献   

2.
Membrane proteins exit the endoplasmic reticulum (ER) in COPII-transport vesicles. ER export is a selective process in which transport signals present in the cytoplasmic tail (CT) of cargo membrane proteins must be recognized by coatomer proteins for incorporation in COPII vesicles. Two classes of ER export signals have been described for type I membrane proteins, the diacidic and the dihydrophobic motifs. Both motifs participate in the Sar1-dependent binding of Sec23p-Sec24p complex to the CTs during early steps of cargo selection. However, information concerning the amino acids in the CTs that interact with Sar1 is lacking. Herein, we describe a third class of ER export motif, [RK](X)[RK], at the CT of Golgi resident glycosyltransferases that is required for these type II membrane proteins to exit the ER. The dibasic motif is located proximal to the transmembrane border, and experiments of cross-linking in microsomal membranes and of binding to immobilized peptides showed that it directly interacts with the COPII component Sar1. Sar1GTP-bound to immobilized peptides binds Sec23p. Collectively, the present data suggest that interaction of the dibasic motif with Sar1 participates in early steps of selection of Golgi resident glycosyltransferases for transport in COPII vesicles.  相似文献   

3.
Formation of COPII-coated vesicles at the endoplasmic reticulum (ER) requires assembly onto the membrane of five cytosolic coat proteins, Sec23p, Sec24p, Sec13p, Sec31p, and Sar1p. A sixth vesicle coat component, Sec16p, is tightly associated with the ER membrane and has been proposed to act as a scaffold for membrane association of the soluble coat proteins. We previously showed that Sec23p binds to the C-terminal region of Sec16p. Here we use two-hybrid and coprecipitation assays to demonstrate that the essential COPII protein Sec24p binds to the central region of Sec16p. In vitro reconstitution of binding with purified recombinant proteins demonstrates that the interaction of Sec24p with the central domain of Sec16p does not depend on the presence of Sec23p. However, Sec23p facilitates binding of Sec24p to Sec16p, and the three proteins can form a ternary complex in vitro. Truncations of Sec24p demonstrate that the N-terminal and C-terminal regions of Sec24p display different binding specificities. The C terminus binds to the central domain of Sec16p, whereas the N terminus of Sec24p binds to both the central domain of Sec16p and to Sec23p. These findings define binding to Sec16p as a new function for Sec24p and support the idea that Sec16p organizes assembly of the COPII coat.  相似文献   

4.
Re-uptake of gamma-aminobutyric acid (GABA) into presynaptic specializations is mediated by the GABA transporter 1 (GAT1), a member of the SLC6 gene family. Here, we show that a motif in the COOH terminus of GAT1 ((566)RL(567)), which is conserved in SLC6 family members, is a binding site for the COPII coat component Sec24D. We also identified residues in Sec24D ((733)DD(734)) that are required to support the interaction with GAT1 and two additional family members, i.e. the transporters for serotonin and dopamine. We used three strategies to prevent recruitment of Sec24D to GAT1: knock-down of Sec24D by RNA interference, overexpression of Sec24D-VN (replacement of (733)DD(734) by (733)VN(734)), and mutation of (566)RL(567) to (566)AS(567) (GAT1-RL/AS). In each instance, endoplasmic reticulum (ER) export of GAT1 was impaired: in the absence of Sec24D or upon coexpression of dominant negative Sec24D-VN, GAT1 failed to undergo concentrative ER export; GAT1-RL/AS also accumulated in the ER and exerted a dominant negative effect on cell surface targeting of wild type GAT1. Our observations show that concentrative ER-export is contingent on a direct interaction of GAT1 with Sec24D; this also provides a mechanistic explanation for the finding that oligomeric assembly of transporters is required for their ER export: transporter oligomerization supports efficient recruitment of COPII components.  相似文献   

5.
Protein export from the endoplasmic reticulum (ER) depends on the interaction between a signal motif on the cargo and a cargo recognition site on the coatomer protein complex II. A hydrophobic sequence in the N terminus of the bovine anion exchanger 1 (AE1) anion exchanger facilitated the ER export of human AE1Δ11, an ER-retained AE1 mutant, through interaction with a specific Sec24 isoform. The cell surface expression and N-glycan processing of various substitution mutants or chimeras of human and bovine AE1 proteins and their Δ11 mutants in HEK293 cells were examined. The N-terminal sequence (V/L/F)X(I/L)X(M/L), 26VSIPM30 in bovine AE1, which is comparable with ΦXΦXΦ, acted as the ER export signal for AE1 and AE1Δ11 (Φ is a hydrophobic amino acid, and X is any amino acid). The AE1-Ly49E chimeric protein possessing the ΦXΦXΦ motif exhibited effective cell surface expression and N-glycan maturation via the coatomer protein complex II pathway, whereas a chimera lacking this motif was retained in the ER. A synthetic polypeptide containing the N terminus of bovine AE1 bound the Sec23A-Sec24C complex through a selective interaction with Sec24C. Co-transfection of Sec24C-AAA, in which the residues 895LIL897 (the binding site for another ER export signal motif IXM on Sec24C and Sec24D) were mutated to 895AAA897, specifically increased ER retention of the AE1-Ly49E chimera. These findings demonstrate that the ΦXΦXΦ sequence functions as a novel signal motif for the ER export of cargo proteins through an exclusive interaction with Sec24C.  相似文献   

6.
7.
When added to living cells, sterols such as cholesterol and 25-hydroxycholesterol block the lateral movement of sterol regulatory element-binding proteins (SREBPs) into COPII-coated vesicles on endoplasmic reticulum (ER) membranes and thereby prevent the SREBPs from reaching the Golgi complex for processing to the mature forms that activate cholesterol synthesis. Sorting of SREBPs into COPII vesicles is mediated by Sar1 and the coat proteins Sec23 and Sec24. Here, we explore the mechanism of sterol inhibition in vitro through use of protein pull-down assays. We show that addition of cholesterol or 25-hydroxycholesterol to microsomal membranes in vitro blocks Sar1-dependent binding of the Sec23/24 complex to Scap, the SREBP escort protein. This in vitro inhibition is dependent on the presence of Insig-1, an ER resident protein that is necessary for sterol-mediated inhibition of Scap/SREBP transport in intact cells. Sec23/24 binding to Scap requires the hexapeptide sequence MELADL located in a cytoplasmic loop of Scap. This hexapeptide acts as a sterol-regulated ER sorting signal. These studies define the biochemical parameters responsible for regulated sorting of an ER membrane protein into COPII-coated vesicles.  相似文献   

8.
The coat protein complex II (COPII) is essential for vesicle formation from the endoplasmic reticulum (ER) and is composed of two heterodimeric subcomplexes, Sec23p/Sec24p and Sec13p/Sec31p, and the small guanosine triphosphatase Sar1p. In an effort to identify novel factors that may participate in COPII vesicle formation, we isolated SMY2 , a yeast gene encoding a protein of unknown function, as a multicopy suppressor of the temperature-sensitive sec24-20 mutant. We found that even a low-copy expression of SMY2 was sufficient for the suppression of the sec24-20 phenotypes, and the chromosomal deletion of SMY2 led to a severe growth defect in the sec24-20 background. In addition, SMY2 exhibited genetic interactions with several other genes involved in the ER-to-Golgi transport. Subcellular fractionation analysis showed that Smy2p was a peripheral membrane protein fractionating together with COPII components. However, Smy2p was not loaded onto COPII vesicles generated in vitro . Interestingly, coimmunoprecipitation between Smy2p and the Sec23p/Sec24p subcomplex was specifically observed in sec23-1 and sec24-20 backgrounds, suggesting that this interaction was a prerequisite for the suppression of the sec24-20 phenotypes by overexpression of SMY2 . We propose that Smy2p is located on the surface of the ER and facilitates COPII vesicle formation through the interaction with Sec23p/Sec24p subcomplex.  相似文献   

9.
Cystic fibrosis (CF) is a childhood hereditary disease in which the most common mutant form of the CF transmembrane conductance regulator (CFTR) DeltaF508 fails to exit the endoplasmic reticulum (ER). Export of wild-type CFTR from the ER requires the coat complex II (COPII) machinery, as it is sensitive to Sar1 mutants that disrupt normal coat assembly and disassembly. In contrast, COPII is not used to deliver CFTR to ER-associated degradation. We find that exit of wild-type CFTR from the ER is blocked by mutation of a consensus di-acidic ER exit motif present in the first nucleotide binding domain. Mutation of the code disrupts interaction with the COPII coat selection complex Sec23/Sec24. We propose that the di-acidic exit code plays a key role in linking CFTR to the COPII coat machinery and is the primary defect responsible for CF in DeltaF508-expressing patients.  相似文献   

10.
Transport of newly synthesized proteins from the endoplasmic reticulum (ER) to the Golgi is mediated by the coat protein complex COPII. The inner coat of COPII is assembled from heterodimers of SEC23 and SEC24. Though mice with mutations in one of the four Sec24 paralogs, Sec24b, exhibit a neural tube closure defect, deficiency in humans or mice has not yet been described for any of the other Sec24 paralogs. We now report characterization of mice with targeted disruption of Sec24d. Early embryonic lethality is observed in mice completely deficient in SEC24D, while a hypomorphic Sec24d allele permits survival to mid-embryogenesis. Mice haploinsufficient for Sec24d exhibit no phenotypic abnormality. A BAC transgene containing Sec24d rescues the embryonic lethality observed in Sec24d-null mice. These results demonstrate an absolute requirement for SEC24D expression in early mammalian development that is not compensated by the other three Sec24 paralogs. The early embryonic lethality resulting from loss of SEC24D in mice contrasts with the previously reported mild skeletal phenotype of SEC24D deficiency in zebrafish and restricted neural tube phenotype of SEC24B deficiency in mice. Taken together, these observations suggest that the multiple Sec24 paralogs have developed distinct functions over the course of vertebrate evolution.  相似文献   

11.
Glycoproteins exit the endoplasmic reticulum (ER) of the yeast Saccharomyces cerevisiae in coat protein complex II (COPII) coated vesicles. The coat consists of the essential proteins Sec23p, Sec24p, Sec13p, Sec31p, Sar1p and Sec16p. Sec24p and its two nonessential homologues Sfb2p and Sfb3p have been suggested to serve in cargo selection. Using temperature-sensitive sec24-1 mutants, we showed previously that a secretory glycoprotein, Hsp150, does not require functional Sec24p for ER exit. Deletion of SFB2, SFB3 or both from wild type or the deletion of SFB2 from sec24-1 cells did not affect Hsp150 transport. SFB3 deletion has been reported to be lethal in sec24-1. However, here we constructed a sec24-1 Deltasfb3 and a sec24-1 Deltasfb2 Deltasfb3 strain and show that Hsp150 was secreted slowly in both. Turning off the SEC24 gene did not inhibit Hsp150 secretion either, and the lack of SEC24 expression in a Deltasfb2 Deltasfb3 deletant still allowed some secretion. The sec24-1 Deltasfb2 Deltasfb3 mutant grew slower than sec24-1. The cells were irregularly shaped, budded from random sites and contained proliferated ER at permissive temperature. At restrictive temperature, the ER formed carmellae-like proliferations. Our data indicate that ER exit may occur in vesicles lacking a full complement of Sec23p/24p and Sec13p/31p, demonstrating diversity in the composition of the COPII coat.  相似文献   

12.
Heteromeric complexes of p24 proteins cycle between early compartments of the secretory pathway and are required for efficient protein sorting. Here we investigated the role of cytoplasmically exposed tail sequences on two p24 proteins, Emp24p and Erv25p, in directing their movement and subcellular location in yeast. Studies on a series of deletion and chimeric Emp24p-Erv25p proteins indicated that the tail sequences impart distinct functional properties that were partially redundant but not entirely interchangeable. Export of an Emp24p-Erv25p complex from the endoplasmic reticulum (ER) did not depend on two other associated p24 proteins, Erp1 and Erp2p. To examine interactions between the Emp24p and Erv25p tail sequences with the COPI and COPII coat proteins, binding experiments with immobilized tail peptides and coat proteins were performed. The Emp24p and Erv25p tail sequences bound the Sec13p/Sec31p subunit of the COPII coat (K(d) approximately 100 microm), and binding depended on a pair of aromatic residues found in both tail sequences. COPI subunits also bound to these Emp24p and Erv25p peptides; however, the Erv25p tail sequence, which contains a dilysine motif, bound COPI more efficiently. These results suggest that both the Emp24p and Erv25p cytoplasmic sequences contain a di-aromatic motif that binds subunits of the COPII coat and promotes export from the ER. The Erv25p tail sequence binds COPI and is responsible for returning this complex to the ER.  相似文献   

13.
The mechanism of cargo concentration into ER-derived vesicles involves interactions between the COPII vesicular coat complex and cargo transport signals--peptide sequences of 10-15 residues. The SNARE protein Sec22 contains a signal that binds the COPII subcomplex Sec23/24 and specifies its endoplasmic reticulum (ER) exit as an unassembled SNARE. The 200 kDa crystal structure of Sec22 bound to Sec23/24 reveals that the transport signal is a folded epitope rather than a conventional short peptide sequence. The NIE segment of the SNARE motif folds against the N-terminal longin domain, and this closed form of Sec22 binds at the Sec23/24 interface. Thus, COPII recognizes unassembled Sec22 via a folded epitope, whereas Sec22 assembly into SNARE complexes would mask the NIE segment. The concept of a conformational epitope as a transport signal suggests packaging mechanisms in which a coat is sensitive to the folded state of a cargo protein or the assembled state of a multiprotein complex.  相似文献   

14.
15.
Coat protein II (COPII)–mediated export from the endoplasmic reticulum (ER) involves sequential recruitment of COPII complex components, including the Sar1 GTPase, the Sec23/Sec24 subcomplex, and the Sec13/Sec31 subcomplex. p125A was originally identified as a Sec23A-interacting protein. Here we demonstrate that p125A also interacts with the C-terminal region of Sec31A. The Sec31A-interacting domain of p125A is between residues 260–600, and is therefore a distinct domain from that required for interaction with Sec23A. Gel filtration and immunodepletion studies suggest that the majority of cytosolic p125A exists as a ternary complex with the Sec13/Sec31A subcomplex, suggesting that Sec 13, Sec31A, and p125A exist in the cytosol primarily as preassembled Sec13/Sec31A/p125A heterohexamers. Golgi morphology and protein export from the ER were affected in p125A-silenced cells. Our results suggest that p125A is part of the Sec13/Sec31A subcomplex and facilitates ER export in mammalian cells.  相似文献   

16.
The correct functioning of ion channels depends not only on the control of their activity but also on the regulation of the number of channels in the membrane. For example, it has been proposed that the density of the plant K(+)-channel KAT1 may be adjusted by controlling its export from its site of synthesis, the endoplasmic reticulum (ER). Efficient transport of the channel to the plasma membrane was found to depend on a di-acidic ER export signal in the C-terminus of the protein. Studies in yeast and mammals indicate that di-acidic ER export motifs are essential for enrichment of proteins into ER-derived coat protein complex II (COPII) vesicles and are recognized by Sec24 a component of the COPII coat. To investigate whether similar mechanisms also exist in plants we have analysed the interaction of KAT1 with Sec24 in vivo using fluorescence resonance energy transfer (FRET) measurements in Vicia faba guard cells. These measurements revealed a FRET signal between KAT1 and Sec24 fused to the cyan fluorescent protein and the yellow fluorescent protein, respectively, indicating an interaction between KAT1 and Sec24. The FRET signal only occurred in the perinuclear region of the ER and was dependent on the di-acidic ER export motif of KAT1. Together, the results point to a highly conserved mechanism for ER export of KAT1 whereby the channel is recruited into COPII vesicles via binding of the di-acidic motif to Sec24.  相似文献   

17.
Vesicle budding from the endoplasmic reticulum (ER) employs a cycle of GTP binding and hydrolysis to regulate assembly of the COPII coat. We have identified a novel mutation (sec24-m11) in the cargo-binding subunit, Sec24p, that specifically impacts the GTP-dependent generation of vesicles in vitro. Using a high-throughput approach, we defined genetic interactions between sec24-m11 and a variety of trafficking components of the early secretory pathway, including the candidate COPII regulators, Sed4p and Sec16p. We defined a fragment of Sec16p that markedly inhibits the Sec23p- and Sec31p-stimulated GTPase activity of Sar1p, and demonstrated that the Sec24p-m11 mutation diminished this inhibitory activity, likely by perturbing the interaction of Sec24p with Sec16p. The consequence of the heightened GTPase activity when Sec24p-m11 is present is the generation of smaller vesicles, leading to accumulation of ER membranes and more stable ER exit sites. We propose that association of Sec24p with Sec16p creates a novel regulatory complex that retards the GTPase activity of the COPII coat to prevent premature vesicle scission, pointing to a fundamental role for GTP hydrolysis in vesicle release rather than in coat assembly/disassembly.  相似文献   

18.
Proteins detrimental to endoplasmic reticulum (ER) morphology need to be efficiently exported. Here, we identify two mechanisms that control trafficking of Arabidopsis thalianaGLL23, a 43 kDa GDSL‐like lipase implicated in glucosinolate metabolism through its association with the β‐glucosidase myrosinase. Using immunofluorescence, we identified two mutants that showed aberrant accumulation of GLL23: large perinuclear ER aggregates in the nuclear cage (nuc) mutant; and small compartments contiguous with the peripheral ER in the cytoplasmic bodies (cyb) mutant. Live imaging of fluorescently tagged GLL23 confirmed its presence in the nuc and cyb compartments, but lack of fluorescent signals in the wild‐type plants suggested that GLL23 is normally post‐translationally modified for ER export. NUC encodes the MVP1/GOLD36/ERMO3 myrosinase‐associated protein, previously shown to have vacuolar distribution. CYB is an ER and Golgi‐localized p24 type I membrane protein component of coat protein complex (COP) vesicles, animal and yeast homologues of which are known to be involved in selective cargo sorting for ER–Golgi export. Without NUC, GLL23 accumulates in the ER this situation suggests that NUC is in fact active in the ER. Without CYB, both GLL23 and NUC were found to accumulate in cyb compartments, consistent with a role for NUC in GLL23 processing and indicated that GLL23 is the likely sorting target of the CYB p24 protein.  相似文献   

19.
Transport of secretory proteins out of the endoplasmic reticulum (ER) is mediated by vesicles generated by the COPII coat complex. In order to understand how cargo molecules are selected by this cytoplasmic coat, we investigated the functional role of the Sec24p homolog, Lst1p. We show that Lst1p can function as a COPII subunit independently of Sec24p on native ER membranes and on synthetic liposomes. However, vesicles generated with Lst1p in the absence of Sec24p are deficient in a distinct subset of cargo molecules, including the SNAREs, Bet1p, Bos1p and Sec22p. Consistent with the absence of any SNAREs, these vesicles are unable to fuse with Golgi membranes. Furthermore, unlike Sec24p, Lst1p fails to bind to Bet1p in vitro, indicating a direct correlation between cargo binding and recruitment into vesicles. Our data suggest that the principle role of Sec24p is to discriminate cargo molecules for incorporation into COPII vesicles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号