首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We reported previously that a transient occlusion followed by reperfusion of the portal vein and the hepatic artery of the rat significantly decreased the transhepatic transport of a cholephilic compound, and that this decrease was prevented by pretreating animals with poly(styrene co-maleic acid butyl ester)-conjugated superoxide dismutase (SM-SOD). To elucidate the mechanism for oxidative injury of the liver and the site for the generation of superoxide radicals, the effect of a portosystemic bypass on the liver function was examined in the rat whose hepatic vessels were temporarily occluded. A portosystemic bypass inhibited the reperfusion-induced decrease in hepatic transport of bromosulfophthalein as effectively as did SM-SOD. Kinetic analysis using 125I-labeled albumin revealed that the permeability of the small intestine markedly increased after a transient occlusion. The increase in intestinal permeability was also inhibited either by SM-SOD or by the portosystemic bypass. Xanthine oxidase activity in portal plasma markedly increased during occlusion and reperfusion, while it remained within normal ranges in the bypassed group. Thus, superoxide radical, and/or its metabolite(s), might play a critical role in increasing the intestinal permeability and in the pathogenesis of reperfusion-induced liver injury.  相似文献   

2.
Reperfusion of ischemic tissue results in the generation of reactive oxygen species that contribute to tissue injury. The sources of reactive oxygen species in reperfused tissue are not fully characterized. We hypothesized that the small GTPase Rac1 mediates the oxidative burst in reperfused tissue and thereby contributes to reperfusion injury. In an in vivo model of mouse hepatic ischemia/reperfusion injury, recombinant adenoviral expression of a dominant negative Rac1 (Rac1N17) completely suppressed the ischemia/reperfusion-induced production of reactive oxygen species and lipid peroxides, activation of nuclear factor-kappa B, and resulted in a significant reduction of acute liver necrosis. Expression of Rac1N17 also suppressed ischemia/reperfusion-induced acute apoptosis. The protection offered by Rac1N17 was also evident in knockout mice deficient for the gp91phox component of the phagocyte NADPH oxidase. This work demonstrates the crucial role of a Rac1-regulated oxidase in mediating the production of injurious reactive oxygen species, which contribute to acute necrotic and apoptotic cell death induced by ischemia/reperfusion in vivo. Targeted inhibition of this oxidase, which is distinct from the phagocyte NADPH oxidase, should provide a new avenue for in vivo therapy aimed at protecting organs at risk from ischemia/reperfusion injury.-Ozaki, M., Deshpande, S. S., Angkeow, P., Bellan, J., Lowenstein, C. J., Dinauer, M. C., Goldschmidt-Clermont, P. J., Irani, K. Inhibition of the Rac1 GTPase protects against nonlethal ischemia/reperfusion-induced necrosis and apoptosis in vivo.  相似文献   

3.
Ischemia-reperfusion injury to cardiac myocytes involves membrane damage mediated by oxygen free radicals. Lipid peroxidation is considered a major mechanism of oxygen free radical toxicity in reperfused heart. Mitochondrial respiration is an important source of these reactive oxygen species and hence a potential contributor to reperfusion injury. We have examined the effects of ischemia (30 min) and ischemia followed by reperfusion (15 min) of rat hearts, on the kinetic parameters of cytochrome c oxidase, on the respiratory activities and on the phospholipid composition in isolated mitochondria. Mitochondrial content of malonyldialdheyde (MDA), an index of lipid peroxidation, was also measured. Reperfusion was accompanied by a significant increase in MDA production. Mitochondrial preparations from control, ischemic and reperfused rat heart had equivalent Km values for cytochrome c, although the maximal activity of the oxidase was 25 and 51% less in ischemic and reperfused mitochondria than that of controls. These changes in the cytochrome c oxidase activity were associated to parallel changes in state 3 mitochondrial respiration. The cytochrome aa3 content was practically the same in these three types of mitochondria. Alterations were found in the mitochondrial content of the major phospholipid classes, the most pronounced change occurring in the cardiolipin, the level that decreased by 28 and by 50% as function of ischemia and reperfusion, respectively. The lower cytochrome c oxidase activity in mitochondria from reperfused rat hearts could be almost completely restored to the level of control hearts by exogenously added cardiolipin, but not by other phospholipids nor by peroxidized cardiolipin. It is proposed that the reperfusion-induced decline in the mitochondrial cytochrome c oxidase activity can be ascribed, at least in part, to a loss of cardiolipin content, due to peroxidative attack of its unsaturated fatty acids by oxygen free radicals. These findings may provide an explanation for some of the factors that lead to myocardial reperfusion injury.  相似文献   

4.
The overproduction of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) may contribute to the pathophysiology of intestinal injury induced by ischemia-reperfusion. The aim of the present study was to examine the effect of selective iNOS inhibition by a cyclic amidine analogue, ONO-1714, on reperfusion-induced small intestinal injury and inflammation in rats. Intestinal damage was induced in male Sprague-Dawley rats by clamping both the superior mesenteric artery and the celiac trunk for 30 min, followed by reperfusion. The luminal nitrite concentration in the small intestine was measured by Griess reaction and the iNOS mRNA expression by RT-PCR. The severity of the intestinal mucosal injury and inflammation were evaluated by several biochemical markers and by the histological findings. The rats which were killed after ischemia-reperfusion had increased luminal concentrations of nitrite and iNOS mRNA expression, in addition to severe intestinal inflammation characterized by significant increases in myeloperoxidase activity, a marker of neutrophil infiltration, and by the mucosal content of CINC-1 cytokine, a neutrophil chemotactic cytokine. Administration with ONO-1714 significantly inhibited the luminal NO production. Reperfusion after 30-min ischemia resulted in an increase in luminal protein and hemoglobin concentrations, with levels reaching a maximum after 60 min of reperfusion. In contrast, pre-treatment with ONO-1714 2h before the ischemia inhibited the increases in luminal protein and hemoglobin concentration in a dose-dependent manner (0.001-0.1mg/kg). The contents of the thiobarbituric acid-reactive substances (a marker of oxidative lipid peroxidation) were significantly increased by ischemia-reperfusion, and this increase was reduced by ONO-1714. After reperfusion, the increase in tissue-associated myeloperoxidase activity, an index of neutrophil infiltration, was significantly inhibited by pre-treatment with ONO-1714. ONO-1714 also inhibited increases in intestinal CINC-1 protein and mRNA expression, as determined by ELISA and RT-PCR, respectively. In conclusion, the improvement of reperfusion-induced intestinal injury by ONO-1714 suggested that an excess of NO, produced by iNOS, may have contributed to the initiation/amplification of intestinal inflammatory injury by various mechanisms, including nitrosative and oxidative damage as well as the enhancement of inflammatory cytokine release.  相似文献   

5.
Complement receptor 1-related gene/protein y (Crry) is a murine membrane protein that regulates the activity of both classical and alternative complement pathways. We used a recombinant soluble form of Crry fused to the hinge, CH2, and CH3 domains of mouse IgG1 (Crry-Ig) to determine whether inhibition of complement activation prevents and/or reverses mesenteric ischemia/reperfusion-induced injury in mice. Mice were subjected to 30 min of ischemia, followed by 2 h of reperfusion. Crry-Ig was administered either 5 min before or 30 min after initiation of the reperfusion phase. Pretreatment with Crry-Ig reduced local intestinal mucosal injury and decreased generation of leukotriene B(4) (LTB(4)). When given 30 min after the beginning of the reperfusion phase, Crry-Ig resulted in a decrease in ischemia/reperfusion-induced intestinal mucosal injury comparable to that occurring when it was given 5 min before initiation of the reperfusion phase. The beneficial effect of Crry-Ig administered 30 min after the initiation of reperfusion coincided with a decrease in PGE(2) generation despite the fact that it did not prevent local infiltration of neutrophils and did not have a significant effect on LTB(4) production. These data suggest that complement inhibition protects animals from reperfusion-induced intestinal damage even if administered as late as 30 min into reperfusion and that the mechanism of protection is independent of neutrophil infiltration or LTB(4) inhibition.  相似文献   

6.
《Free radical research》2013,47(3-6):285-291
Oxygen-derived free radicals have been implicated as possible mediators in the development of tissue injury induced by ischemia and reperfusion. Clamping of the celiac artery in rats reduced the gastric mucosal blood flow to 10% of that measured before the clamping. The area of gastric erosions and thiobarbituric acid (TBA) reactants in gastric mucosa were significantly increased 60 and 90 min after clamping. These changes were inhibited by treatment with SOD and catalase. Thirty and 60 min after reoxyganation, produced by removal of the clamps following 30 min of ischemia, gastric mucosal injury and the increase in TBA reactants were markedly aggravated compared with those induced by ischemia alone. SOD and catalase significantly inhibited these changes. The serum a-tocopherol/cholesterol ratio, an index of in vivo lipid peroxidation, was significantly decreased after long periods of ischemia (60 and 90 min), or after 30 and 60 min of reperfusion following 30 min of ischemia. These results indicated that active oxygen species and lipid peroxidation may play a role in the pathogenesis of gastric mucosal injury induced by both ischemia alone and ischemia-reperfusion. Although, allopurinol inhibited the formation of gastric mucosal injury and the increase in TBA reactants in gastric mucosa, the depletion of polymorphonuclear leukocytes (PMN) counts induced by an injection of anti-rat PMN antibody did not inhibit these changes. As compared with the hypoxanthine-xanthine oxidase system, PMN seem to play a relatively small part in the formation of gastric mucosal injury induced by ischemia-reperfusion.  相似文献   

7.
The effect of melatonin on reperfusion arrhythmias and postischemic contractile dysfunction was studied in the isolated rat heart. 25 min global ischemia was induced and followed by 30 min of reperfusion. Melatonin (10 micromol/l) was present in the perfusion solution during the whole experiment. Experiment revealed protective effect of melatonin on reperfusion-induced arrhythmias--arrhythmia score was significantly lower as well as the total time of arrhythmias duration was significantly shorter in melatonin group than in controls. On the other hand, post-ischemic recovering of contractility was significantly reduced in melatonin group.  相似文献   

8.
This study was designed to determine the gastroprotective properties of quercetin in ischemia/reperfusion-induced gastric mucosal injury and the involvement of endogenous prostaglandins in this process. Oral pretreatment of rats with quercetin (100 mg x kg(-1)) 30 min before surgery significantly decreased the length of gastric mucosal lesions. However, lower doses of quercetin (25 and 50 mg x kg(-1)) only slightly decreased the gastric mucosal injury. Intraperitoneal application of indomethacin (5 mg x kg(-1)) had no effect in control (sham-operated) animals, but significantly worsened gastric injury in non-treated animals after ischemia/reperfusion. Furthermore, indomethacin only slightly reversed protective effect of quercetin. Non-treated animals showed a marked decrease in adherent mucus after ischemia/reperfusion. On the other hand, application of quercetin prevented this significant decrease even in animals pretreated with indomethacin. It can be concluded that antioxidant properties of quercetin and its mucus protective effect might be the main factors responsible for its protective effect against ischemia/reperfusion-induced gastric mucosal injury.  相似文献   

9.
Gastric mucus plays an important role in gastric mucosal protection. Apart from its "barrier" function, it has been demonstrated that mucus protects gastric epithelial cells against toxic oxygen metabolites derived from the xanthine/ xanthine oxidase system. In this study, we investigated the effect of malotilate and sucralfate (mucus production stimulators) and N-acetylcysteine (mucolytic agent) on ischemia/reperfusion-induced gastric mucosal injury. Gastric ischemia was induced by 30 min clamping of the coeliac artery followed by 30 min of reperfusion. The mucus content was determined by the Alcian blue method. Sucralfate (100 mg/kg), malotilate (100 mg/kg), and N-acetylcysteine (100 mg/kg) were given orally 30 min before surgery. Both sucralfate and malotilate increased the mucus production in control rats. On the other hand, N-acetyloysteine significantly decreased mucus content in control (sham) group. A significant decrease of mucus content was found in the control and the N-acetylcysteine pretreated group during the period of ischemia. On the other hand, sucralfate and malotilate prevented the decrease the content of mucus during ischemia. A similar result can be seen after ischemia/reperfusion. In the control group and N-acetylcysteine pretreated group a significant decrease of adherent mucus content was found. However, sucralfate and malotilate increased mucus production (sucralfate significantly). Sucralfate and malotilate also significantly protected the gastric mucosa against ischemia/reperfusion-induced injury. However, N-acetylcysteine significantly increased gastric mucosal injury after ischemia/reperfusion. These results suggest that gastric mucus may be involved in the protection of gastric mucosa after ischemia/reperfusion.  相似文献   

10.
Dysfunction of mitochondrial calcium homeostasis transforms this cation from a key regulator of mitochondrial function, into a death effector during post-ischemic reperfusion. High intramitochondrial calcium and prevailing cellular conditions favor the opening of the mitochondrial permeability transition pore (mPTP), that induces mitochondrial swelling and provides a mechanism for cytochrome c release, a hallmark signal protein of the mitochondrial apoptosis pathway; indeed, a second mechanism induced by pro-apoptotic BAX protein, could account for cytochrome c leak in the post-ischemic heart. The present study was undertaken to determine which one of these mechanisms triggers the mitochondrial apoptosis pathway in the reperfused heart. To accomplish this goal we prevented the opening of the mPTP in such hearts, by diminishing calcium overload with Ru360, a specific mitochondrial calcium uniporter inhibitor. We found that mPTP opening in reperfused hearts increased along with reperfusion time and concurs with cytochrome c release from mitochondria. Maximal cytochrome c release correlated with mitochondrial dysfunction and complete NAD+ deletion. Fully inserted BAX was detected early after reperfusion and remained unchanged during the evaluated reperfusion times. Remarkably, heart perfusion with Ru360, inhibited mPTP opening and BAX docking into the mitochondrial membranes, suggesting a mPTP upstream role on BAX migration/insertion.  相似文献   

11.
A growing body of evidence supports the role of free radicals in triggering the functional and metabolic disturbances following transient cerebral ischemia. This study was designed to evaluate whether the extent of reperfusion-induced inhibition of protein synthesis initiation as well as tissue injury can be reduced by Tanakan (Ginkgo biloba extract, EGb 761) (Beaufour-Ipsen Industrie). Rats received Tanakan in the dose of 40 mg/kg/day for 7 days before surgical intervention. Transient forebrain ischemia was induced by 4-vessel occlusion. Rats were subjected to 20 min of ischemia followed by 30 min, 4 h or 7 days of reperfusion. Protein synthesis rate, reinitiation ability and neurodegeneration in the frontal cortex and hippocampus were measured by the incorporation of radioactively labelled leucine into polypeptide chains in postmitochondrial supernatants and by Fluoro-Jade B staining. The protective effect was observed, concerning both the protein synthesis and the number of surviving neurons, in the Tanakan-treated groups. Tanakan significantly reduced the ischemia/reperfusion-induced inhibition of translation in the neocortex as well as in the highly sensitive hippocampus. Our results indicate that free radicals play an important role in the development of reperfusion-induced injury, and the treatment of ischemic and reperfused brain with free radical scavengers may reduce the severity of reperfusion damage.  相似文献   

12.
The ability of the gut to inactivate various amines by oxidative deamination was tested with a 130-fold purified amine oxidase preparation from dog small intestine. Of 34 amines tested, putrescine, benzylamine, cadaverine, and serotonin were the most favourable substrates. Histamine was inactivated rapidly by this enzyme preparation, too. Histamine derivatives methylated at the imidazole nucleus were also deaminated, whereas Nalpha-methylhistamine was only a poor substrate and Nalpha, Nalpha-dimethylhistamine was not a substrate at all. Using a second procedure for the purification of amine oxidases from gut, the separation of a soluble monoamine oxidase from diamine oxidase was achieved by gel filtration on Sephadex G-200. The diamine oxidase deaminated putrescine (Km = 1.3 x 10(-4)M) and histamine (Km = 6.6 x 10(-5)M), but not serotonin, and was inhibited by aminoguanidine, but not by pargyline. The soluble monoamine oxidase inactivated serotonin (Km = 4.5 x 10(-4)M), but not histamine and putrescine and was inhibited by pargyline, but not by aminoguanidine. It was concluded that in dog small intestine (as well as in rabbit small intestine) only diamine oxidase was capable of inactivating histamine by oxidative deamination.  相似文献   

13.
Szabó A  Vollmar B  Boros M  Menger MD 《Life sciences》2006,78(26):3058-3065
Female sex hormones have been reported to preserve endothelial integrity and to reduce inflammation. However, gender-related differences in the intestinal mucosal barrier function during compromised perfusion after ischemia and transplantation have not been defined. Herein, we applied intravital microscopy to determine the mucosal epithelial and intestinal microcirculatory responses in ileal villus and longitudinal muscle layers in a murine model of 30-min intestinal ischemia and 90-min reperfusion. In male animals, the entire reperfusion period was characterized by a significantly increased epithelial permeability. This was associated with an early leukocytic inflammatory response and late alterations in functional capillary density, capillary red blood cell velocity and mitochondrial redox state. In contrast, the female intestine exhibited a delayed increase in epithelial permeability during postischemic reperfusion. This was associated with a late leukocytic inflammatory response which did not affect the microcirculatory function. Nonetheless, at the end of the 90-min reperfusion period, the neutrophilic infiltration and structural mucosal disintegration in the female intestine were found to be pronounced to a similar extent as in the male intestine. These results suggest that in small intestinal ischemia-reperfusion the leukocytic inflammatory response and microcirculatory dysfunction develop more rapidly and are initially more pronounced in males, but the hormonal status in females is not capable of preventing the final manifestations of reperfusion injury.  相似文献   

14.
The effects of eicosapentaenoic acid (EPA) and long-term treatment with EPA-ethylester (EPA-E) were examined in perfused rat hearts subjected to ischemia/reperfusion and adult rat cardiomyocytes subjected to hypoxia/reoxygenation. EPA (0.1 M) improved postischmic contractile dysfunction of the ischemic/reperfused heart. EPA (10 M) attenuated hypoxia/reoxygenation-induced morphological deterioration of cardiomyocytes. The results suggest the presence of direct cardioprotective effects of EPA. Rats were orally treated for 4 weeks with 1 g/kg/day of EPA-E to elucidate ex vivo effects of EPA, and the fatty acid composition of cardiac phospholipids was determined. The percent ratio of EPA in total fatty acids of cardiac phospholipids increased whereas that of arachidonic acid decreased. The percent ratio of n-3/n-6 fatty acid did not increase. Treatment with EPA-E did not improve the post-ischemic contractile function, but attenuated the ischemia/reperfusion-induced release of prostaglandins during reperfusion. Treatment with EPA-E preserved a better morphological appearance of the cardiomyocytes subjected to hypoxia/reoxygenation. The results suggest that the mechanisms responsible for cytoprotective effects of hypoxic/reoxygeanted cardiomyocytes or inhibition of metabolic alterations of the ischemic/reperfused heart by long-term EPA-E treatment did not contribute substantially to recovery of post-ischemic contractile dysfunction. The direct in vitro effects of EPA may play a role in the protection of the heart from ischemia/reperfusion or hypoxia/reoxygenation injury.  相似文献   

15.
In the feline intestine studies have implicated superoxide (O.-) and other oxygen derived free radicals as initiators of injury as measured by increased capillary permeability during the reperfusion period. Biochemical mechanisms of this free radical generation include: xanthine oxidase dependent O.- production, hydrogen peroxide (H2O2) formation by superoxide dismutase (SOD), hydroxyl radical (OH-) production via the Haber-Weiss reaction, and lipid radical formation from membrane peroxidation. Pathological consequences of these events include inflammatory neutrophil infiltration, damage to the collagen and mucosal basement membrane, increased capillary permeability, edema, cell degeneration and necrosis. Animal models of neonatal necrotizing enterocolitis (NNEC) indicate that intestinal injury occurs after the etiologic factors (hypothermia, hypoxia) are removed. In order to determine the role of active oxygen species in the pathogenesis of NNEC, weanling hamsters and neonatal piglets were cold stressed and activities of pro/antioxidant enzymes were determined, and histopathologic and ultrastructural studies were performed. Cold stressed weanling hamsters showed a 55.7% (P less than 0.05) decrease in xanthine dehydrogenase/xanthine oxidase activity ratio. Light microscopy revealed scattered colonic mucosal erosions and submucosal edema in 50% of cold stressed animals. Transmission electron microscopy demonstrated degeneration of colonic mucosal epithelial cells, enlarged intracellular spaces, cytoplasmic vacuolization, and nuclear membrane swelling. The colonic serosa was also edematous and infiltrated with bacteria. Large intestinal tissue from cold stressed neonatal piglets showed a significant increase (P less than 0.05) in Mn and Cu, Zn, SOD, CAT, GSH-Red, total GSH, and Glc6-PD at 0 and 12 hrs. post stress.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Reactive oxygen metabolites play an important role in ischemia-reperfusion related gastric injury. Primary sources of reactive oxygen metabolites seem to be the xanthine/xanthine oxidase system and neutrophils accumulating within the reperfused tissue. Tissue myeloperoxidase activity is an important index of neutrophil accumulation. The purpose of the present study was to clarify the effect of L-carnitine on the accumulation of neutrophils and neutrophil-induced gastric mucosal damage in rats exposed to ischemia-reperfusion. Rats were randomly divided into three groups: sham-operated, ischemia-reperfusion and ischemia-reperfusion plus L-carnitine groups. Ischemia was induced by clamping the celiac artery for 30 min and then reperfusion was established for 60 min. Gastric injury was assessed by measuring myeloperoxidase activity in gastric tissue. The neutrophil accumulation and hemorrhagic lesions due to ischemia-reperfusion in gastric mucosa were ascertained in a histological study. L-Carnitine (100 mg kg(-1)) administrated intravenously 5 min before ischemia significantly reduced both the gastric injury and myeloperoxidase activity compared with the ischemia-reperfusion group. The results suggest that L-carnitine provides marked protection against ischemia-reperfusion-related gastric injury which could be due to its ability to reduce neutrophil accumulation in ischemic tissue.  相似文献   

17.
Mesenteric ischemia-reperfusion injury is a serious complication of shock. Because activation of nuclear factor-kappaB (NF-kappaB) has been implicated in this process, we treated rats with vehicle or the IkappaB-alpha inhibitor BAY 11-7085 (25 mg/kg ip) 1 h before mesenteric ischemia-reperfusion (45 min of ischemia followed by reperfusion at 30 min or 6 h) and examined the ileal injury response. Vehicle-treated rats subjected to ischemia-reperfusion exhibited severe mucosal injury, increased myeloperoxidase (MPO) activity, increased expression of interleukin-6 and intercellular adhesion molecule 1 protein, and a biphasic peak of NF-kappaB DNA-binding activity during the 30-min and 6-h reperfusion courses. In contrast, BAY 11-7085-pretreated rats subjected to ischemia-reperfusion exhibited less histological injury and less interleukin-6 and intercellular adhesion molecule 1 protein expression at 30 min of reperfusion but more histological injury at 6 h of reperfusion than vehicle-treated rats subjected to ischemia-reperfusion. Studies with phosphorylation site-specific antibodies demonstrated that IkappaB-alpha phosphorylation at Ser(32),Ser(36) was induced at 30 min of reperfusion, whereas tyrosine phosphorylation of IkappaB-alpha was induced at 6 h of reperfusion. BAY 11-7085 inhibited the former, but not the latter, phosphorylation pathway, whereas alpha-melanocyte-stimulating hormone, which is effective in limiting late ischemia-reperfusion injury to the intestine, inhibited tyrosine phosphorylation of IkappaB-alpha. Thus NF-kappaB appears to play an important role in the generation and resolution of intestinal ischemia-reperfusion injury through different activation pathways.  相似文献   

18.
We caused unilateral lung ischemia-reperfusion injury in awake sheep by simultaneously occluding the left pulmonary artery and left main stem bronchus for 12 h. The occluded left lung was inflated with nitrogen. Reperfusion resulted in an elevation of lung lymph flow from 1.3 to 5.0 ml/15 min and an increase in lymph-to-plsma protein concentration ratios. Reperfusion, but not ischemia alone, caused an increase in wet-to-dry weight ratios in both the reperfused left lung and the contralateral right lung. Granulocytes increased in both lungs during the ischemic period and after reperfusion, and hypoxemia developed after reperfusion. The calcium channel antagonist, verapamil, given just before reperfusion, caused a marked attenuation in the reperfusion-induced changes in the lung lymph variables and wet-to-dry weight ratio. However, verapamil did not affect the hypoxemia or granulocyte sequestration seen after reperfusion. We conclude that reperfusion of ischemic sheep lung results in increased microvascular permeability that can be partially prevented by verapamil.  相似文献   

19.
The observation that aliphatic diamines become poor substrates as the carbon chain length decreases and that ethylenediamine, the shortest diamine, is an irreversible inhibitor of lysyl oxidase led to the investigation of the mechanism of inhibition by ethylenediamine. The cis but not the trans isomer of 1,2-diaminocyclohexane was also a potent irreversible inhibitor of lysyl oxidase, consistent with the interaction of both amino groups of vicinal diamines with an enzyme moiety. Both cis-1,2-diaminocyclohexane and ethylenediamine but not trans-1,2-diaminocyclohexane markedly perturbed the spectrum of free pyrroloquinoline quinone (PQQ), a covalently linked form of which is the carbonyl cofactor of lysyl oxidase. cis-1,2-Diaminocyclohexane also induced similar changes in the spectrum of lysyl oxidase. The perturbations of the spectra of PQQ or of lysyl oxidase by cis-1,2-diaminocyclohexane or ethylenediamine as well as the development of irreversible inhibition of the enzyme by cis-1,2-diaminocyclohexane or ethylenediamine were all markedly reduced under anaerobic conditions. Moreover, approximately 1 mol of H2O2 was released per mol of PQQ or lysyl oxidase upon aerobic incubation with cis-1,2-diaminocyclohexane, while approximately 2 mol of 3H+ were released from cis-[1,2-3H] 1,2-diaminocyclohexane per mol of PQQ or lysyl oxidase under corresponding conditions. A proposal for the mechanism of inhibition of lysyl oxidase by vicinal diamines is presented which involves limited oxidation of the diamine linked to PQQ at the active site so that the PQQ-diamine complex is finally stabilized by a conjugated 6-membered ring.  相似文献   

20.
The study aimed to examine whether L-carnitine and its derivatives, acetyl-L-carnitine and propionyl-L-carnitine, were equally effective and able to improve postischemic cardiac function, reduce the incidence of reperfusion-induced ventricular fibrillation, infarct size, and apoptotic cell death in ischemic/reperfused isolated rat hearts. There are several studies indicating that L-carnitine, a naturally occurring amino acid and an essential cofactor, can improve mechanical function and substrate metabolism not only in hypertrophied or failing myocardium but also in ischemic/reperfused hearts. The effects of L-carnitine, acetyl-L-carnitine, and propionyl-L-carnitine, on the recovery of heart function, incidence of reperfusion-induced ventricular fibrillation (VF), infarct size, and apoptotic cell death after 30 min ischemia followed by 120 min reperfusion were studied in isolated working rat hearts. Hearts were perfused with various concentrations of L-carnitine (0.5 and 5 mM), acetyl-L-carnitine (0.5 and 5 mM), and propionyl-L-carnitine (0.05, 0.5, and 5 mM), respectively, for 10 min before the induction of ischemia. Postischemic recovery of CF, AF, and LVDP was significantly improved in all groups perfused with 5 mM of L-carnitine, acetyl-L-carnitine, and propionyl-L-carnitine. Significant postischemic ventricular recovery was noticed in the hearts perfused with 0.5 mM of propionyl-L-carnitine, but not with the same concentration of L-carnitine or L-acetyl carnitine. The incidence of reperfusion VF was reduced from its control value of 90 to 10% (p < 0.05) in hearts perfused with 5 mM of propionyl-L-carnitine only. Other doses of various carnitines failed to reduce the incidence of VF. The protection in CF, AF, LVDP, and VF reflected in a reduction in infarct size and apoptotic cell death in hearts treated with various concentrations of carnitine derivatives. The difference between effectiveness of various carnitines on the recovery of postischemic myocardium may be explained by different membrane permeability properties of carnitine and its derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号