首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
To illustrate the functions of the aromatic residue Phe35 of cytochrome b(5) and to give further insight into the roles of the Phe35-containing hydrophobic patch and/or aromatic channel of cytochrome b(5), we studied electron transfer reactions of cytochrome b(5) and its Phe35Tyr and Phe35Leu variants with cytochrome c, with the wild-type and Tyr83Phe and Tyr83Leu variants of plastocyanin, and with the inorganic complexes [Fe(EDTA)](-), [Fe(CDTA)](-) and [Ru(NH(3))(6)](3+). The changes at Phe35 of cytochrome b(5) and Tyr83 of plastocyanin do not affect the second-order rate constants for the electron transfer reactions. These results show that the invariant aromatic residues and aromatic patch/channel are not essential for electron transfer in these systems.  相似文献   

3.
The interaction between cytochrome c and cytochrome c peroxidase was investigated using sedimentation equilibrium at pH 6,20 degrees C, in a number of buffer systems varying in ionic strength between 1 and 100 mM. Between 10 and 100 mM ionic strengths, the sedimentation of the individual proteins was essentially ideal, and sedimentation equilibrium experiments on mixtures of the two proteins were analyzed assuming ideal solution behavior. Analysis of the distribution of mixtures of cytochrome c and cytochrome c peroxidase in the ultracentrifuge cell based on a model involving the formation of a 1:1 cytochrome c-cytochrome c peroxidase complex gave values of the equilibrium dissociation constant ranging from 2.3 +/- 2.7 microM at 10 mM ionic strength to infinity (no detectable interaction) at 100 mM ionic strength. Attempts to determine the presence of complexes involving two cytochrome c molecules bound to cytochrome c peroxidase were inconclusive.  相似文献   

4.
5.
6.
7.
Amino acid replacements of an aromatic residue, Trp-51, which is in contact with the heme of yeast cytochrome c peroxidase have a number of significant effects on the kinetics and coordination state of the enzyme. Six mutants at this site (W51F, W51M, W51T, W51C, W51A, and W51G) were examined. Optical and EPR spectra show that each of these mutations introduces a shift from the 5-coordinate to 6-coordinate form, and slightly increases the asymmetry of the heme ligand field. Conversion from a 6-coordinate high-spin form at pH 5 to a 6-coordinate low-spin form at pH 7 is observed for several of the variants (W51F, W51T, and W51A), while W51G and W51C appear as predominantly low-spin species between pH 5 and 7. Addition of 50% glycerol prevents the facile conversion to the low-spin conformation for W51F, W51T, and W51A, and only W51F can be stabilized in a 5-coordinate configuration by glycerol. For the oxidation of cytochrome c by H2O2, three of the variants (W51F, W51M, and W51T) exhibit values of kcat(app) that are greater than for the wild-type enzyme, while the other mutations give decreased rates of enzyme turnover. Unlike the wild-type enzyme, which functions more efficiently with cytochrome c from yeast than with the horse heart protein, the mutant W51F does not show a preference for substrate from its native organism. The three mutants which exhibit increased values of kcat(app) show a pH optimum at 6.8 compared with that of 5.25 for the wild-type enzyme when measured with horse heart cytochrome c. This shift in pH optimum is not observed with yeast cytochrome c. Construction of single and multiple mutations at Trp-51, Ile-53, and Gly-152 shows that these kinetic properties are not due to natural amino acid variations observed at these sites. Pre-steady-state kinetics show that the bimolecular rate constant for the fast phase of the reaction of the enzyme with H2O2 is only slightly decreased from 3.03 (0.09) X 10(7) to 2.2 (0.1) X 10(7) M-1 s-1 for W51F and to 1.5 (0.1) X 10(7) M-1 s-1 for W51A. The slow phase of the reaction (4.9 s-1) which contributes approximately 30% to the amplitude of the change for the wild-type enzyme is not observed for W51F or W51A.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Electron transfer within complexes of cytochrome c (Cc) and cytochrome c peroxidase (CcP) was studied to determine whether the reactions are gated by fluctuations in configuration. Electron transfer in the physiological complex of yeast Cc (yCc) and CcP was studied using the Ru-39-Cc derivative, in which the H39C/C102T variant of yeast iso-1-cytochrome c is labeled at the single cysteine residue on the back surface with trisbipyridylruthenium(II). Laser excitation of the 1:1 Ru-39-Cc-CcP compound I complex at low ionic strength results in rapid electron transfer from RuII to heme c FeIII, followed by electron transfer from heme c FeII to the Trp-191 indolyl radical cation with a rate constant keta of 2 x 10(6) s-1 at 20 degrees C. keta is not changed by increasing the viscosity up to 40 cP with glycerol and is independent of temperature. These results suggest that this reaction is not gated by fluctuations in the configuration of the complex, but may represent the elementary electron transfer step. The value of keta is consistent with the efficient pathway for electron transfer in the crystalline yCc-CcP complex, which has a distance of 16 A between the edge of heme c and the Trp-191 indole [Pelletier, H., and Kraut, J. (1992) Science 258, 1748-1755]. Electron transfer in the complex of horse Cc (hCc) and CcP was examined using Ru-27-Cc, in which hCc is labeled with trisbipyridylruthenium(II) at Lys-27. Laser excitation of the Ru-27-Cc-CcP complex results in electron transfer from RuII to heme c FeII with a rate constant k1 of 2.3 x 10(7) s-1, followed by oxidation of the Trp-191 indole to a radical cation by RuIII with a rate constant k3 of 7 x 10(6) s-1. The cycle is completed by electron transfer from heme c FeII to the Trp-191 radical cation with a rate constant k4 of 6.1 x 10(4) s-1. The rate constant k4 decreases to 3.4 x 10(3) s-1 as the viscosity is increased to 84 cP, but the rate constants k1 and k3 remain the same. The results are consistent with a gating mechanism in which the Ru-27-Cc-CcP complex undergoes fluctuations between a major state A with the configuration of the hCc-CcP crystalline complex and a minor state B with the configuration of the yCc-CcP complex. The hCc-CcP complex, state A, has an inefficient pathway for electron transfer from heme c to the Trp-191 indolyl radical cation with a distance of 20.5 A and a predicted value of 5 x 10(2) s-1 for k4A. The observed rate constant k4 is thus gated by the rate constant ka for conversion of state A to state B, where the rate of electron transfer k4B is expected to be 2 x 10(6) s-1. The temperature dependence of k4 provides activation parameters that are consistent with the proposed gating mechanism. These studies provide evidence that configurational gating does not control electron transfer in the physiological yCc-CcP complex, but is required in the nonphysiological hCc-CcP complex.  相似文献   

9.
The cytochrome c production of the wild type strain and a mutant strain, YK 56, of Methylomonas sp. grown with excess methanol was higher than wild with limited methanol. The wild type strain grown under both conditions contained two soluble cytochromes c (c-I and c-II), though the mutant strain contained three (c-I, c-II, and c-III). The proportions of cytochromes c-II and c-III of the mutant strain damage changed according to the culture conditions.The methanol dehydrogenase of the wild type and mutant strains was purified and characterized. The enzymes were similar; they consisted of two subunits and their molecular weight was 120,000. The reactivity of cytochromes c with methanol dehydrogenase was investigated.  相似文献   

10.
Circular dichroism spectra of cytochrome c peroxidase from baker's yeast, those of the reduced enzyme, the carbonyl, cyanide and fluoride derivatives and the hydrogen peroxide compound, Compound I, have been recorded in the wavelength range 200 to 660 nm. All derivatives show negative Soret Cotton effects. The results suggest that the heme group is surrounded by tightly packed amino acid sidechains and that there is a histidine residue bound to the fifth coordination site of the heme iron. The native ferric enzyme is probably pentacoordinated. The circular dichroism spectra of the ligand compounds indicate that the ligands form a nonlinear bond to the heme iron as a result of steric hindrance in the vicinity of the heme. The spectrum of Compound I shows no perturbation of the porphyrin symmetry. The dichroic spectrum of the native enzyme in the far-ultraviolet wave-length region suggests that the secondary structure consists of roughly equal amounts of alpha-helical, beta-structure and unordered structure. After the removal of the heme group no great changes in the secondary structure can be observed.  相似文献   

11.
The crystal structure of a cytochrome c peroxidase mutant where the distal catalytic His52 is converted to Tyr reveals that the tyrosine side-chain forms a covalent bond with the indole ring nitrogen atom of Trp51. We hypothesize that this novel bond results from peroxide activation by the heme iron followed by oxidation of Trp51 and Tyr52. This hypothesis has been tested by incorporation of a redox-inactive Zn-protoporphyrin into the protein, and the resulting crystal structure shows the absence of a Trp51-Tyr52 cross-link. Instead, the Tyr52 side-chain orients away from the heme active-site pocket, which requires a substantial rearrangement of residues 72-80 and 134-144. Additional experiments where heme-containing crystals of the mutant were treated with peroxide support our hypothesis that this novel Trp-Tyr cross-link is a peroxide-dependent process mediated by the heme iron.  相似文献   

12.
Erv1 is a flavin-dependent sulfhydryl oxidase in the mitochondrial intermembrane space (IMS) that functions in the import of cysteine-rich proteins. Redox titrations of recombinant Erv1 showed that it contains three distinct couples with midpoint potentials of -320, -215, and -150 mV. Like all redox-active enzymes, Erv1 requires one or more electron acceptors. We have generated strains with erv1 conditional alleles and employed biochemical and genetic strategies to facilitate identifying redox pathways involving Erv1. Here, we report that Erv1 forms a 1:1 complex with cytochrome c and a reduced Erv1 can transfer electrons directly to the ferric form of the cytochrome. Erv1 also utilized molecular oxygen as an electron acceptor to generate hydrogen peroxide, which is subsequently reduced to water by cytochrome c peroxidase (Ccp1). Oxidized Ccp1 was in turn reduced by the Erv1-reduced cytochrome c. By coupling these pathways, cytochrome c and Ccp1 function efficiently as Erv1-dependent electron acceptors. Thus, we propose that Erv1 utilizes diverse pathways for electron shuttling in the IMS.  相似文献   

13.
Yeast cytochrome c peroxidase (CcP) was purified from baker's yeast and immobilised onto a nylon membrane. The kinetics of the soluble and immobilised forms of the enzyme were investigated for the catalysed oxidation of potassium ferrocyanide in the presence of H2O2 and m-chloroperoxybenzoic acid. The pH dependence of the two forms of the enzyme differed. Although both the soluble and the immobilised enzymes showed optimal activity at pH 6.2, a different kinetic behaviour was demonstrated. Both forms of the enzyme showed similar activity toward H2O2, although when m-chloroperoxybenzoic acid was replaced as the electron acceptor, the immobilised form of the enzyme had a reduced turnover number and an increased Km. The activation energy of immobilised CcP was greater in the presence of both H2O2 [16.6 kJ mol-1] and m-chloroperoxybenzoic acid [37.9 kJ mol-1] than for soluble CcP [11.4 and 23.4 kJ mol-1, respectively]. The activities of both soluble and immobilised CcP were greatly reduced above 45 degrees C, although at higher temperatures the immobilised enzyme retained a relatively greater percentage of its maximum activity.  相似文献   

14.
In the mechanism of hydrolysis of starch by alpha-amylases, a conserved water molecule bridging two catalytic residues has been implicated. In human salivary alpha-amylase (HSAmy), this water (W641), observed in many alpha-amylase structures, is part of a chain of water molecules. To test the hypothesis that W641 may be involved in the mechanism, Phe256 in the close vicinity was mutated to a Trp residue. X-ray structure of F256W complexed to 2-amino-2-(hydroxyethyl)-1,3-propanediol at 2.1A revealed that the water chain is disrupted. In the F256W structure exhibits a positional shift in His305, characteristic of alpha-amylase complex structures. Kinetic analysis, in comparison with HSAmy, revealed that the mutant exhibited a 70-fold decrease in the specific activity for starch and significantly reduced k(cat) (20-fold) and K(m) (4-fold) for maltoheptaoside. Collectively, these results suggest that W641 and the chain of water molecules may be critical for the alpha-amylase activity.  相似文献   

15.
16.
Rates of yeast cytochrome c peroxidase (ferrocytochrome c:hydrogen-peroxide oxidoreductase, EC 1.11.1.5) catalyzed oxidation of bis(tripyridine)cobalt(II) ion, penta(amine)pyridineruthenium(II) ion and ferrocyanide ion by hydrogen peroxide have been found to obey the empirical equation: (formula; see text) in the pH range 5 to 8, and at saturating H2O2 concentrations. [( S] and [CcP] are the concentrations of the reductant and the enzyme, respectively.) Values of k2 were found to be independent of the reductant. The term k0[S] is only significant with the cobalt and ruthenium complexes at high pH. The mechanism proposed to account for this rate equation differs significantly from previous mechanistic proposals. In particular, the rate data require the assignment of the rate-limiting step at high substrate concentrations to a slow electron-transfer within the enzyme, and not, as previously suggested, to saturation of substrate binding to the enzyme. Also, the term k0[S] implies that the reactive substrates, including the natural substrate (yeast cytochrome c), react with the hydrogen peroxide-heme complex and not with the radical species formed by reaction with hydrogen peroxide in the absence of reductants.  相似文献   

17.
Manganese peroxidase (MnP) from the white rot fungus Phanerochaete chrysosporium contains a manganese-binding site that plays a critical role in its function. Previously, a MnII-binding site was designed into cytochrome c peroxidase (CcP) based on sequence homology (Yeung et al. in Chem. Biol. 4:215–222, 1997; Gengenbach et al. in Biochemistry 38:11425–11432, 1999). Here, we report a redesign of this site based on X-ray structural comparison of MnP and CcP. The variant, CcP(D37E, V45E, H181E), displays 2.5-fold higher catalytic efficiency (k cat/K M) than the variant in the original design, mostly due to a stronger K M of 1.9 mM (vs. 4.1 mM). High-resolution X-ray crystal structures of a metal-free form and a form with CoII at the designed MnII site were also obtained. The metal ion in the engineered metal-binding site overlays well with MnII bound in MnP, suggesting that this variant is the closest structural model of the MnII-binding site in MnP for which a crystal structure exists. A major difference arises in the distances of the ligands to the metal; the metal–ligand interactions in the CcP variant are much weaker than the corresponding interactions in MnP, probably owing to partial occupancy of metal ion at the designed site, difference in the identity of metal ions (CoII rather than MnII) and other interactions in the second coordination sphere. These results indicate that the metal ion, the ligands, and the environment around the metal-binding site play important roles in tuning the structure and function of metalloenzymes. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

18.
Proton NMR spectra of cytochrome c peroxidase (CcP) isolated from yeast (wild type) and two Escherichia coli expressed proteins, the parent expressed protein [CcP(MI)] and the site-directed mutant CcP(MI,D235N) (Asp-235----Asn-235), have been examined. At neutral pH and in the presence of only potassium phosphate buffer and potassium nitrate, wild-type Ccp and CcP(MI) demonstrate nearly identical spectra corresponding to normal (i.e., "unaged") high-spin ferric peroxidase. In contrast, the mutant protein displays a spectrum characteristic of a low-spin form, probably a result of hydroxide ligation. Asp-235 is hydrogen-bonded to the proximal heme ligand, His-175. Changing Asp-235 to Asn results in alteration of the pK for formation of the basic form of CcP. Thus, changes in proximal side structure mediate the chemistry of the distal ligand binding site. All three proteins bind F-, N3-, and CN- ions, although the affinity of the mutant protein (D235N) for fluoride ion appears to be much higher than that of the other two proteins. Analysis of proton NMR spectra of the cyanide ligated forms leads to the conclusion that the mutant protein (D235N) possesses a more neutral proximal histidine imidazole ring than does either wild-type CcP or CcP(MI). It confirms that an important feature of the cytochrome c peroxidase structure is at least partial, and probably full, imidazolate character for the proximal histidine (His-175).  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号