首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
t-PA producing CHO cells have been shown to undergo a metabolic shift when the culture medium is supplemented with a mixture of glucose and galactose. This metabolic change is characterized by the reincorporation of lactate and its use as an additional carbon source. The aim of this work is to understand lactate metabolism. To do so, Chinese hamster ovary cells were grown in batch cultures in four different conditions consisting in different combinations of glucose and galactose. In experiments supplemented with glucose, only lactate production was observed. Cultures with glucose and galactose consumed glucose first and produced lactate at the same time, after glucose depletion galactose consumption began and lactate uptake was observed. Comparison of the metabolic state of cells with and without the shift by metabolic flux analysis show that the metabolic fluxes distribution changes mostly in the reactions involving pyruvate metabolism. When not enough pyruvate is being produced for cells to support their energy requirements, lactate dehydrogenase complex changes the direction of the reaction yielding pyruvate to feed the TCA cycle. The slow change from high fluxes during glucose consumption to low fluxes in galactose consumption generates intracellular conditions that allow the influx of lactate. Lactate consumption is possible in cell cultures supplemented with glucose and galactose due to the low rates at which galactose is consumed. Evidence suggests that an excessive production and accumulation of pyruvate during glucose consumption leads to lactate production and accumulation inside the cell. Other internal conditions such as a decrease in internal pH, forces the flow of lactate outside the cell. After metabolic shift the intracellular pool of pyruvate, lactate and H+ drops permitting the reversal of the monocarboxylate transporter direction, therefore leading to lactate uptake. Metabolic analysis comparing glucose and galactose consumption indicates that after metabolic shift not enough pyruvate is produced to supply energy metabolism and lactate is used for pyruvate synthesis. In addition, MFA indicates that most carbon consumed during low carbon flux is directed towards maintaining energy metabolism.  相似文献   

2.
3.
Mammalian cell cultures typically exhibit an energy inefficient phenotype characterized by the consumption of large quantities of glucose and the concomitant production of large quantities of lactate. Under certain conditions, mammalian cells can switch to a more energy efficient state during which lactate is consumed. Using a metabolic model derived from a mouse genome scale model we performed flux balance analysis of Chinese hamster ovary cells before and after a metabolic switch from lactate production (in the presence of glucose) to lactate consumption (after glucose depletion). Despite a residual degree of freedom after accounting for measurements, the calculated flux ranges and associated errors were narrow enough to enable investigation of metabolic changes across the metabolic switch. Surprisingly, the fluxes through the lower part of the TCA cycle from oxoglutarate to malate were very similar (around 60 µmol/gDW/h) for both phases. A detailed analysis of the energy metabolism showed that cells consuming lactate have an energy efficiency (total ATP produced per total C‐mol substrate consumed) six times greater than lactate producing cells. Biotechnol. Bioeng. 2013; 110: 660–666. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Synchronized CHO cells in S phase were treated with different concentrations of hydroxyurea for various time intervals. In the presence of 2 mM hydroxyurea DNA replication was inhibited by more than 95% and S phase cells were killed within 20 h. With 0.1 mM hydroxyurea, however, when DNA replication was inhibited by about 70%, more than 90% of S phase cells survived a 40 h treatment. DNA replication in the presence of hydroxyurea had normal characteristics for up to 5 h except that the average rate of DNA chain elongation (fork displacement) was reduced. Fluorodeoxyuridine, excess thymidine, and cycloheximide caused a similar loss of reproductive viability as hydroxyurea, if DNA replication was inhibited to the same extent. The results suggest that killing of S phase cells might be induced by inhibition of DNA replication itself, i.e. by completely blocking displacement of forks.  相似文献   

5.
6.

Chinese hamster ovary (CHO) cell cultivation for production of therapeutic proteins is accompanied by production of metabolic wastes, mostly ammonia and lactate. To reduce ammonia production, the glutamine synthetase (GS) system was used to develop therapeutic monoclonal antibody (mAb)-producing CHO cells (SM-0.025). Additionally, the lactate dehydrogenase-A (LDH-A) was downregulated with shRNA to reduce lactate production in SM-0.025. The resulting mAb-producing cell lines (#2, #46, and #52) produced less ammonia than the host cell line during the exponential phase due to GS protein overexpression. LDH-A downregulation in SM-0.025 not only reduced lactate production but also further reduced ammonia production. Among the three LDH-A-downregulated clones, clone #2 had the highest mAb production along with significantly reduced specific lactate and ammonia production rates compared to those in SM-0.025. Waste reduction increased the galactosylation level of N-glycosylation, which improved mAb quality. LDH-A downregulation was also successfully applied to the host cell lines (CHO K1 and GS knockout CHO-K1). However, LDH-A downregulated host cells could not survive the pool-selection process wherein glutamine was excluded and methionine sulfoximine was added to the media. Taken together, LDH-A downregulation in the mAb-producing cell line generated with the GS system successfully reduced both ammonia and lactate levels, improving mAb galactosylation. However, LDH-A downregulation could not be applied to host cell lines because it hampered the selection process of the GS system.

  相似文献   

7.
Large-scale fed-batch cell culture processes of CHO cells are the standard platform for the clinical and commercial production of monoclonal antibodies. Lactate is one of the major by-products of CHO fed-batch culture. In pH-controlled bioreactors, accumulation of high levels of lactate is accompanied by high osmolality due to the addition of base to control pH of the cell culture medium, potentially leading to lower cell growth and lower therapeutic protein production during manufacturing. Lactate dehydrogenase (LDH) is an enzyme that catalyzes the conversion of the substrate, pyruvate, into lactate and many factors including pyruvate concentration modulate LDH activity. Alternately, pyruvate can be converted to acetyl-CoA by pyruvate dehydrogenases (PDHs), to be metabolized in the TCA cycle. PDH activity is inhibited when phosphorylated by pyruvate dehydrogenase kinases (PDHKs). In this study, we knocked down the gene expression of lactate dehydrogenase A (LDHa) and PDHKs to investigate the effect on lactate metabolism and protein production. We found that LDHa and PDHKs can be successfully downregulated simultaneously using a single targeting vector carrying small inhibitory RNAs (siRNA) for LDHa and PDHKs. Moreover, our fed-batch shake flask evaluation data using siRNA-mediated LDHa/PDHKs knockdown clones showed that downregulating LDHa and PDHKs in CHO cells expressing a therapeutic monoclonal antibody reduced lactate production, increased specific productivity and volumetric antibody production by approximately 90%, 75% and 68%, respectively, without appreciable impact on cell growth. Similar trends of lower lactate level and higher antibody productivity on average in siRNA clones were also observed from evaluations performed in bioreactors.  相似文献   

8.
Both glutamine and heat shock increase lactate production in the L929 cell system. Glutamine is now shown to increase hexose uptake in the presence of insulin, to inhibit pyruvate oxidation, and to provide reducing equivalents to the cytosolic compartment. The relative contribution of these processes to lactate production depends on the availability of pyruvate. When ample pyruvate is available from the culture medium, stimulation of lactate synthesis by glutamine and heat shock is transaminase dependent, suggesting that shuttling of reducing equivalents from mitochondria to cytoplasm is involved. In the absence of medium pyruvate, stimulation of glycolysis by both glutamine and heat shock is largely responsible for increased lactate synthesis. None of the observed effects of glutamine appears to be sufficient to explain the observed stimulation of glycolysis.  相似文献   

9.
Chinese hamster ovary (CHO) cells are characterized by a low glucose catabolic efficiency, resulting in undesirable lactate production. Here, it is hypothesized that such low efficiency is determined by the transport of pyruvate into the mitochondria. The mitochondrial pyruvate carrier (MPC), responsible for introducing pyruvate into the mitochondria, is formed by two subunits, MPC1 and MPC2. Stable CHO cell lines, overexpressing the genes of both subunits, were constructed to facilitate the entry of pyruvate into the mitochondria and its incorporation into oxidative pathways. Significant overexpression of both genes, compared to the basal level of the control cells, was verified, and subcellular localization of both subunits in the mitochondria was confirmed. Kinetic evaluation of the best MPC overexpressing CHO cells showed a reduction of up to 50% in the overall yield of lactate production with respect to the control. An increase in specific growth rate and maximum viable cell concentration, as well as an increase of up to 40% on the maximum concentration of two recombinant model proteins transiently expressed (alkaline phosphatase or a monoclonal antibody), was also observed. Hybrid cybernetic modeling, that considered 89 reactions, 25 extracellular metabolites, and a network of 62 intracellular metabolites, explained that the best MPC overexpression case resulted in an increased metabolic flux across the mitochondrial membrane, activated a more balanced growth, and reduced the Warburg effect without compromising glucose consumption rate and maximum cell concentration. Overall, this study showed that transport of pyruvate into the mitochondria limits the efficiency of glucose oxidation, which can be overcome by a cell engineering approach.  相似文献   

10.
CHO cells allowed to grow in a medium containing selenalysine can utilize it for protein synthesis. Selenalysine is incorporated into cell proteins in substitution of lysine: a maximum of 5% of protein lysine can be substituted. Protein lysine substitution by selenalysine can be correlated to the reduced viability of cells grown in its presence.  相似文献   

11.
12.
13.
The effect of galactose on the inactivation of purified beta-galactosidase from the black bean, Kestingiella geocarpa, in 5 M urea at 50 degrees C and at pH 4.5, was determined. Lineweaver-Burk plots of initial velocity data in the presence and absence of urea and galactose were used to determine the relevant K(m) and V(max) values, with p-nitrophenyl beta-D-galactopyranoside (PNPG) as substrate, S. The inactivation data were analysed using the Tsou equation and plots. Plots of ln([P](infinity) - [P](t) ) against time in the presence of urea yielded the inactivation rate constant, A. Plots of A vs [S] at different galactose concentrations were zero order showing that A was independent of [S]. Plots of [P](infinity) vs [S] were used to determine the mode of inhibition of the enzyme by galactose, and slopes and intercepts of the 1/[P](infinity) vs. 1/[S] yielded k(+0) and k '(+0), the microscopic rate constants for the free enzyme and the enzyme-substrate complex, respectively. Plots of k(+0) and k '(+0) vs. galactose concentrations showed that galactose protected the free enzyme and not the enzyme-substrate complex against urea inactivation via a noncompetitive mechanism at low galactose concentrations and a competitive pattern of inhibition at high galactose concentrations. The implication of the different modes of inhibition in protecting the free enzyme was discussed.  相似文献   

14.
15.
Chinese hamster ovary (CHO-WBLT) cells growing in McCoy's 5a with 10% fetal bovine serum (FBS) were adapted to 0.5% FBS in CHO-1 Complete Media System, a serum-free medium from Ventrex. Cells in these two media were exposed to 10(-7) M and 10(-8) M mitomycin C (MMC) for 24 h. Comparison of cell growth over 10 days showed that cells in 0.5% serum proliferate, though at a slower rate than cells in 10% serum. Treatment with MMC revealed that at 10(-7) M, MMC is cytotoxic to cells to both the media; at 10(-8) M, MMC is non-cytotoxic to cells in both media.  相似文献   

16.
17.
18.
1) The content and accessibility of terminal sialic acid and galactose residues as well as the incorporation of [3H]fucose into glycoconjugates were determined in 48-h cultures of Ehrlich ascites tumor cells in a glucose-free medium supplemented with uridine, a compound which can fulfil the necessary functions of glucose. 2) Sialic-acid residues accessible to sialidase cleavage were reduced from 695 +/- 80 nmol/10(9) cells (controls) to 284 +/- 22 nmol/10(9) cells (43% of controls). In situ labeling using periodate oxidation followed by sodium borotritiide reduction revealed a tritium incorporation of 47 +/- 11% that of controls (= 4.1 x 10(5) cpm/mg protein). 3) Labeling of galactose residues of 80-90% of that of controls was achieved after treatment of the cells with galactose oxidase/sodium borotritiide. A nearly six-fold enhancement of tritium incorporation into galactose of control cells was observed after sialidase/galactose oxidase treatment and sodium borotritiide reduction (1.5----8.8 x 10(5) cpm/mg protein); only a 3.6-fold increase (1.2 x 10(5)----4.3 x 10(5) cpm/mg protein) was found with glucose-free cultured cells. It is concluded that the galactose content of the cell surface is reduced to about 50% of controls. 4) The incorporation of tritium into acid-insoluble precipitate after 24 h incubation with [3H]fucose and the activity of the acid-soluble fraction were enhanced by about 85% as compared to controls. The pattern of inhibition by tunicamycin of [3H]fucose uptake and incorporation was the same in glucose-containing standard medium and in glucose-free uridine medium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Thialysine resistant CHO cells utilize thialysine added to the culture medium to a lesser extent than the parental cells. Thialysine is utilized in protein synthesis and it is incorporated into proteins in place of lysine. The parental strain substitutes up to 11% of protein lysine by thialysine, while variant cells substitute a maximum of 5% of protein lysine.  相似文献   

20.
Increasing the flux through central carbon metabolism is difficult because of rigidity in regulatory structures, at both the genetic and the enzymatic levels. Here we describe metabolic engineering of a regulatory network to obtain a balanced increase in the activity of all the enzymes in the pathway, and ultimately, increasing metabolic flux through the pathway of interest. By manipulating the GAL gene regulatory network of Saccharomyces cerevisiae, which is a tightly regulated system, we produced prototroph mutant strains, which increased the flux through the galactose utilization pathway by eliminating three known negative regulators of the GAL system: Gal6, Gal80, and Mig1. This led to a 41% increase in flux through the galactose utilization pathway compared with the wild-type strain. This is of significant interest within the field of biotechnology since galactose is present in many industrial media. The improved galactose consumption of the gal mutants did not favor biomass formation, but rather caused excessive respiro-fermentative metabolism, with the ethanol production rate increasing linearly with glycolytic flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号