首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The interaction of Escherichia coli glutamine synthetase with the adenosine 5'-triphosphate analogue, 5'-p-fluorosulfonylbenzoyladenosine (5'-FSO2BzAdo), has been studied. This interaction results in the covalent attachment of the 5'-FSO2BzAdo to the enzyme with concomitant loss of catalytic activity. Although adenine nucleotides interact with glutamine synthetase at three distinct sites--a noncovalent AMP effector site, a regulatory site of covalent adenylylation, and the catalytic ATP/ADP binding site--our studies suggest that reaction with 5'-FSO2BzAdo occurs only at the active center. When glutamine synthetase was incubated with 5'-FSO2BzAdo, the decrease in catalytic activity obeyed pseudo-first order kinetics. The plot of the observed rate constant of inactivation versus the concentration of 5'-FSO2BzAdo was hyperbolic, consistent with reversible binding of the analogue to the enzyme prior to covalent attachment. Protection against inactivation was afforded by ATP and ADP; L-glutamate did not protect the enzyme against inactivation, but rather enhanced the rate of inactivation, consistent with the observations of others (Timmons, R. B., Rhee, S. G., Luterman, D. L., and Chock, P. B. (1974) Biochemistry 13, 4479-4485) that there is synergism in the binding of the two substrates to the enzyme. The incorporation of approximately 1.09 mol of the 5'-FSO2BzAdo/mol of glutamine synthetase subunit resulted in the total loss of enzymatic activity. The results suggest that 5'-FSO2BzAdo occupies the ATP binding site at the active center of glutamine synthetase and binds covalently to an amino acid residue nearby.  相似文献   

2.
3.
Further details are given of crystals of glutamine synthetase prepared from Escherichia coli. Crystals of two kinds have been observed: (1) rhombic dodecahedra which correspond to the morphology of the crystals studied by Eisenberg et al. (1971) (and which were found by them to contain dodecamers), and (2) rhombohedra, reported here. Cell dimensions and packing considerations led to the consideration of two possible structures for the rhombohedral crystals. These we have called the “T = 7 structure” and the “B.C.C. structure”. The T = 7 structure would be related to that derived by Eisenberg and would contain dodecamers, but is inconsistent with our X-ray intensity data. The B.C.C. structure is considered more probable. It is built of cubic octomers or square tetramers. Electron micrographs of our glutamine synthetase preparations show a wide variety of aggregates, including dodecamers and tetramers. The unit cell dimensions of our crystals are a = 140 ± 2 Å, and c = 148 ± 2 Å. The Laue symmetry group is 3̄m P31.  相似文献   

4.
5.
6.
7.
Kinetic mechanism of Escherichia coli glutamine synthetase   总被引:8,自引:0,他引:8  
T D Meek  J J Villafranca 《Biochemistry》1980,19(24):5513-5519
  相似文献   

8.
Asparagine synthetase catalyzes the ATP-dependent formation of L-asparagine from L-aspartate and L-glutamine, via a beta-aspartyl-AMP intermediate. Since interfering with this enzyme activity might be useful for treating leukemia and solid tumors, we have sought small-molecule inhibitors of Escherichia coli asparagine synthetase B (AS-B) as a model system for the human enzyme. Prior work showed that L-cysteine sulfinic acid competitively inhibits this enzyme by interfering with L-aspartate binding. Here, we demonstrate that cysteine sulfinic acid is also a partial substrate for E. coli asparagine synthetase, acting as a nucleophile to form the sulfur analogue of beta-aspartyl-AMP, which is subsequently hydrolyzed back to cysteine sulfinic acid and AMP in a futile cycle. While cysteine sulfinic acid did not itself constitute a clinically useful inhibitor of asparagine synthetase B, these results suggested that replacing this linkage by a more stable analogue might lead to a more potent inhibitor. A sulfoximine reported recently by Koizumi et al. as a competitive inhibitor of the ammonia-dependent E. coli asparagine synthetase A (AS-A) [Koizumi, M., Hiratake, J., Nakatsu, T., Kato, H., and Oda, J. (1999) J. Am. Chem. Soc. 121, 5799-5800] can be regarded as such a species. We found that this sulfoximine also inhibited AS-B, effectively irreversibly. Unlike either the cysteine sulfinic acid interaction with AS-B or the sulfoximine interaction with AS-A, only AS-B productively engaged in asparagine synthesis could be inactivated by the sulfoximine; free enzyme was unaffected even after extended incubation with the sulfoximine. Taken together, these results support the notion that sulfur-containing analogues of aspartate can serve as platforms for developing useful inhibitors of AS-B.  相似文献   

9.
Auto-inactivated EScherichia coli glutamine synthetase contains 1 eq each of L-methionine-S-sulfoximine phosphate and ADP and 2 eq of Mn2+ tightly bound to the active site of each subunit of the dodecameric enzyme (Maurizi, M. R., and Ginsburg, A. (1982) J. Biol. Chem. 257, 4271-4278). Complete dissociation and unfolding in 6 M guanidine HCl at pH 7.2 and 37 degrees C requires greater than 4 h for the auto-inactivated enzyme complex (less than 1 min for uncomplexed enzyme). Release of ligands and dissociation and unfolding of the protein occur in parallel but follow non-first order kinetics, suggesting stable intermediates and multiple pathways for the dissociation reactions. Treatment of Partially inactivated glutamine synthetase (2-6 autoinactivated subunits/dodecamer) with EDTA and dithiobisnitrobenzoic acid at pH 8 modifies approximately 2 of the 4 sulfhydryl groups of unliganded subunits and causes dissociation of the enzyme to stable oligomeric intermediates with 4, 6, 8, and 10 subunits, containing equal numbers of uncomplexed subunits and autoinactivated subunits. With greater than 70% inactivated enzyme, no dissociation occurs under these conditions. Electron micrographs of oligomers, presented in the appendix (Haschemeyer, R. H., Wall, J. S., Hainfeld, J., and Maurizi, M. R., (1982) J. Biol. Chem. 257, 7252-7253) suggest that dissociation of partially liganded dodecamers occurs by cleavage of intra-ring subunit contacts across both hexagonal rings and that these intra-ring subunit contacts across both hexagonal rings and that these intra-ring subunit interactions are stabilized by active site ligand binding. Isolated tetramers (Mr = 200,000; s20,w = 9.5 S) retain sufficient native structure to express significant enzymatic activity; tetramers reassociate to dodecamers and show a 5-fold increase in activity upon removal of the thionitrobenzoate groups with 2-mercaptoethanol. Thus, the tight binding of ligands to the subunit active site strengthens both intra- and inter-subunit bonding domains in dodecameric glutamine synthetase.  相似文献   

10.
11.
12.
In order to label phosphate binding sites, unadenylylated glutamine synthetase from Escherichia coli has been pyridoxylated by reacting the enzyme with pyridoxal 5'-phosphate followed by reduction of the Schiff base with NaBH4. A complete loss in Mg2+-supported activity is associated with the incorporation of 3 eq of pyridoxal-P/subunit of the dodecamer. At this extent of modification, however, the pyridoxylated enzyme exhibits substantial Mn2+-supported activity (with increased Km values for ATP and ADP). The sites of pyridoxylation appear to have equal affinities for pyridoxal-P and to be at the enzyme surface, freely accessible to solvent. At least one of the three covalently bound pyridoxamine 5'-phosphate groups is near the subunit catalytic site and acts as a spectral probe for the interactions of the manganese.enzyme with substrates. A spectral perturbation of covalently attached pyridoxamine-P groups is caused also by specific divalent cations (Mn2+, Mg2+ or Ca2+) binding at the subunit catalytic site (but not while binding to the subunit high affinity, activating Me2+ site). In addition, the feedback inhibitors, AMP, CTP, L-tryptophan, L-alanine, and carbamyl phosphate, perturb protein-bound pyridoxamine-P groups. The spectral perturbations produced by substrate and inhibitor binding are pH-dependent and different in magnitude and maximum wavelength. Adenylylation sites are not major sites of pyridoxylation.  相似文献   

13.
《Bioorganic chemistry》1986,14(2):163-169
The inhibition of Escherichia coli glutamine synthetase by phosphinothricin [2-amino-4-(methylphosphinyl)butanoic acid] has been studied. This amino acid was observed to function as an active site directed inhibitor exhibiting time-dependent inhibition of glutamine synthetase in the presence of ATP or adenylylimidodiphosphate (AMPPNP) but not adenylyl(β,γ-methylene) diphosphonate (AMPPCP). The inactivation was observed to be pseudo-first order. Phosphinothricin was also found to inhibit the enzyme reversibly under initial rate conditions and was competitive with respect to glutamate with K1S = 18 ± 3 μm. The inactive enzyme inhibitor complex was found to contain approximately 11 molecules of ADP and of 32P per dodecamer using [γ-32P]ATP. Reactivation of the inactive enzyme complex was achieved by incubating the enzyme complex in 50 mm acetate (pH 4.4), 1 m KCl, and 0.40 m (NH4)2SO4. ADP, phosphinothricin, and Pi were released upon reactivation.  相似文献   

14.
15.
16.
D D Clark  J J Villafranca 《Biochemistry》1985,24(19):5147-5152
Isotope-exchange enhancement studies, a variation on positional isotope-exchange enhancement as described by Raushel and Garrard [Raushel, F. M., & Garrard, L. J. (1984) Biochemistry 23, 1791-1795], are used to establish the point in the biosynthetic reaction of Escherichia coli glutamine synthetase at which gamma-glutamyl phosphate is formed. In these experiments, the behavior of the reverse biosynthetic reaction, i.e., the reaction of ADP, L-glutamine, and phosphate to form NH4+, L-glutamate, and ATP, is examined as a function of the concentration of ammonium ion. By varying the concentration of NH4+, the ratio of the velocity of isotope exchange to the velocity of net reaction, as measured by the rate of 18O depletion from labeled phosphate and the rate of production of L-glutamate, respectively, can be modulated in a mechanism-dependent manner. Evidence is presented demonstrating the presence of a branch point in the mechanism. The enzyme-ATP-glutamate complex may partition in two ways, one involving binding of ammonium ion and the other involving the chemical transformation to form the enzyme-ADP-gamma-glutamyl phosphate complex. The alternate pathways then rejoin upon formation of the enzyme-ADP-NH4+-gamma-glutamyl phosphate complex. Because of the branch point, there is no absolute requirement that ammonium ion be absent or present in order for the formation of gamma-glutamyl phosphate to occur. At high concentrations of ammonia, one pathway through the branch can be eliminated, effectively making that portion of the pathway ordered, with ATP, L-glutamate, and NH4+ binding consistent with our previously reported steady-state kinetic mechanism [Meek, T. D., & Villafranca, J. J. (1980) Biochemistry 19, 5513-5519].  相似文献   

17.
Introduction of specific structural probes into substrate binding sites of Escherichia coli glutamine synthetase is now possible. Various analogues of ATP substituted with an amino or sulfhydryl moiety at the 6- or 8-position of the purine ring have been found to substitute for ATP in the autoinactivation reaction of the manganese enzyme with L-Met-(S)-sulfoximine at pH 7. Dissociation of enzyme complexes containing an ADP analogue, L-Met-(S)-sulfoximine phosphate, and 2 equiv of Mn2+ is negligible at neutral pH. Prior to binding of the mercapto nucleotides to active sites, 6-mercaptopurine ribonucleoside triphosphate (6-S-ATP) and 8-mercaptoadenosine 5'-triphosphate (8-S-ATP) also have been further modified with fluorescent and chromogenic probes for energy-transfer measurements [Maurizi, M. R., Kasprzyk, P. G., & Ginsburg, A. (1986) Biochemistry (following paper in this issue)] or with electron-dense markers for electron microscopic and X-ray crystallographic structural analyses. Binding 6-S-ATP or 8-S-ATP to enzyme active sites at pH 7.1 produced red shifts of approximately 6 nm in nucleotide spectra characteristic for transfer of these nucleotide analogues into more acidic and hydrophobic environments. The spectrum of 6-S-ADP at active sites was more red-shifted than that of 6-S-AMP attached to adenylylation sites. The thiol group at the 6- or 8-position of the purine ring of the bound nucleotides was accessible for reactions with alkylating or mercurial reagents. Alkylation or mercaptide formation produced large blue shifts in the spectrum of enzyme-bound 6-S-ADP or 8-S-ADP at active sites or of 6-S-AMP covalently bound at adenylylation sites. At least one of two tryptophanyl residues in each subunit is very near the nucleotide binding site, as evidenced by changes in tryptophanyl residue fluorescence on binding ATP, mercaptonucleotides, or other ATP analogues.  相似文献   

18.
Cyclic adenosine 5'-monophosphate in Escherichia coli.   总被引:11,自引:2,他引:9       下载免费PDF全文
  相似文献   

19.
20.
The kinetic mechanism of Escherichia coli guanosine-5'-monophosphate synthetase has been determined by utilizing initial velocity kinetic patterns and positional isotope exchange experiments. The initial velocity patterns of MgATP, XMP, and either NH3 or glutamine (as nitrogen source) were consistent with the ordered addition of MgATP followed by XMP and then NH3. The enzyme catalyzes the exchange of 18O from the beta-nonbridge positions of [beta,beta,beta gamma,gamma,gamma,gamma-18O6]ATP into the alpha beta-bridge position only in the presence of XMP and Mg2+. The exchange reaction did not require NH3. The isotope exchange reaction increased as the XMP concentration increased and then decreased at saturating levels of XMP. These results also support the ordered addition of MgATP followed by XMP. GMP synthetase catalyzes the hydrolysis of ATP to AMP and PPi along with an ATP/PPi exchange reaction in the absence of NH3. These data taken together support a mechanism in which the initial step in the enzymatic reaction involves formation of an adenyl-XMP intermediate. Psicofuranine, an irreversible inhibitor of the enzyme, acts by preventing the release or further reaction of adenyl-XMP with H2O or NH3 but does not suppress the isotope exchange or ATP/PPi exchange reactions. GMP synthetase has also been shown to require a free divalent cation for full activity. When Ca2+ replaces Mg2+ in the reaction, the positional isotope exchange reaction is enhanced but the reaction with NH3 to form GMP is greatly suppressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号