首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
We have examined by Northern analysis and in situ hybridisation the expression of TGF beta 1, beta 2 and beta 3 during mouse embryogenesis. TGF beta 1 is expressed predominantly in the mesodermal components of the embryo e.g. the hematopoietic cells of both fetal liver and the hemopoietic islands of the yolk sac, the mesenchymal tissues of several internal organs and in ossifying bone tissues. The strongest TGF beta 2 signals were found in early facial mesenchyme and in some endodermal and ectodermal epithelial cell layers e.g., lung and cochlea epithelia. TGF beta 3 was strongest in prevertebral tissue, in some mesothelia and in lung epithelia. All three isoforms were expressed in bone tissues but showed distinct patterns of expression both spatially and temporally. In the root sheath of the whisker follicle, TGF beta 1, beta 2 and beta 3 were expressed simultaneously. We discuss the implication of these results in regard to known regulatory elements of the TGF beta genes and their receptors.  相似文献   

4.
Smad proteins are key signal transducers for the TGF-beta superfamily and are frequently inactivated in human cancers, yet the molecular basis of how their levels and activities are regulated remains unclear. Recent progress, discussed herein, illustrates the critical roles of Smad post-translational modifications in the cellular outcome to TGF-beta signaling.  相似文献   

5.
6.
7.
Sun T  Ye F  Ding H  Chen K  Jiang H  Shen X 《Cytokine》2006,35(1-2):88-94
Insulin is known to modulate transforming growth factor-beta (TGFbeta) signaling. In this report, by using the IN Cell Analyzer 1000, the fluorescence cell imaging instrument, we demonstrated that protein tyrosine phosphatase 1B (PTP1B) could regulate TGFbeta1-induced Smad2 activation in a PI3 kinase-dependent manner. By using the CHO cells stably expressing EGFP-Smad2, we showed that TGFbeta1 effectively stimulated Smad2 nuclear translocation in CHO cells. When pretreated with insulin, TGFbeta1-induced Smad2 nuclear entry was dramatically decreased. Furthermore, both the PI3K inhibitor LY294002 and the dominant negative AKT (DN-AKT) abolished the inhibitory effects of insulin, demonstrating that the inhibition of Smad2 activation by insulin was PI3K/AKT dependent. Since PTP1B negatively modulates insulin signaling, we further addressed the effects of PTP1B on insulin-mediated inhibition of Smad2 activation. Our data showed that overexpression of PTP1B effectively attenuated insulin-induced inhibition of Smad2 stimulation. Moreover, the PTP1B inhibitor, 3-(3,5-dibromo-4-hydroxy-benzoyl)-2-ethyl-benzofuran-6-sulfonicacid-(4-(thiazol-2-ylsulfamyl)-phenyl)-amide (Compound-2), recovered insulin inhibition of Smad2 activation. In conclusion, our data revealed the insulin inhibitory effects on TGFbeta1-induced Smad2 activation and the regulation role of PTP1B in the inhibition events.  相似文献   

8.
Using immunocytochemical methods we describe the distribution of different TGF beta isoforms and the effects of excess retinoic acid on their expression during early mouse embryogenesis (8 1/2 - 10 1/2 days of development). In normal embryos at 9 days, intracellular TGF beta 1 is expressed most intensely in neuroepithelium and cardiac myocardium whereas extracellular TGF beta 1 is expressed in mesenchymal cells and in the endocardium of the heart. At later stages, intracellular TGF beta 1 becomes very restricted to the myocardium and to a limited number of head mesenchymal cells; extracellular TGF beta 1 continues to be expressed widely in cells of mesenchymal origin, particularly in head and trunk mesenchyme, and also in endocardium. TGF beta 2 is widely expressed at all stages investigated while TGF beta 3 is not expressed strongly in any tissue at the stages examined. Exposure of early neural plate stage embryos to retinoic acid caused reduced expression of TGF beta 1 and TGF beta 2 proteins but had no effect on TGF beta 3. Intracellular TGF beta 1 expression was reduced in all tissues except in the myocardium, while extracellular TGF beta 1 was specifically reduced in neuroepithelium and cranial neural crest cells at early stages. TGF beta 2 was reduced in all embryonic tissues. The down-regulation of intracellular TGF beta 1 was observed up to 48 hours after initial exposure to retinoic acid while some down-regulation of TGF beta 2 was still seen up to 60 hours after initial exposure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Developmental expression of the TGF beta s in the mouse cochlea.   总被引:2,自引:0,他引:2  
Mice with targeted disruption of the TGF beta 2 gene display defects in epithelial-mesenchymal tissue interactions in several tissues including the developing cochlea. Specifically, the region of the spiral limbus and the overlying interdental cells, structures putatively involved in endolymphatic fluid homeostasis, display morphogenetic abnormalities. These findings prompted us to explore the pre-natal and post-natal expression of all three mammalian TGF beta genes in the developing mouse inner ear. TGF beta 2 mRNA expression was identified throughout the cochlear epithelium at all of the developmental stages examined. TGF beta 3 mRNA expression was identified in the mesenchymal tissues of the cochlea surrounding the otic epithelium. We found no evidence for compensation by the other two TGF beta isoforms in the cochleas of the TGF beta 2 mutants.  相似文献   

10.
The expression of the mesoderm inducing factors, activins and TGF beta s, was characterized in 5 1/2-9 1/2 day mouse embryos and implantation sites by in situ hybridization. Activin beta A RNA was not detected within the embryo, but is expressed in nearby decidual cells from 5 to 7 days. Thus activin A could play a role within the embyro during gastrulation. Activin beta A is also expressed in more mesometrially located decidual cells from 6 to 9 1/2 days. Activin beta B and inhibin alpha RNAs were not detected, while a control tissue was highly positive. TGF beta 1 is expressed in the secondary decidual zone and in developing endothelial cells in the decidua and embryo. TGF beta 2 is expressed in the mesometrial decidua at 6 1/2 days and in the midline of the cranial neural plate.  相似文献   

11.
Analysis of embryonic induction has pointed to the importance of the antagonistic roles played by secreted inducing factors and their soluble inhibitory binding proteins. These interactions have been particularly well characterized in patterning the primary axes of insects and vertebrates. New results implicate similar antagonistic relationships in numerous later events of embryogenesis.  相似文献   

12.
Murine transforming growth factor-beta 3 (TGF beta 3) cDNAs were isolated from a TGF beta 2-induced AKR-2B cDNA library. The composite cDNA sequence is 2894 nucleotides long, including 610-nucleotide and 1054-nucleotide 5' and 3' untranslated sequences, respectively. The murine TGF beta 3-coding region is 1230 nucleotides in length and encodes a precursor protein of 410 amino acids, with a 96% peptide sequence identity with the human TGF beta 3 precursor. Examination of TGF beta 1 and TGF beta 3 mRNA levels in adult murine tissues showed that TGF beta 1 mRNA expression is predominant in spleen, lung, and placenta. In contrast, TGF beta 3 RNA was present in substantial amounts in brain, heart, adipose tissue, and testis. TGF beta 3 mRNA is also observed in adult mouse lung and placenta. Both TGF beta 1 and TGF beta 3 RNAs were present in all stages of mouse fetal development studied from 10.5-17.5 days postcoitum, with higher levels observed in the latter stages. The differential expression of these TGF beta genes suggests that the various TGF beta species may have distinct physiological roles in vivo.  相似文献   

13.
14.
A high affinity polyclonal antibody specific for phosphotyrosyl residues has been used in immunoblotting experiments to survey developing embryonic chicken tissues for the presence and characteristics of tyrosine phosphorylated proteins. Proteins phosphorylated on tyrosine were found to be present in all the embryonic tissues examined, including heart, thigh, gizzard, intestine, lung, liver, kidney, brain, and lens, from 7 to 21 d of development in ovo, but were greatly reduced or absent in the same tissues taken from adult chickens. A limited number of major tyrosine phosphorylated proteins were seen in all the tissues examined and they ranged in molecular mass from 35 to 220 kD. Most of the tissues contained proteins phosphorylated on tyrosine with apparent molecular masses of 120, 70, 60, and 35 kD, suggesting that the substrates of tyrosine protein kinases in different tissues may be related proteins. One-dimensional peptide mapping of the 120- and 70-kD protein bands indicated a close structural relationship among the phosphotyrosine-containing proteins of 120 kD, and similarly among those of 70 kD, from the different tissues.  相似文献   

15.
16.
Ubiquitin-mediated proteolysis regulates the activity of diverse receptor systems. Here, we identify Smurf2, a C2-WW-HECT domain ubiquitin ligase and show that Smurf2 associates constitutively with Smad7. Smurf2 is nuclear, but binding to Smad7 induces export and recruitment to the activated TGF beta receptor, where it causes degradation of receptors and Smad7 via proteasomal and lysosomal pathways. IFN gamma, which stimulates expression of Smad7, induces Smad7-Smurf2 complex formation and increases TGF beta receptor turnover, which is stabilized by blocking Smad7 or Smurf2 expression. Furthermore, Smad7 mutants that interfere with recruitment of Smurf2 to the receptors are compromised in their inhibitory activity. These studies thus define Smad7 as an adaptor in an E3 ubiquitin-ligase complex that targets the TGF beta receptor for degradation.  相似文献   

17.
TGFbeta activated kinase 1 (TAK1) is a MAPKKK that in cell culture systems has been shown to act downstream of a variety of signaling molecules, including TGFbeta. Its role during vertebrate development, however, has not been examined by true loss-of-function studies. In this report, we describe the phenotype of mouse embryos in which the Tak1 gene has been inactivated by a genetrap insertion. Tak1 mutant embryos exhibit defects in the developing vasculature of the embryo proper and yolk sac. These defects include dilation and misbranching of vessels, as well as an absence of vascular smooth muscle. The phenotype of Tak1 mutant embryos is strikingly similar to that exhibited by loss-of-function mutations in the TGFbeta type I receptor Alk1 and the type III receptor endoglin, suggesting that TAK1 may be a major effector of TGFbeta signals during vascular development. Consistent with this view, we find that in zebrafish, morpholinos to TAK1 and ALK1 synergize to enhance the Alk1 vascular phenotype. Moreover, we show that overexpression of TAK1 is able to rescue the vascular defect produced by morpholino knockdown of ALK1. Taken together, these results suggest that TAK1 is probably an important downstream component of the TGFbeta signal transduction pathway that regulates vertebrate vascular development. In addition, as heterozygosity for mutations in endoglin and ALK1 lead to the human syndromes known as hereditary hemorrhagic telangiectasia 1 and 2, respectively, our results raise the possibility that mutations in human TAK1 might contribute to this disease.  相似文献   

18.
Smad2 is a crucial component of intracellular signaling by transforming growth factor-β (TGFβ). Here we describe that Smad2 is glycosylated, which is a novel for Smad2 post-translational modification. We showed that the Smad2 glycosylation was inhibited upon treatment of cells with 17β-estradiol, and was enhanced in cells in a dense culture as compared to cells in a sparse culture. The Smad2 glycosylation was not dependent on the C-terminal phosphorylation of Smad2, and was not affected by TGFβ1 treatment of the cells. Smad2 was glycosylated at multiple sites, and one of the predicted sites is Serine110. Thus, Smad2 is glycosylated, and this post-translational modification was modulated by 17β-estradiol but not by TGFβ1.  相似文献   

19.
20.
TGF beta 1 inhibits Ca2+-calcineurin-mediated activation in thymocytes   总被引:3,自引:0,他引:3  
TGFbeta1 is a polypeptide growth modulatory and differentiation factor involved in many biological processes including immune homeostasis and self-tolerance. Tgfb1 knockout mice die around weaning age due to severe inflammation in most major organ systems, but the mechanism underlying this disease is not understood. In this study we demonstrate that Tgfb1(-/-) CD4(+)CD8(+) and CD4(+)CD8(-) thymocytes are hyperresponsive to receptor-mediated and receptor-independent mitogenic stimulation. A suboptimal concentration of ionomycin in the presence of PMA fully activates Tgfb1(-/-) thymocytes, whereas the inhibitors of Ca(2+) influx and calcineurin, EGTA and FK506, eliminate the hyperresponsiveness. Hence, the hypersensitivity of Tgfb1(-/-) thymocytes is due to a lowered threshold for Ca(2+)-dependent activation. Further, we demonstrate that the hypersensitivity of thymocytes results from the absence of TGFbeta1 and not from the inflammatory environment because the thymocytes are hyperresponsive in preinflammatory-stage Tgfb1(-/-) mice. Our results suggest for the first time that TGFbeta1 functions to inhibit aberrant T cell expansion by maintaining intracellular calcium concentration levels low enough to prevent a mitogenic response by Ca(2+)-independent stimulatory pathways alone. Consequently, TGFbeta1 prevents autoimmune disease through a Ca(2+) regulatory pathway that maintains the activation threshold above that inducible by self-MHC-TCR interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号