首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integration of progeny simian virus 40 DNA into the host cell genome   总被引:11,自引:0,他引:11  
A procedure was developed for the separation of cellular DNA of productively infected monkey kidney cells from free simian virus 40 DNA. The application of this procedure allowed the investigation of progeny viral DNA integration into the host cell DNA by nucleic acid hybridization techniques. The purification consisted of precipitation of the cellular DNA by Hirt's (1967) method, velocity centrifugation in alkaline sucrose gradients, equilibrium centrifugation in ethidium bromide/CsCl solution, and an additional velocity centrifugation in an alkaline sucrose gradient. The efficiency of each step of the procedure was determined by monitoring the amount of contaminating free viral DNA. Purified cellular DNA, isolated from cells late after infection, contained approximately 0/sd006% free viral DNA, but as much as 2% integrated simian virus 40 DNA. This corresponds to more than 20,000 integrated virus genome equivalents per cell, as determined by DNA-DNA reassociation kinetics. Integration of simian virus 40 DNA into the cellular DNA became detectable at 24 hours after infection, and increased with the increase in the rate of viral DNA synthesis.  相似文献   

2.
Micrococcal-nuclease digestion of adenovirus 2(ad 2) infected HeLa cell nuclei early after infection has been used to investigate the nucleoprotein nature of parental viral DNA. Viral DNA is more susceptible to nuclease digestion than cellular DNA. The pattern of digestion products changes as digestion proceeds from an indistinct pattern 1 hour post infection(pi) to a nucleosome-like pattern at 6 hours pi. The major differences between viral and cellular nucleoprotein products were i) a subnucleosome fraction from viral DNA and ii) the repeat size of DNA in viral nucleosomes was 165 base pairs and in cellular nucleosomes, 195 base pairs. Up to 50% viral DNA in nuclei 6 hours pi seems to be in nucleosome-like structures. Such patterns are not seen on digestion of partially-uncoated virus or isolated cores.  相似文献   

3.
Immuno-Electron Microscopy of the Morphogenesis of Mumps Virus   总被引:12,自引:8,他引:4       下载免费PDF全文
The fine structure of mumps virus-infected chick embryo fibroblastic cells was examined sequentially after viral inoculation. Intracytoplasmic nucleoprotein strands, similar to those described for parainfluenza viruses, were detectable in small aggregates between 36 and 48 hr. The peripheral strands of this viral component lie beneath and along an antigenically altered bulging portion of the cell membrane. The outermost strands are consistently parallel to the differentiated segment of the plasma membrane, which is invariably associated with surface projections. As has been found with other myxoviruses, mumps virus replicates by budding from the cell surface. The virus particle, roughly spherical in shape, has a size ranging from 1,000 to 8,000 A. Filamentous forms are rarely observed in the present culture system. Ferritin-conjugated antibody specifically labels the cytoplasmic nucleoprotein, the modified cell membrane, and the virus particle. Intranuclear inclusions of low electron density and morphologically different from those described in measles virus-infected HeLa and amnion cells were observed in the nucleus of several infected cells. Immuno-electron microscopic observations suggest that the nucleoprotein synthesis rate exceeds that of cell membrane differentiation into viral envelope. This difference results in the accumulation of viral nucleoprotein in large intracytoplasmic masses which can be demonstrated by electron microscopy.  相似文献   

4.
We have investigated the association of viral DNA with cell DNA in chicken embryo kidney (CEK) cells productively infected with chicken embryo lethal orphan (CELO) virus and in human (HEK) cells infected with mutants ts36 and ts125 of human adenovirus type 5 under permissive and restrictive conditions. Cell and viral DNA molecules were separated after CELO virus infection of CEK cells by alkaline sucrose gradient centrifugation, network formation, and CsCl density gradient centrifugation, methods that rely on different properties of the DNA. The cell DNA was then tested for viral sequences by DNA reannealing kinetics. Between 500 and 1,000 viral genome equivalents per cell were found at 36 h postinfection associated with cell DNA purified by each method. These values greatly exceeded the amount of free viral DNA found contaminating cell DNA prepared by the same methods from uninfected cells to which CELO virus DNA had been added. Quantitative agreement in the amounts of viral DNA found associated with cell DNA purified by these different methods suggests that CELO virus DNA is integrated into chick cell DNA during lytic infection. Similar experiments in HEK cells using mutants ts36 and ts125 of adenovirus type 5 at both restrictive and permissive temperatures showed that the same proportion of viral DNA is associated with cell DNA in the absence of viral DNA replication, and this suggests that the difference in the frequency with which cells are transformed by these mutants is not due to a difference in the frequency integration.  相似文献   

5.
6.
A study of protein and ribonucleic acid (RNA) synthesis in cells infected by foot-and-mouth disease virus has indicated possible mechanisms of viral control over host cell metabolism. Foot-and-mouth disease virus infection of baby hamster kidney cells resulted in 50% inhibition of host cell protein synthesis at 180 min postinfection. A viral-induced interference with host cell RNA methylation was observed to be more rapidly inhibited than protein synthesis. To determine the nature of methylation inhibition, the kinetics of several host cell methylated RNA species were examined subsequent to virus infection. Data from sucrose zonal centrifugation and methylated albumin kieselguhr chromatography showed that methylation of nuclear RNA was inhibited 50% at 60 min postinfection. Inhibition of nuclear ribosomal RNA precursors and formation of nascent ribosomes correlated with inhibition kinetics of nuclear RNA methylation. It is suggested that the viral interference with the host nuclear RNA methylation is directly responsible for the observed loss of nascent ribosome formation. Moreover, early in the infectious cycle, methylation inhibition of host cell RNA could, in part, account for the cessation of host protein synthesis.  相似文献   

7.
Entry of Vesicular Stomatitis Virus into L Cells   总被引:13,自引:10,他引:3       下载免费PDF全文
Early stages of the entry of vesicular stomatitis (VS) virus into L cells were followed by electron microscopy with the aid of ferritin antibody labeling. Cells which were infected at 0 C and incubated for 10 min at 37 C were reacted first with antiviral-antiferritin hybrid antibody and then with ferritin or fluorescein-labeled apoferritin. Extensive ferritin labeling of the cell surface was detected by both electron and fluorescence microscopy. The labeled regions of the cell surface were continuous with and indistinguishable from the rest of the host cell membrane, suggesting incorporation of viral antigens into the cell surface during viral penetration. Fusion of parental viral membrane with host cell membrane was further demonstrated by examining the localization of (3)H-labeled viral structural proteins in cells infected at 0 C and incubated for short periods at 37 C. Viral nucleoprotein was found in a soluble fraction of the cells which was derived primarily from the cytoplasm, whereas a particulate fraction from the cells was enriched in viral envelope proteins. Cytoplasmic membrane was isolated from these cells, and this membrane contained viral envelope proteins. These results suggest that penetration by VS virus occurs by fusion of the viral and cellular membranes followed by release of nucleo-protein into the cytoplasm.  相似文献   

8.
The efficiency of cloned class I MHC restricted CTL specific for the nucleoprotein or glycoprotein of lymphocytic choriomeningitis virus in either mediating virus clearance or immunopathologic disease in mice during acute infection was quantitated. Cloned CTL specific for either an internal (nucleoprotein) or surface (glycoprotein) protein of lymphocytic choriomeningitis virus, when administered intracerebrally 5 days after the initiation of infection induced fatal immunopathology, indicating that both internal and surface viral Ag play a role in immune mediated disease in vivo. Dose-response analysis indicated that only 10(2) to 10(3) cloned CTL injected intracerebrally were required to induce mortality in 50% of inoculated syngeneic mice. Thus relatively few virus-specific CTL are required to induce an acute immunopathologic disease in the central nervous system. In contrast, if cloned CTL are adoptively transferred at the time of initiation of viral infection they provide protection as demonstrated by their ability to eliminate virus from the brain and thus terminate the acute infection.  相似文献   

9.
Simian virus 40 nucleoprotein isolated from the nuclei of infected cells contains a nuclease-sensitive site adjacent to the viral origin of replication (between 0.66 and 0.73 map unit). Nuclear extracts were subfractionated by sucrose gradient centrifugation to yield provirions (200S) and simian virus 40 chromatin (80S). The 80S fraction was cleaved either by DNase I or by an endonuclease endogenous to BSC-1 cells with high preference for the 0.66 to 0.73 region. The 200S fraction was treated to release core particles that were sensitive to nuclease cleavage; however, DNase I showed little or no preference for the 0.66 to 0.73 region of the provirion core nucleoprotein.  相似文献   

10.
Nucleoprotein complexes containing viral DNA and cellular histones were extracted from nuclei of permissive cells infected with polyoma virus or simian virus 40 (SV40) and examined by electron microscopy. Polyoma and SV40 nucleoprotein complexes are almost identical. They appear as relaxed circular molecules consisting of 20 to 21 globular particles interconnected by thin filaments. Their contour length in 0.02 M salt is 2.7 times shorter than that of viral DNA form I obtained after dissociation of the proteins in 1 M NaCl. The nucleosomes have an average diameter of 12.5 nm. Each nucleosome contains 175 to 205 DNA base pairs condensed fivefold in length. The nucleosomes are regularly spaced on the circular molecule. The internucleosomal filaments are made of naked DNA, and each filament contains about 55 base pairs. The partial sensitivity of the nucleoprotein complex to cleavage by EcoR1 endonuclease suggests that the nucleosomes are not formed at specific sites on the viral genome. Faster sedimenting nucleoprotein complexes containing replicative intermediates were studied. Isopycnic centrifugation in metrizamide gradients in the absence of aldehyde fixation showed that these molecules conserved the same DNA-to-protein ratio as the form I DNA-containing complexes.  相似文献   

11.
12.
Stable association of viral protein VP1 with simian virus 40 DNA.   总被引:5,自引:4,他引:1       下载免费PDF全文
Mild dissociation of simian virus 40 particles releases a 110S virion core nucleoprotein complex containing histones and the three viral proteins VP1, VP2, and VP3. The association of viral protein VP1 within this nucleoprotein complex is mediated at least partially through a strong interaction with the viral DNA. Treatment of the virion-derived 110S nucleoprotein complex with 0.25% Sarkosyl dissociated VP2, VP3, and histones, leaving a stable VP1-DNA complex. The VP1-DNA complex had a sedimentation value of 30S and a density of 1.460 g/cm3. The calculated molecular weight of the complex was 7.9 x 10(6), with an average of 100 VP1 molecules per DNA. Agarose gel electrophoresis of the VP1-DNA complex demonstrated that VP1 is associated not only with form I and form II simian virus 40 DNAs but also with form III simian virus 40 DNA generated by cleavage with EcoRI.  相似文献   

13.
Nucleoprotein complexes containing viral DNA and cellular histones were extracted from nuclei of permissive cells infected with polyoma virus or simian virus 40 (SV40) and examined by electron microscopy. Polyoma and SV40 nucleoprotein complexes are almost identical. They appear as relaxed circular molecules consisting of 20 to 21 globular particles interconnected by thin filaments. Their contour length in 0.02 M salt is 2.7 times shorter than that of viral DNA form I obtained after dissociation of the proteins in 1 M NaCl. The nucleosomes have an average diameter of 12.5 nm. Each nucleosome contains 175 to 205 DNA base pairs condensed fivefold in length. The nucleosomes are regularly spaced on the circular molecule. The internucleosomal filaments are made of naked DNA, and each filament contains about 55 base pairs. The partial sensitivity of the nucleoprotein complex to cleavage by EcoR1 endonuclease suggests that the nucleosomes are not formed at specific sites on the viral genome. Faster sedimenting nucleoprotein complexes containing replicative intermediates were studied. Isopycnic centrifugation in metrizamide gradients in the absence of aldehyde fixation showed that these molecules conserved the same DNA-to-protein ratio as the form I DNA-containing complexes.  相似文献   

14.
The measles virus (MV) nucleoprotein associates with the viral RNA genome to form the N-RNA complex, providing a template for viral RNA synthesis. In our previous study, major phosphorylation sites of the nucleoprotein were identified as S479 and S510. However, the functions of these phosphorylation sites have not been clarified. In this study, we rescued recombinant MVs (rMVs) whose phosphorylation sites in the nucleoprotein were substituted (rMV-S479A, rMV-S510A, and rMV-S479A/S510A) by reverse genetics and used them in subsequent analyses. In a one-step growth experiment, rMVs showed rapid growth kinetics compared with wild-type MV, although the peak titer of the wild-type MV was the same as or slightly higher than those of the rMVs. Time course analysis of nucleoprotein accumulation also revealed that viral gene expression of rMV was enhanced during the early phase of infection. These findings suggest that nucleoprotein phosphorylation has an important role in controlling viral growth rate through the regulation of viral gene expression. Conversely, multistep growth curves revealed that nucleoprotein-phosphorylation intensity inversely correlated with viral titer at the plateau phase. Additionally, the phosphorylation intensity of the wild-type nucleoprotein in infected cells was significantly reduced through nucleoprotein-phosphoprotein binding. Excessive nucleoprotein-phosphorylation resulted in lower stability against RNase and faster turnover of viral genomic RNA. These results suggest that nucleoprotein-phosphorylation is also involved in viral genomic RNA stability.  相似文献   

15.
Purified preparations of watermelon curly mottle virus (WCMoV), a whitefly-transmitted geminivirus, contained dimeric or geminate particles of 20 times 30 nm and the virus was transmissible by mechanical means. Virus yields ranged from 100–150 μg/100 g leaf tissue. Purified preparations exhibited a typical nucleoprotein absorbance profile with a maximum absorbance at 258 nm, and A280 / A260 ratio of 0.61–0.64. Infectivity was associated with two light-scattering, virus-containing bands following sucrose density gradient centrifugation. The viral capsid protein was resolved as a doublet by SDS-PAGE. The estimated mol. wts of the two bands within the doublet were 29 100 (±1550) and 27 733 (±1550), respectively. DNA isolated from virus particles was resolved by gel electrophoresis into two circular single-stranded DNA bands of approximately 2.6 to 2.7 kb. The two bands are believed to represent the individual components of a bipartite genome, characteristic of previously described whitefly-transmitted geminiviruses.  相似文献   

16.
Isolated influenza A virus nucleoprotein exists in an equilibrium between monomers and trimers. Samples containing only monomers or only trimers can be stabilized by respectively low and high salt. The trimers bind RNA with high affinity but remain trimmers, whereas the monomers polymerise onto RNA forming nucleoprotein-RNA complexes. When wild type (wt) nucleoprotein is crystallized, it forms trimers, whether one starts with monomers or trimers. We therefore crystallized the obligate monomeric R416A mutant nucleoprotein and observed how the domain exchange loop that leads over to a neighbouring protomer in the trimer structure interacts with equivalent sites on the mutant monomer surface, avoiding polymerisation. The C-terminus of the monomer is bound to the side of the RNA binding surface, lowering its positive charge. Biophysical characterization of the mutant and wild type monomeric proteins gives the same results, suggesting that the exchange domain is folded in the same way for the wild type protein. In a search for how monomeric wt nucleoprotein may be stabilized in the infected cell we determined the phosphorylation sites on nucleoprotein isolated from virus particles. We found that serine 165 was phosphorylated and conserved in all influenza A and B viruses. The S165D mutant that mimics phosphorylation is monomeric and displays a lowered affinity for RNA compared with wt monomeric NP. This suggests that phosphorylation may regulate the polymerisation state and RNA binding of nucleoprotein in the infected cell. The monomer structure could be used for finding new anti influenza drugs because compounds that stabilize the monomer may slow down viral infection.  相似文献   

17.
Monoclonal antibodies directed against Uukuniemi virus glycoproteins G1 and G2 in combination with polyclonal antibodies against the nucleoprotein (N) were used to study the maturation of the virus in Golgi complexes of infected chicken embryo fibroblasts and BHK cells. Of 25 monoclonal antibodies obtained, 10 were shown to be G1 specific and 15 were shown to be G2 specific by immunoblotting and immunoprecipitation. In double-staining experiments, some of the monoclonal antibodies gave similar distributions of fluorescence as compared with the staining obtained from polyclonal rabbit anti-G1-G2 antibodies. Others, however, preferentially stained either the glycoproteins in the Golgi complex or those at the cell surface. This may indicate that the glycoproteins underwent conformational changes during their transport. Uukuniemi virus infection resulted in the vacuolization of the membranes of Golgi complexes where the maturation of the virus was taking place. Double-staining experiments with monoclonal antibodies which preferentially stained the Golgi-associated viral glycoproteins and with anti-N polyclonal rabbit antiserum showed a correlation between the progressive vacuolization of the Golgi complex and the accumulation of viral nucleoprotein in the Golgi region, suggesting that a morphological alteration of the Golgi complex may be a prerequisite for intracellular maturation of the virus. Treatment of Uukuniemi virus-infected cells with tunicamycin, a drug which inhibits N-linked glycosylation, resulted in the accumulation of both glycoproteins at an intracellular location, apparently representing the endoplasmic reticulum. Double-staining experiments showed a parallel accumulation of nucleoprotein at these sites, indicating that local accumulation of glycoproteins is required for nucleoprotein binding to intracellular membranes.  相似文献   

18.
J G Bateman  S R Chant 《Microbios》1979,25(99):33-43
An adaptation of the polyethylene glycol method for the purification of tobacco mosaic virus (sunnhemp strain) from small (2 g) samples of French bean lamina is described. The virus can be precipitated from 1-2 ml of clarified sap by the addition of an equal volume of 8% polyethylene glycol 6000 (w/v) (PEG), and pelleted by centrifugation for 10 min at 1,8000 x g. Details are given of tests which establish that the purity and quality of the virus obtained by the small-scale method are as good as those achieved by the established large-scale method. Even with very low virus titres, the small-scale method effectively precipitates total tobacco mosaic virus nucleoprotein without substantial loss of infectivity. The results are reproducible and in a relatively short time it is possible to purify the virus from large numbers of replicate samples.  相似文献   

19.
We propose a reference model of the kinetics of a viral RNA-dependent RNA polymerase (vRdRp) activities and its regulation during infection of eucaryotic cells. After measles virus infects a cell, mRNAs from all genes immediately start to accumulate linearly over the first 5 to 6 h and then exponentially until approximately 24 h. The change from a linear to an exponential accumulation correlates with de novo synthesis of vRdRp from the incoming template. Expression of the virus nucleoprotein (N) prior to infection shifts the balance in favor of replication. Conversely, inhibition of protein synthesis by cycloheximide favors the latter. The in vivo elongation speed of the viral polymerase is approximately 3 nucleotides/s. A similar profile with fivefold-slower kinetics can be obtained using a recombinant virus expressing a structurally altered polymerase. Finally, virions contain only encapsidated genomic, antigenomic, and 5'-end abortive replication fragment RNAs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号