首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Although cysteinyl leukotrienes (cysLTs) are known to be principal inflammatory lipid mediators released from IgE-stimulated mast cells, the signaling mechanisms involved in the synthesis of cysLTs remain largely unknown. In the present study, therefore, we investigated the signaling pathway by which IgE induces cysLTs synthesis after binding to its high affinity receptor (FcepsilonRI) in RBL-2H3 mast cells. We found that IgE-induced cysLT synthesis is completely abolished in RBL-2H3(Rac-N17) cells, a stable cell line expressing Rac(N17), a dominant negative Rac1 mutant; conversely, synthesis was enhanced in cells expressing Rac(V12), a constitutively active Rac1 mutant, suggesting that Rac1 is a key mediator of IgE signaling to cysLT synthesis. Further analysis aimed at identifying mediators downstream of Rac1 revealed that pretreating cells with a protein kinase C-delta (PKC-delta) inhibitor or infection with an adenoviral vector harboring a dominant negative PKC-delta mutant significantly attenuates IgE-induced ERKs phosphorylation, cytosolic phospholipase A(2) phosphorylation/translocation, and cysLT synthesis. In addition, the expression of Rac(N17) blocked PKC-delta translocation and impaired the phosphorylation of ERKs and cytosolic phospholipase A(2) otherwise elicited by IgE stimulation. Taken together these results suggest that PKC-delta also plays a critical mediatory role in the IgE signaling pathway leading to cysLT synthesis, acting downstream of Rac1. Finally, the physiological significance of PKC-delta in the IgE signaling pathway was demonstrated in an Ag (OVA)-challenged in vivo mouse model, in which induced levels of cysLTs and airway responsiveness in lung airways were significantly diminished by prior i.p. injection of a PKC-delta inhibitor.  相似文献   

3.
The immunoregulatory cytokine IL-10 plays an essential role in down-modulating adaptive and innate immune responses leading to chronic inflammatory diseases. In contrast, cysteinyl leukotrienes (cysLTs), important proinflammatory mediators of cell trafficking and innate immune responses, are thought to enhance immune reactions in the pathogenesis of diseases, such as bronchial asthma, atherosclerosis, and pulmonary fibrosis. The aim of this study was to determine the IL-10 regulatory role in cysLT-induced activation of human monocytes and monocyte-derived dendritic cells. Herein we show that cysLT-induced activation and chemotaxis of human monocytes and monocyte-derived immature dendritic cells (iDC) are inhibited by IL-10 pretreatment. IL-10 down-regulated cysLT type 1 and 2 receptors' mRNA in a time- and concentration-dependent fashion. cysLT-induced activation of monocytes and iDCs measured by intracellular calcium flux and immediate-early gene expression (FBJ murine osteosarcoma viral oncogen homolog B and early growth response-2) was potently decreased by IL-10 and by the cysLT antagonist MK571. Chemotaxis of monocytes and iDCs to increasing concentrations of leukotriene D(4) (LTD(4)) was also inhibited by IL-10. LTD(4) enhanced iDC migration in response to CCL5. IL-10 selectively inhibited LTD(4)-induced chemotaxis without affecting migration to CCL5. These data indicate that cysLT-induced activation of human monocytes and dendritic cells may be specifically inhibited by IL-10, suggesting a direct link between the 5-lipoxygenase proinflammatory pathway and IL-10 regulatory mechanisms. Antileukotriene therapies may reproduce some regulatory mechanisms played by IL-10 in inflammatory processes.  相似文献   

4.
Enhancer role of STAT5 in CD2 activation of IFN-gamma gene expression   总被引:1,自引:0,他引:1  
IFN-gamma is an important immunoregulatory protein with tightly controlled expression in activated T and NK cells. Three potential STAT binding regions have been recognized within the IFN-gamma promoter: 1) an IL-12-mediated STAT4 binding site at -236 bp; 2) a newly identified IL-2-induced STAT5 binding element at -3.6 kb; and 3) CD2-mediated STAT1 and STAT4 binding to an intronic element in mucosal T cells. However, functional activation of these sites remains unclear. In this study we demonstrate CD2-mediated activation of the newly characterized -3.6-kb IFN-gamma STAT5 binding region. CD2 signaling of human PBMC results in activation of the -3.6-kb IFN-gamma promoter, whereas mutation of the -3.6-kb STAT5 site attenuates promoter activity. Functional activation is accompanied by STAT5A but little STAT5B nucleoprotein binding to the IFN-gamma STAT5 site, as determined by competition and supershift assays. STAT5 activation via CD2 occurs independent of IL-2. Western and FACS analysis shows increased phospho-STAT5 following CD2 signaling. AG490, a tyrosine kinase inhibitor affecting Jak proteins, inhibits CD2-mediated IFN-gamma mRNA expression, secretion, and nucleoprotein binding to the IFN-gamma STAT5 site in a dose-dependent fashion. This report is the first to describe CD2-mediated activation of STAT5 and supports STAT5 involvement in regulation of IFN-gamma expression.  相似文献   

5.
Interferon (IFN)-gamma is one of the most important microglia stimulators in vivo participating in inflammation and Th1 activation/differentiation. IFN-gamma-mediated signaling involves the activation of the Jak/STAT1 pathway. The neuropeptides vasoactive intestinal peptide (VIP) and the pituitary adenylate cyclase activating polypeptide (PACAP) are two potent microglia-deactivating factors that inhibit the production of proinflammatory mediators in vitro and in vivo. The present study investigated the molecular mechanisms involved in the VIP/PACAP regulation of several IFN-gamma-induced microglia-derived factors, including IFN-gamma-inducible protein-10 (IP-10), inducible nitric-oxide synthase (iNOS), and CD40. The results indicate that VIP/PACAP inhibit Jak1-2 and STAT1 phosphorylation, and the binding of activated STAT1 to the IFN-gamma activated site motif in the IFN regulatory factor-1 and CD40 promoter and to the IFN-stimulated response element motif of the IP-10 promoter. Through its effect in the IFN-gamma-induced Jak/STAT1 pathway, VIP and PACAP are able to control the gene expression of IP-10, CD40, and iNOS, three microglia-derived mediators that play an essential role in several pathologies, i.e. inflammation and autoimmune disorders. The effects of VIP/PACAP are mediated through the specific receptor VPAC1 and the cAMP/protein kinase A transduction pathway. Because IFN-gamma is a major stimulator of innate and adaptive immune responses in vivo, the down-regulation of IFN-gamma-induced gene expression by VIP and PACAP could represent a significant element in the regulation of the inflammatory response in the central nervous system by endogenous neuropeptides.  相似文献   

6.
7.
The vasoactive intestinal peptide (VIP) and the pituitary adenylate cyclase-activating polypeptide (PACAP), two immunomodulatory neuropeptides that affect both innate and acquired immunity, down-regulate IL-12 p40 and inducible NO synthase expression in LPS/IFN-gamma-stimulated macrophages. We showed previously that VIP/PACAP inhibit NF-kappaB nuclear translocation through the stabilization of IkappaB and reduce IFN regulatory factor-1 (IRF-1) binding to the regulatory elements found in the IL-12 p40 and inducible NO synthase promoters. In this paper we studied the molecular mechanisms involved in the VIP/PACAP regulation of IRF-1 transactivating activity. Our studies indicate that the inhibition in IRF-1 binding correlates with a reduction in IRF-1 protein and mRNA in IFN-gamma-treated Raw 264.7 macrophages. In agreement with the described Janus kinase (Jak)1/Jak2/STAT1/IRF-1 activation pathway, VIP/PACAP inhibit Jak1/Jak2, STAT1 phosphorylation, and the binding of STAT1 to the GAS sequence motif in the IRF-1 promoter. The effects of VIP/PACAP are mediated through the specific VIP/PACAP receptor-1 and the cAMP/protein kinase A (PKA) transduction pathway, but not through the induction of suppressor of cytokine signaling-1 or suppressor of cytokine signaling-3. Because IFN-gamma is a major stimulator of innate immune responses in vivo, the down-regulation of IFN-gamma-induced gene expression by VIP and PACAP could represent a significant element in the regulation of the inflammatory response by endogenous neuropeptides.  相似文献   

8.
Many cytokines mediate their effects through Jak/STAT signaling pathways providing many opportunities for cross-talk between different cytokines. We examined the interaction between two cytokine families, gp130-related cytokines and interferon-gamma (IFN-gamma), which are coexpressed in the nervous system during acute trauma and pathological conditions. Typical nerve cells show an IFN-gamma response that is restricted to activating STAT1, with minor activation of STAT3. IFN-gamma elicited a pronounced STAT3 response in cells pre-treated for 5-7 h with ciliary neurotrophic factor (CNTF), leukemia inhibitory factor or interleukin-6. CNTF or interleukin-6 induced an IFN-gamma STAT3 response in a variety of cells including SH-SY5Y human neuroblastoma, HMN-1 murine motor neuron hybrid cells, rat sympathetic neurons and human hepatoma HepG2 cells. The enhancement was measured as an increase in tyrosine phosphorylated STAT3, in STAT3-DNA binding and in STAT-luciferase reporter gene activity. The enhanced STAT3 response was not due to an increase in overall STAT3 levels but was dependent upon ongoing protein synthesis. The induction by CNTF was inhibited by the protein kinase C inhibitor, BIM, and the MAPK-kinase inhibitor, U0126. Further, H-35 hepatoma cells expressing gp130 receptor chimeras lacking either the SHP-2 docking site or the Box 3 STAT binding sites failed to enhance the IFN-gamma STAT3 response. These results provide evidence for an interaction between gp130 and IFN-gamma cytokines that can significantly alter the final cellular response to IFN-gamma.  相似文献   

9.
10.
11.
12.
13.
14.
NK and T cell-derived IFN-gamma is a key cytokine that stimulates innate immune responses and directs adaptive T cell response toward Th1 type. IL-15, IL-18, and IL-21 have significant roles as activators of NK and T cell functions. We have previously shown that IL-15 and IL-21 induce the expression of IFN-gamma, T-bet, IL-12R beta 2, and IL-18R genes both in NK and T cells. Now we have studied the effect of IL-15, IL-18, and IL-21 on IFN-gamma gene expression in more detail in human NK and T cells. IL-15 clearly activated IFN-gamma mRNA expression and protein production in both cell types. IL-18 and IL-21 enhanced IL-15-induced IFN-gamma gene expression. IL-18 or IL-21 alone induced a modest expression of the IFN-gamma gene but a combination of IL-21 and IL-18 efficiently up-regulated IFN-gamma production. We also show that IL-15 activated the binding of STAT1, STAT3, STAT4, and STAT5 to the regulatory sites of the IFN-gamma gene. Similarly, IL-21 induced the binding of STAT1, STAT3, and STAT4 to these elements. IL-15- and IL-21-induced STAT1 and STAT4 activation was verified by immunoprecipitation with anti-phosphotyrosine Abs followed by Western blotting with anti-STAT1 and anti-STAT4 Abs. IL-18 was not able to induce the binding of STATs to IFN-gamma gene regulatory sites. IL-18, however, activated the binding of NF-kappa B to the IFN-gamma promoter NF-kappa B site. Our results suggest that both IL-15 and IL-21 have an important role in activating the NK cell-associated innate immune response.  相似文献   

15.
Previous studies have demonstrated that Leishmania donovani attenuates STAT1-mediated signaling in macrophages; however it is not clear whether other species of Leishmania, which cause cutaneous disease, also interfere with macrophage IFN-gamma signaling. Therefore, we determined the effect of Leishmania major and Leishmania mexicana infection on STAT1-mediated IFN-gamma signaling pathway in J774A.1 and RAW264.7 macrophages. We found that both L. major and L. mexicana suppressed IFNgammaRalpha (alpha subunit of interferon gamma receptor) and IFN-gammaRbeta (beta subunit of interferon gamma receptor) expression, reduced levels of total Jak1 and Jak2, and down-regulated IFN-gamma-induced Jak1, Jak2 and STAT1 activation. The effect of L. mexicana infection on Jak1, Jak2 and STAT1 activation was more profound when compared with L. major. Although tyrosine phosphorylation of STAT1alpha was decreased in IFN-gamma stimulated macrophages infected with L. major or L. mexicana, those infected with L. mexicana showed a significant increase in phosphorylation of the dominant negative STAT1beta. These findings indicate that L. major and L. mexicana attenuate STAT1-mediated IFN-gamma signaling in macrophages. Furthermore, they also demonstrate that L. mexicana preferentially enhances tyrosine phosphorylation of dominant negative STAT1beta, which may be one of the several survival mechanisms used by this parasite to evade the host defense mechanisms.  相似文献   

16.

Background

We have previously reported that free Heme generated during experimental cerebral malaria (ECM) in mice, is central to the pathogenesis of fatal ECM. Heme-induced up-regulation of STAT3 and CXCL10 promotes whereas up-regulation of HO-1 prevents brain tissue damage in ECM. We have previously demonstrated that Heme is involved in the induction of apoptosis in vascular endothelial cells. In the present study, we further tested the hypothesis that Heme reduces blood-brain barrier integrity during ECM by induction of apoptosis of brain vascular endothelial cells through STAT3 and its target gene matrix metalloproteinase three (MMP3) signaling.

Methods

Genes associated with the JAK/STAT3 signaling pathway induced upon stimulation by Heme treatment, were assessed using real time RT2 Profile PCR arrays. A human MMP3 promoter was cloned into a luciferase reporter plasmid, pMMP3, and its activity was examined following exposure to Heme treatment by a luciferase reporter gene assay. In order to determine whether activated nuclear protein STAT3 binds to the MMP3 promoter and regulates MMP3 gene, we conducted a ChIP analysis using Heme-treated and untreated human brain microvascular endothelial cells (HBVEC), and determined mRNA and protein expression levels of MMP3 using qRT-PCR and Western blot. Apoptosis in HBVEC treated with Heme was evaluated by MTT and TUNEL assay.

Results

The results show that (1) Heme activates a variety of JAK/STAT3 downstream pathways in HBVEC. STAT3 targeted genes such as MMP3 and C/EBPb (Apoptosis-related genes), are up regulated in HBVEC treated with Heme. (2) Heme-induced HBVEC apoptosis via activation of STAT3 as well as its downstream signaling molecule MMP3 and upregulation of CXCL10 and HO-1 expressions. (3) Phosphorylated STAT3 binds to the MMP3 promoter in HBVEC cells, STAT3 transcribed MMP3 and induced MMP3 protein expression in HBVEC cells.

Conclusions

Activated STAT3 binds to the MMP3 promoter region and regulates MMP3 in Heme-induced endothelial cell apoptosis.  相似文献   

17.
18.
19.
20.
Mycobacterial infections of macrophages have been shown to inhibit the ability of the macrophage to respond to IFN-gamma. We previously reported that Mycobacterium avium infection of mouse macrophages decreases IFN-gamma-induced STAT1 tyrosine phosphorylation and STAT1 DNA binding. Because macrophages respond to M. avium through Toll-like receptor 2 (TLR2), we determined whether TLR2 stimulation inhibits the response to IFN-gamma. Treatment of mouse RAW264.7 macrophages with TLR2 agonists inhibited the induction of IFN-gamma-inducible genes by IFN-gamma. In contrast to M. avium infection, TLR2 agonists did not inhibit the IFN-gamma induction of DNA-binding activity of STAT1 and the tyrosine phosphorylation of STAT1alpha. Instead, IFN-gamma induction of RAW264.7 cells treated with TLR2 agonists resulted in an increase in the tyrosine phosphorylation of the dominant-negative STAT1beta. TLR2 stimulation of RAW264.7 cells increased both STAT1beta protein and mRNA expression, suggesting that the increased STAT1beta phosphorylation results from increased STAT1beta expression. Because STAT1alpha and STAT1beta mRNA have different 3' untranslated regions, and 3' untranslated regions can regulate mRNA stability, we examined the effects of TLR2 stimulation on mRNA stability. TLR2 stimulation of RAW264.7 cells increased the stability of STAT1beta mRNA, while not affecting the stability of STAT1alpha mRNA. The ability of STAT1beta to function as a dominant negative was confirmed by overexpression of STAT1beta in RAW264.7 macrophages by transient transfection, which inhibited IFN-gamma-induced gene expression. These findings suggest that M. avium infection of mouse macrophages inhibits IFN-gamma signaling through a TLR2-dependent increase in STAT1beta expression by mRNA stablization and a TLR2-independent inhibition of STAT1 tyrosine phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号