首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Results of calculations using various empirical potentials suggest that base pair buckling, which commonly occurs in DNA crystal structures, is sufficient to eliminate the steric clash at CpG steps in B-DNA, originating from the base pair propeller twisting. The buckling is formed by an inclination of cytosines while deviations of guanines from a plane perpendicular to the double helix axis are unfavorable. The buckling is accompanied by an increased vertical separation of the base pair centers but the buckled arrangement of base pairs is at least as stable as when the vertical separation is normal and buckle zero. In addition, room is created by the increased vertical separation for the bases to propeller twist as is observed in DNA crystal structures. Further stabilization of base stacking is introduced into the buckled base pair arrangement by roll opening the base pairs into the double helix minor groove. The roll may lead to the double helix bending and liberation of guanines from the strictly perpendicular orientation to the double helix axis. The liberated guanines further contribute to the base pair buckling and stacking improvement. This work also suggests a characteristic very stable DNA structure promoted by nucleotide sequences in which runs of purines follow runs of pyrimidine bases.  相似文献   

2.
The crystal structures of five double helical DNA fragments containing non-Watson-Crick complementary base pairs are reviewed. They comprise four fragments containing G.T base pairs: two deoxyoctamers d(GGGGCTCC) and d(GGGGTCCC) which crystallise as A type helices; a deoxydodecamer d(CGCGAATTTGCG) which crystallises in the B-DNA conformation; and the deoxyhexamer d(TGCGCG), which crystallises as a Z-DNA helix. In all four duplexes the G and T bases form wobble base pairs, with bases in the major tautomer forms and hydrogen bonds linking N1 of G with O2 of T and O6 of G with N3 of T. The X-ray analyses establish that the G.T wobble base pair can be accommodated in the A, B or Z double helix with minimal distortion of the global conformation. There are, however, changes in base stacking in the neighbourhood of the mismatched bases. The fifth structure, d(CGCGAATTAGCG), contains the purine purine mismatch G.A where G is in the anti and A in the syn conformation. The results represent the first direct structure determinations of base pair mismatches in DNA fragments and are discussed in relation to the fidelity of replication and mismatch recognition.  相似文献   

3.
Preservation of genetic information in DNA relies on shielding the nucleobases from damage within the double helix. Thermal fluctuations lead to infrequent events of the Watson-Crick basepair opening, or DNA "breathing", thus making normally buried groups available for modification and interaction with proteins. Fluctuational basepair opening implies the disruption of hydrogen bonds between the complementary bases and flipping of the base out of the helical stack. Prediction of sequence-dependent basepair opening probabilities in DNA is based on separation of the two major contributions to the stability of the double helix: lateral pairing between the complementary bases and stacking of the pairs along the helical axis. The partition function calculates the basepair opening probability at every position based on the loss of two stacking interactions and one base-pairing. Our model also includes a term accounting for the unfavorable positioning of the exposed base, which proceeds through a formation of a highly constrained small loop, or a ring. Quantitatively, the ring factor is found as an adjustable parameter from the comparison of the theoretical basepair opening probabilities and the experimental data on short DNA duplexes measured by NMR spectroscopy. We find that these thermodynamic parameters suggest nonobvious sequence dependent basepair opening probabilities.  相似文献   

4.
Emergence of thousands of crystal structures of noncoding RNA molecules indicates its structural and functional diversity. RNA function is based upon a large variety of structural elements which are specifically assembled in the folded molecules. Along with the canonical Watson‐Crick base pairs, different orientations of the bases to form hydrogen‐bonded non‐canonical base pairs have also been observed in the available RNA structures. Frequencies of occurrences of different non‐canonical base pairs in RNA indicate their important role to maintain overall structure and functions of RNA. There are several reports on geometry and energetic stabilities of these non‐canonical base pairs. However, their stacking geometry and stacking stability with the neighboring base pairs are not well studied. Among the different non‐canonical base pairs, the G:U wobble base pair (G:U W:WC) is most frequently observed in the RNA double helices. Using quantum chemical method and available experimental data set we have studied the stacking geometry of G:U W:WC base pair containing dinucleotide sequences in roll‐slide parameters hyperspace for different values of twist. This study indicates that the G:U W:WC base pair can stack well with the canonical base pairs giving rise to large interaction energy. The overall preferred stacking geometry in terms of roll, twist and slide for the eleven possible dinucleotide sequences is seen to be quite dependent on their sequences. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 328–338, 2015.  相似文献   

5.
DNA Modeller is a microcomputer program for interactively manipulatingup to 20 bp in a DNA double helical arrangement. It calculatesthe van der Waals and electrostatic energies of base-base interactionsusing the AMBER potential, minimizes the energy with respectto the pair (buckle, propeller, opening, shear, stretch, stagger)and step (tilt, roll, twist, shift, slide, rise) parameters,calculates lengths of the canonical hydrogen bonds between thecomplementary bases, and calculates interatomic distances betweenthe successive base pairs. Input/output files are simple listsof the step and pair parameters or lists of the atom specifications(N1, C2, etc.) and their Cartesian coordinates (compatible withthe Desktop Molecular Modeller *.mol files). The program issupplied with a readbrk utility which transforms PDB/NDB tothe*.mol format readable by DNA Modeller. The DNA crystal structuresdeposited in the PDB or NDB databases can thus be analyzed,and their bases visualized and interactively manipulated. Inaddition, DNA Modeller can calculate the base pair and stepgeometrical parameters and interaction energies. A plotter utilitycreates wire mono or stereo pictures of the bases. This programis designed for IBM-compatible computers working under DOS orcan run as a DOS application under MS Windows 3.x or Merge (SCOUnix DOS emulator).  相似文献   

6.
Solution structures and base pair stacking of a self- complementary DNA hexamer d(CGTACG)(2) have been studied at 5, 10 and 15 degrees C, respectively. The stacking interactions among the center base pair steps of the DNA duplex are found to improve when the terminal base pairs became less stable due to end fraying. A new structural quantity, the stacking sum (Sigma(s)), is introduced to indicate small changes in the stacking overlaps between base pairs. The improvements in the stacking overlaps to maintain the double helical conformation are probably the cause for the observed temperature dependent structural changes in double helical DNA molecule. A detailed analysis of the helical parameters, backbone torsion angles, base orientations and sugar conformations of these structures has been performed.  相似文献   

7.
Ultraviolet hyperchromicity experiments indicate that in DNA duplex formation, a C-T mismatch is destabilizing in the center of a duplex, but behaves as a stable base pair at the terminus of a duplex. The C-T base pair is thought to contain two hydrogen bonds, but has thermodynamic parameters (delta Ho and delta Go of dissociation) that are similar to a G-C base pair. AMBER molecular mechanics calculations were performed to study the possible structural properties of DNA duplexes with central and terminal C-T combinations. These calculations also indicate that a central C-T pair destabilizes a duplex, while terminal C-T forms a stable base pair. Hydrogen bonding between cytosine and thymine occurs only in the energy-minimized structures when the helix diameter decreases and the propeller twist angle between the bases increases. These changes are found to occur only at the end of a duplex in the calculations, which may explain the experimental results.  相似文献   

8.
Abstract

The crystal structures of five double helical DNA fragments containing non-Watson-Crick complementary base pairs are reviewed. They comprise four fragments containing G·T base pairs: two deoxyoctamers d(GGGGCTCC) and d(GGGGTCCC) which crystallise as A type helices; a deoxydodecamer d(CGCGAATTTGCG) which crystallises in the B-DNA conformation; and the deoxyhexamer d(TGCGCG), which crystallises as a Z-DNA helix. In all four duplexes the G and T bases form wobble base pairs, with bases in the major tautomer forms and hydrogen bonds linking N1 of G with 02 of T and 06 of G with N3 of T. The X-ray analyses establish that the G·T wobble base pair can be accommodated in the A, B or Z double helix with minimal distortion of the global conformation. There are, however, changes in base stacking in the neighbourhood of the mismatched bases. The fifth structure, d(CGCGAATTAGCG), contains the purine purine mismatch G·A where G is in the anti and A in the syn conformation. The results represent the first direct structure determinations of base pair mismatches in DNA fragments and are discussed in relation to the fidelity of replication and mismatch recognition.  相似文献   

9.
The stacking and hydrogen bonding energies between bases in the B form of DNA were calculated by a perturbation method using the wave functions by the CNDO and the P-P-P methods. The exchange energies were calculated by using the corresponding orbitals. The magnitudes of the sums of the average stacking and hydrogen bonding energies per base pair of double-stranded DNA-like polymers are in good parallel with the melting temperatures of the polymers. The polymers containing I-C pairs are exceptions to this relation. Intrastrand stacking bases have the potential minimum at the distances of 2·8–3·7 Å. The minimum of stacking energy of double-stranded polymer for rotation of base pair around the helix axis exists near 36°. The deviation of the potential minimum from 36° seems to parallel the feature of the X-ray diffraction pattern of the polymer.  相似文献   

10.
DNA bending: the prevalence of kinkiness and the virtues of normality.   总被引:22,自引:20,他引:2       下载免费PDF全文
DNA bending in 86 complexes with sequence-specific proteins has been examined using normal vector plots, matrices of normal vector angles between all base pairs in the helix, and one-digit roll/slide/twist tables. FREEHELIX, a new program especially designed to analyze severely bent and kinked duplexes, generates the foregoing quantities plus local roll, tilt, twist, slide, shift and rise parameters that are completely free of any assumptions about an overall helix axis. In nearly every case, bending results from positive roll at pyrimidine-purine base pair steps: C-A (= T-G), T-A, or less frequently C-G, in a direction that compresses the major groove. Normal vector plots reveal three well-defined types of bending among the 86 examples: (i) localized kinks produced by positive roll at one or two discrete base pairs steps, (ii) three-dimensional writhe resulting from positive roll at a series of adjacent base pairs steps, or (iii) continuous curvature produced by alternations of positive and negative roll every 5 bp, with side-to-side zig-zag roll at intermediate position. In no case is tilt a significant component of the bending process. In sequences with two localized kinks, such as CAP and IHF, the dihedral angle formed by the three helix segments is a linear function of the number of base pair steps between kinks: dihedral angle = 36 degrees x kink separation. Twenty-eight of the 86 examples can be described as major bends, and significant elements in the recognition of a given base sequence by protein. But even the minor bends play a role in fine-tuning protein/DNA interactions. Sequence-dependent helix deformability is an important component of protein/DNA recognition, alongside the more generally recognized patterns of hydrogen bonding. The combination of FREEHELIX, normal vector plots, full vector angle matrices, and one-digit roll/slide/twist tables affords a rapid and convenient method for assessing bending in DNA.  相似文献   

11.
Base pairs are propeller-twisted, buckled and staggered in DNA fragment crystals. These deformations were analyzed with isolated Watson-Crick base pairs using empirical potentials and buckle was found to almost linearly correlate with propeller. Interestingly, the thymine.adenine pair favours negative buckling for propellers mostly observed in DNA crystals while positive buckling is preferred by the cytosine.guanine pair. The propeller also induces opposite staggers in the adenine.thymine and guanine.cytosine base pairs.  相似文献   

12.
It is fundamental to explore in atomic detail the behavior of DNA triple helices as a means to understand the role they might play in vivo and to better engineer their use in genetic technologies, such as antigene therapy. To this aim we have performed atomistic simulations of a purine-rich antiparallel triple helix stretch of 10 base triplets flanked by canonical Watson–Crick double helices. At the same time we have explored the thermodynamic behavior of a flipping Watson–Crick base pair in the context of the triple and double helix. The third strand can be accommodated in a B-like duplex conformation. Upon binding, the double helix changes shape, and becomes more rigid. The triple-helical region increases its major groove width mainly by oversliding in the negative direction. The resulting conformations are somewhere between the A and B conformations with base pairs remaining almost perpendicular to the helical axis. The neighboring duplex regions maintain a B DNA conformation. Base pair opening in the duplex regions is more probable than in the triplex and binding of the Hoogsteen strand does not influence base pair breathing in the neighboring duplex region.  相似文献   

13.
The crystal structure of the B-DNA hexamer d(CTCGAG) has been solved at 1.9 A resolution by iterative single isomorphous replacement, using the brominated derivative d(CG5BrCGAG), and refined to an R-factor of 18.6% for 120 nonhydrogen nucleic acid atoms and 32 water molecules. Although the central four base pairs form a typical B-form helix, several parameters suggest a transition to an A-like conformation at the termini. Based on this observation, a B-to-A transition was modeled, maintaining efficient base stacking across the junction. The wide minor groove (approximately 6.9 A) is reminiscent of that in the side-by-side double drug-DNA complexes and hosts a double spine of hydration. The global helix axes of the pseudo-continuous helices are at an acute angle of 60 degrees. The pseudocontinuous stacking is reinforced by the minor groove water structure extending between the two duplexes. The crossover point of two pairs of stacked duplexes is at the stacking junction, unlike that observed in the B-DNA decamers and dodecamers. This arrangement may have implications for the structure of a four-way DNA junction. The duplexes are arranged around a large (approximately 20 A diameter) channel centered on a 6(2) screw axis.  相似文献   

14.
The occurrence of the noncomplementary G-U base pair at the end of a helix is found to be governed by stacking interactions. As a rule, a G-U pair with G on the 5'-side of a Watson-Crick base pair exhibits strikingly greater stacking overlap with the Watson-Crick base pair than a G-U pair on the 3'-side of a Watson-Crick base pair. The former arrangement is expected to be more stable and indeed is observed 29 times out of 32 in the known transfer RNA molecules. In accordance with this rule, the major wobble base pairs G-U or I-U in codon-anticodon interactions have G or I on the 5'-side of the anticodon. Similarly, in initiator tRNAs, this rule is obeyed where now the G is the first letter of the codon (5'-side). In the situation where U is in the wobble position of the anticodon, it is usually substituted at C(5) andmay also have a 2-thio group and it can read one to four codons depending on its modifications. A G at the wobble position of the anticodon can recognize the two codons ending with U or C and modification of G (unless it is I) does not change its reading properties.  相似文献   

15.
The crystal structure of the 19-mer RNA, 5'-GAAUGCCUGCGAGCAUCCC-3' has been determined from X-ray diffraction data to 1.6 A resolution by the multiwavelength anomalous diffraction method from crystals containing a brominated uridine. In the crystal, this RNA forms an 18-mer self-complementary double helix with the 19th nucleotide flipped out of the helix. This helix contains most of the target stem recognized by the bacteriophage Mu Com protein (control of mom), which activates translation of an unusual DNA modification enzyme, Mom. The 19-mer duplex, which contains one A.C mismatch and one A.C/G.U tandem wobble pair, was shown to bind to the Com protein by native gel electrophoresis shift assay. Comparison of the geometries and base stacking properties between Watson-Crick base pairs and the mismatches in the crystal structure suggest that both hydrogen bonding and base stacking are important for stabilizing these mismatched base pairs, and that the unusual geometry adopted by the A.C mismatch may reveal a unique structural motif required for the function of Com.  相似文献   

16.
The characteristics of 100 ps of molecular dynamics (MD) on the DNA dodecamer d(CGCGAATTCGCG) at 300 K are described and investigated. The simulation is based on an in vacuo model of the oligomer and the AMBER 3.0 force field configured in the manner of Singh, U. C., S. J. Weiner, and P. A. Kollman, (1985, Proc. Natl. Acad. Sci. USA. 82:755-759). The analysis of the results was carried out using the "curves, dials, and windows" procedure (Ravishanker, G., S. Swaminathan, D. L. Beveridge, R. Lavery, and H. Sklenar. 1989. J. Biomol. Struct. Dyn. 6:669-699). The results indicate this dynamical model to be a provisionally stable double helix which lies at approximately 3.2 A rms deviation from the canonical B-form. There is, however, a persistent nonplanarity in the base pair orientations which resemble that observed in canonical A-DNA. The major groove width is seen to narrow during the course of the simulation and the minor groove expands, contravariant to the alterations in groove width seen in the crystal structure of the native dodecamer (Drew, H. R., R. M. Wing, T. Takano, C. Broka, S. Tanaka, I. Itakura, and R. E. Dickerson, 1981. Proc. Natl. Acad. Sci. USA. 78:2179-2183). The propeller twist in the bases, the sequence dependence of the base pair roll and aspects of bending in the helix axis are in some degree of agreement with the crystal structure. The patterns in DNA bending are observed to follow Zhurkin theory (Zhurkin, V. B. 1985. J. Biomol. Struct. Dyn. 2:785-804.). The relationship between the dynamical model and structure in solution is discussed.  相似文献   

17.
18.
Abstract

It follows from previous studies that changes in the base pair vertical separation (BPVS) influence the architecture of DNA much more than any other conformational parameter. This inspired us to compare BPVS in the available oligonucleotide crystal structures with the optimum values provided by nine different empirical potentials employed in the theoretical studies of DNA conformation. This comparison shows that BPVS is reproduced by three fields in all steps of the highly resolved o] i go nucleoli de crystal structures while the remaining six empirical potentials, including AMBER, GROMOS and CHARMM, provide systematic deviations. We further find that the base pairs are poorly stacked (mostly compressed) in some other refined DNA crystal structures. Our analysis indicates that this poor stacking originates from improperly determined positions of the bases. The approach described in the present communication can be used to identify DNA structures which are not accurate enough for studies of the relationships between the base sequence and DNA conformation.  相似文献   

19.
20.
Nitrous acid is a mutagenic agent. It can induce interstrand cross-links in duplex DNA, preferentially at d(CpG) steps: two guanines on opposite strands are linked via a single shared exocyclic imino group. Recent synthetic advances have led to the production of large quantities of such structurally homogenous cross-linked duplex DNA. Here we present the high resolution solution structure of the cross-linked dodecamer [d(GCATCCGGATGC)]2 (the cross-linked guanines are underlined), determined by 2D NMR spectroscopy, distance geometry, restrained molecular dynamics and iterative NOE refinement. The cross-linked guanines form a nearly planar covalently linked 'G:G base pair' with only minor propeller twisting, while the cytidine bases of their normal base pairing partners have been flipped out of the helix and adopt well defined extrahelical positions in the minor groove. On the 5'-side of the cross-link, the minor groove is widened to accommodate these extrahelical bases, and the major groove becomes quite narrow at the cross-link. The cross-linked 'G:G base pair' is well stacked on the spatially adjacent C:G base pairs, particularly on the 3'-side guanines. In addition to providing the first structure of a nitrous acid cross-link in DNA, these studies could be of major importance to the understanding of the mechanisms of nitrous acid cross-linking and mutagenicity, as well as the mechanisms responsible for its repair in intracellular environments. It is also the shortest DNA cross-link structure to be described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号