首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Directed by molecular modeling studies the pharmacophoric benzhydryl moiety of the delta opioid receptor agonist SNC80 was separated and the two phenyl residues were attached to different positions of the conformationally constrained 6,8-diazabicyclo[3.2.2]nonane framework in order to find novel delta agonists. The crucial reaction step in the chiral pool synthesis was the establishment of the three carbon bridge by a Dieckmann analogous cyclization of the allyl and propyl derivatives 6 and 7 to yield the mixed methyl silyl acetals 8 and 9, respectively. Stereoselective Grignard reaction, dehydration, and introduction of the pharmacophoric (N,N-diethylcarbamoylbenzyl) residue led to the designed delta receptor agonists 3, ent-3, and 20 with a double bond in the bicyclic framework. Hydrogenation of the allyl derivative 14 was performed with ammonium formate and Pd/C to yield the saturated ligands 24a and 24b. Removal of the allyl substituent with RhCl(3), hydrogenation of the ring system, and re-attachment of the allyl moiety provided the allyl derivatives 4a and 4b. In receptor binding studies with the radioligand [(3)H]-deltorphine II only ent-3 showed considerable delta receptor affinity (K(i)=740 nM). Since ent-3 also interacts with mu receptors (K(i)=250 nM) it belongs to the very interesting compound class of mixed delta/mu ligands.  相似文献   

2.
Three-dimensional structures of the transmembrane, seven alpha-helical domains and extracellular loops of delta, mu, and kappa opioid receptors, were calculated using the distance geometry algorithm, with hydrogen bonding constraints based on the previously developed general model of the transmembrane alpha-bundle for rhodopsin-like G-protein coupled receptors (Biophys. J. 1997. 70:1963). Each calculated opioid receptor structure has an extensive network of interhelical hydrogen bonds and a ligand-binding crevice that is partially covered by a beta-hairpin formed by the second extracellular loop. The binding cavities consist of an inner "conserved region" composed of 18 residues that are identical in delta, mu, and kappa opioid receptors, and a peripheral "variable region," composed of 19 residues that are different in delta, mu, and kappa subtypes and are responsible for the subtype specificity of various ligands. Sixteen delta-, mu-, or kappa-selective, conformationally constrained peptide and nonpeptide opioid agonists and antagonists and affinity labels were fit into the binding pockets of the opioid receptors. All ligands considered have a similar spatial arrangement in the receptors, with the tyramine moiety of alkaloids or Tyr1 of opioid peptides interacting with conserved residues in the bottom of the pocket and the tyramine N+ and OH groups forming ionic interactions or H-bonds with a conserved aspartate from helix III and a conserved histidine from helix VI, respectively. The central, conformationally constrained fragments of the opioids (the disulfide-bridged cycles of the peptides and various ring structures in the nonpeptide ligands) are oriented approximately perpendicular to the tyramine and directed toward the extracellular surface. The results obtained are qualitatively consistent with ligand affinities, cross-linking studies, and mutagenesis data.  相似文献   

3.
Lexa KW  Carlson HA 《Proteins》2011,79(7):2282-2290
A recent crystal structure of HIV-1 protease (HIVp) was the first to experimentally observe a ligand targeting an open-flap conformation. Researchers studying a symmetric pyrrolidine inhibitor found that two ligands cocrystallized with the protease, forcing an unusual configuration and unique crystallographic contacts. One molecule is centered in the traditional binding site (α pose) and the other binds between the flaps (β pose). The ligands stack against each other in a region termed the "eye" site. Ligands bound to the eye site should prevent flap closure, but it is unclear if the pyrrolidine inhibitors or the crystal packing are causing the open state. Molecular dynamics simulations were used to examine the solution-state behavior of three possible binding modes: the ternary complex of HIVp+αβ and the binary complexes, HIVp+α and HIVp+β. We show that HIVp+α is the most stable of the three states. During conformational sampling, α takes an asymmetric binding pose, with one naphthyl ring occupying the eye site and the other reoriented down to occupy positions seen with traditional inhibitors. This finding supports previous studies that reveal a requirement for asymmetric binding at the eye site. In fact, if the α pose is modified to splay both naphthyl rings across the binding site like traditional inhibitors, one ring consistently flips to occupy the eye site. Our simulations reveal that interactions to the eye site encourage a conformationally restrained state, and understanding those contacts may aid the design of ligands to specifically target alternate conformations of the protease.  相似文献   

4.
Eight new 5-arylidene-3-benzyl-thiazolidine-2,4-diones with halide groups on their benzyl rings were synthesized and assayed in vivo to investigate their anti-inflammatory activities. These compounds showed considerable biological efficacy when compared to rosiglitazone, a potent and well-known agonist of PPARγ, which was used as a reference drug. This suggests that the substituted 5-arylidene and 3-benzylidene groups play important roles in the anti-inflammatory properties of this class of compounds. Docking studies with these compounds indicated that they exhibit specific interactions with key residues located in the site of the PPARγ structure, which corroborates the hypothesis that these molecules are potential ligands of PPARγ. In addition, competition binding assays showed that four of these compounds bound directly to the ligand-binding domain of PPARγ, with reduced affinity when compared to rosiglitazone. An important trend was observed between the docking scores and the anti-inflammatory activities of this set of molecules. The analysis of the docking results, which takes into account the hydrophilic and hydrophobic interactions between the ligands and the target, explained why the 3-(2-bromo-benzyl)-5-(4-methanesulfonyl-benzylidene)-thiazolidine-2,4-dione compound had the best activity and the best docking score. Almost all of the stronger hydrophilic interactions occurred between the substituted 5-arylidene group of this compound and the residues of the binding site.  相似文献   

5.
Using the X-ray crystal structure of an amide-based progesterone receptor (PR) partial agonist bound to the PR ligand binding domain, a novel PR partial agonist class containing a pyrrolidine ring was designed. Members of this class of N-alkylpyrrolidines demonstrate potent and highly selective partial agonism of the progesterone receptor, and one of these analogs was shown to be efficacious upon oral dosing in the OVX rat model of estrogen opposition.  相似文献   

6.
A series of GPE analogues, including modifications at the Pro and/or Glu residues, was prepared and evaluated for their NMDA binding and neuroprotective effects. Main results suggest that the pyrrolidine ring puckering of the Pro residue plays a key role in the biological responses, while the preference for cis or trans rotamers around the Gly-Pro peptide bond is not important.  相似文献   

7.
Various 4-(anilino)pyrrole-2-carboxamides were designed and synthesized as novel androgen receptor (AR) antagonists without steroidal or anilide structure, based on our strategy for developing full antagonists of nuclear receptors. Introduction of a bulky N-alkyl group, such as a cyclohexylmethyl or benzyl group, increased the binding affinity for wild-type AR and the potency for growth inhibition of androgen-dependent SC-3 cells. Among the compounds obtained, N-[4-[(benzyl)(4-nitrophenyl)amino]-1-methylpyrrole-2-carbonyl]pyrrolidine (22) is as potent an AR antagonist as the typical anilide-type AR antagonists hydroxyflutamide and bicalutamide. Further, compound 22 had potent binding affinity for T877A mutated AR, and dose-dependently inhibited the testosterone-induced production of prostate-specific antigen in LNCaP cells bearing T877A AR.  相似文献   

8.
Small-molecule ligands for the CXCR3 chemokine receptor receive considerable attention as a means to interrogate the roles of CXCR3 in vitro and in vivo and/or to potentially treat various conditions such as inflammatory diseases and cancer. We have synthesized and explored a novel class of small-molecule antagonists for CXCR3. A medium-throughput screen revealed an adamantane-guanidine as a hit. The guanidine unit was replaced by a small quaternary ammonium group, leading to ca. 5-fold increase in affinity. Substitution of the adamantane group by a myrtenyl moiety further increased affinity, while the benzyl group was decorated with an additional (substituted) aryl ring. This led to the identification of several bisaryl-based ligands with CXCR3 affinities of around 100 nM and with the ability to antagonize the functional activity of CXCL10.  相似文献   

9.
The emergence of total drug-resistant tuberculosis (TDR-TB) has made the discovery of new therapies for tuberculosis urgent. The cytoplasmic enzymes of peptidoglycan biosynthesis have generated renewed interest as attractive targets for the development of new antimycobacterials. One of the cytoplasmic enzymes, uridine diphosphate (UDP)-MurNAc-tripeptide ligase (MurE), catalyses the addition of meso-diaminopimelic acid (m-DAP) into peptidoglycan in Mycobacterium tuberculosis coupled to the hydrolysis of ATP. Mutants of M. tuberculosis MurE were generated by replacing K157, E220, D392, R451 with alanine and N449 with aspartate, and truncating the first 24 amino acid residues at the N-terminus of the enzyme. Analysis of the specific activity of these proteins suggested that apart from the 24 N-terminal residues, the other mutated residues are essential for catalysis. Variations in Km values for one or more substrates were observed for all mutants, except the N-terminal truncation mutant, indicating that these residues are involved in binding substrates and form part of the active site structure. These mutant proteins were also tested for their specificity for a wide range of substrates. Interestingly, the mutations K157A, E220A and D392A showed hydrolysis of ATP uncoupled from catalysis. The ATP hydrolysis rate was enhanced by at least partial occupation of the uridine nucleotide dipeptide binding site. This study provides an insight into the residues essential for the catalytic activity and substrate binding of the ATP-dependent MurE ligase. Since ATP-dependent MurE ligase is a novel drug target, the understanding of its function may lead to development of novel inhibitors against resistant forms of M. tuberculosis.  相似文献   

10.
The chemotactic character of the nonapeptide bradykinin (BK1-9) and its derivatives was studied in the eukaryotic ciliated model Tetrahymena pyriformis. The results demonstrate that BK1-9 has a direct and ligand-specific chemoattractant effect (maximal at 10(-11) m) without any intermediate substance as is essential in some mammalian test systems. Evaluation of the chemotactic effect elicited by derivatives showed that the presence of N- and C-terminal arginines can influence chemotactic potency of the molecule via expression of pyrrolidine and aromatic ring structures of terminal amino acid residues. Removal of the N-terminal Arg (expression of Pro) results in a significant decrease in chemotaxis (BK2-9), while further truncation of the C-terminal, causing expression of the aromatic ring of Phe (BK2-8), results in a highly chemoattractant variant. A single pyrrolidine ring on the C-terminus BK1-7 also has a positive effect on the chemotactic character, however further truncation (BK1-6, BK1-5) causes the chemoattractant character to become chemorepellent. Study of chemotactic selection with BK derivatives supports our previous findings that only phylogenetically selected ligands or their close derivatives are able to induce long-term selection with chemotaxis.  相似文献   

11.
The protein tyrosine phosphatase SHP‐1 plays an important role in many physiological and pathophysiological processes. This phosphatase is activated through binding of ligands to its SH2‐domains, mainly to the N‐terminal one. Based on a theoretical docking model, backbone‐to‐side chain cyclized octapeptides were designed as ligands. Assembly of such modelled structures required the synthesis of N‐functionalized tyrosine derivatives and their incorporation into the sequence. Because of difficulties encountered in the condensation of N‐protected amino acids to the N‐alkylated tyrosine‐peptide we synthesized and used preformed dipeptide building units. As all attempts to obtain phosphorylated dipeptide units failed, the syntheses had to be performed with a free phenolic function. Use of different N‐alkyl or cycloalkyl residues in the N‐functionalized side chains allowed to investigate the effect of ring size, flexibility and hydrophobicity of formed lactam bridges on stimulatory activity. All tested linear and cyclic octapeptides stimulate the phosphatase activity of SHP‐1. Stimulatory activities of cyclic ligands increase with the chain length of the lactam bridges resulting in increased flexibility and better entropic preformation of the binding conformation. The strong activity of some cyclic octapeptides supports the modelled structure. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
A series of pyridomorphinans possessing an aryl (10a-s) or heteroaryl (11a-h) substituent at the 5'-position of the pyridine ring of 17-cyclopropylmethyl-4,5 alpha-epoxypyrido[2',3':6,7]morphinan was synthesized and evaluated for binding and functional activity at the opioid delta, mu, and kappa receptors. All of these pyridomorphinans bound with higher affinity at the delta site than at mu or kappa sites. The binding data on isomeric compounds revealed that there exists greater bulk tolerance for substituents placed at the o-position of the phenyl ring than at m- or p-positions. Among the ligands examined, the 2-chlorophenyl (10l), 2-nitrophenyl (10n), 2-pyridyl (11a), and 4-quinolinyl (11g) compounds bound to the delta receptor with subnanomolar affinity. Compound 10c with the p-tolyl substituent displayed the highest mu/delta selectivity (ratio=42) whereas compound 10l with the 2-chlorophenyl substituent displayed the highest kappa/delta selectivity (ratio=23). At 10 microM concentration, the in vitro functional activity determined using [(35)S]GTP-gamma-S binding assays showed that all of the compounds were antagonists devoid of any significant agonist activity at the delta, mu, and kappa receptors. Antagonist potency determinations of three selected ligands revealed that the p-tolyl compound 10c is a potent delta selective antagonist. In the [(35)S]GTP-gamma-S assays this compound had a functional antagonist K(i) value of 0.2, 4.52, and 7.62 nM at the delta, mu, and kappa receptors, respectively. In the smooth muscle assays 10c displayed delta antagonist potency with a K(e) value of 0.88 nM. As an antagonist, it was 70-fold more potent at the delta receptors in the MVD than at the mu receptors in the GPI. The in vitro delta antagonist profile of this pyridomorphinan 10c resembles that of the widely used delta selective antagonist ligand naltrindole.  相似文献   

13.
Previously, we had disclosed a novel class of hNK1 antagonists based on the 5,5-fused pyrrolidine core. These compounds displayed subnanomolar hNK1 affinity along with good efficacy in a gerbil foot-tapping (GFT) model, but unfortunately they had low to moderate functional antagonist (IP-1) activity. To elaborate on the SAR of this class of hNK1 compounds and to improve functional activity, we have designed and synthesized a new class of hNK1 antagonist with a third fused ring. Compared to the 5,5-fused pyrrolidine class, these 5,5,5-fused tricyclic hNK1 antagonists maintain subnanomolar hNK1 binding affinity with highly improved functional IP-1 activity (<10% SP remaining). A fused tricyclic methyl, hydroxyl geminally substituted pyrrolizinone (compound 20) had excellent functional IP (<2% SP remaining), hNK1 binding affinity, off-target selectivity, pharmacokinetic profile and in vivo activity. Complete inhibition of agonist activity was observed at both 0 and 24 h in the gerbil foot-tapping model with an ID50 of 0.02 mpk at both 0 and 24 h, respectively.  相似文献   

14.
17-Cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-(isoquinoline-3′-carboxamido)morphinan (NAQ) was previously designed following the ‘message-address’ concept and was identified as a potent and highly selective mu opioid receptor (MOR) ligand based on its pharmacological profile. We here report the preliminary structure activity relationship (SAR) studies of this novel lead compound. For the new ligands synthesized as NAQ analogues, their binding assay results showed that a longer spacer and a saturated ring system of the side chain were unfavorable for their MOR selectivity over the kappa and delta opioid receptors. In contrast, substitutions with different electronic properties at either 1′- or 4′-position of the isoquinoline ring of the side chain were generally acceptable for reasonable MOR selectivity. The majority of NAQ analogues retained low efficacy at the MOR compared to NAQ in the 35S-GTP[γS] binding assays while electron-withdrawing groups at 1′-position of the isoquinoline ring induced higher MOR stimulation than electron-donating groups did. In summary, the electronic characteristics of substituents at 1′- or 4′-position of the isoquinoline ring in NAQ seem to be critical and need to be further tuned up to achieve higher MOR selectivity and lower MOR stimulation.  相似文献   

15.
Salpichrolides are natural plant steroids that contain an unusual six‐membered aromatic ring D. We recently reported that some of these compounds, and certain analogs with a simplified side chain, exhibited antagonist effects toward the human estrogen receptor (ER), a nuclear receptor whose endogenous ligand has an aromatic A ring (estradiol). Drugs acting through the inhibition or modulation of ERs are frequently used as a hormonal therapy for ER(+) breast cancer. Previous results suggested that the aromatic D ring was a key structural motif for the observed activity; thus, this modified steroid nucleus may provide a new scaffold for the design of novel antiestrogens. Using molecular dynamics (MD) simulation we have modeled the binding mode of the natural salpichrolide A and a synthetic analog with an aromatic D ring within the ERα. These results taken together with the calculated energetic contributions associated to the different ligand‐binding modes are consistent with a preferred inverted orientation of the steroids in the ligand‐binding pocket with the aromatic ring D occupying a position similar to that observed for the A ring of estradiol. Major changes in both dynamical behavior and global positioning of H11 caused by the loss of the ligand–His524 interaction might explain, at least in part, the molecular basis of the antagonism exhibited by these compounds. Using steered MD we also found a putative unbinding pathway for the steroidal ligands through a cavity formed by residues in H3, H7, and H11, which requires only minor changes in the overall receptor conformation. Proteins 2015; 83:1297–1306. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
Odorant binding proteins (OBPs) are important in insect olfactory recognition. These proteins bind specifically to insect semiochemicals and induce their seeking, mating, and alarm behaviors. Molecular docking and molecular dynamics simulations were performed to provide computational insight into the interaction mode between AgamOBP7 and novel (E)-β-farnesene (EBF) analogues with an aromatic ring. The ligand-binding cavity in OBP7 was found to be mostly hydrophobic due to the presence of several nonpolar residues. The interactions between the EBF analogues and the hydrophobic residues in the binding cavity increased in strength as the distance between them decreased. The EBF analogues with an N-methyl formamide or ester linkage had higher docking scores than those with an amide linkage. Moreover, delocalized π–π and electrostatic interactions were found to contribute significantly to the binding between the ligand benzene ring and nearby protein residues. To design new compounds with higher activity, four EBF analogues D1–D4 with a benzene ring were synthesized and evaluated based on their docking scores and binding affinities. D2, which had an N-methyl formamide group linkage, exhibited stronger binding than D1, which had an amide linkage. D4 exhibited particularly strong binding due to multiple hydrophobic interactions with the protein. This study provides crucial foundations for designing novel EBF analogues based on the OBP structure.
Graphical abstract The design strategy of new EBF analogues based on the OBP7 structure
  相似文献   

17.
The homology models of the alpha4beta2 and alpha3beta4 nicotinic acetylcholine receptors (nAChRs) suggest that the two nAChR subtypes are different in their ligand-binding pockets due to the non-conserved residues in the beta-subunits. The docking of nicotine, epibatidine, A-84543, and the two analogs of A-84543 ligands 1 and 2 to the homology models of alpha4beta2 and alpha3beta4 is presented. It is found that the protonated amino groups of these ligands bind to the alpha-subunits, whereas the remaining parts of the ligands bind to the beta-subunits. The two non-conserved amino acids Lys77 and Phe117 in the beta2-subunit corresponding to Ile77 and Gln117 in the beta4-subunit are identified to be the key players determining the binding modes of the ligands. We demonstrate how the increase in the number of the atoms connecting the pyrrolidine and pyridine rings in A-84543, 1, and 2, and an introduction of the alkynyl substituent in the pyridine ring affect the binding and shift the selectivity of these ligands toward the beta2-containing receptors. Further improvement in affinity and selectivity in this and other series of the ligands may be achieved by designing molecules that would specifically target the non-conserved regions in nAChRs.  相似文献   

18.
Parallel synthesis of peptides and peptidomimetics has been an important approach to search for biologically active ligands. A novel systematic synthesis of different size bicyclic dipeptide mimetics was developed on solid-phase supports. By taking advantage of the enantioselective synthesis of omega-unsaturated amino acids and their N-methylated derivatives, the hemiaminal problem was prevented in the pathway to thiazolidine formation. The bicyclic dipeptide was generated on the solid-phase support in three steps by an unconventional method. By inserting this bicyclic scaffold into the synthesis of a larger bioactive peptide, 11 different sizes of bicyclo[2,3]-Leu-enkephalin analogues were synthesized in a fast and efficient way. Modeling studies show that a reversed turn structure at positions 2-3 was favored when an L- and L-bicyclic scaffold was used, and that an extended conformation at the N-terminal was favored when a D- and L-bicyclic scaffold was inserted. Binding affinities and bioassay studies show ligands with micromolar binding affinities and antagonist bioactivities for the [6,5]- and [7,5]-bicyclo-Leu-enkephalin analogues.  相似文献   

19.
Previous studies have probed the structural basis of ligand selectivity in the mu, delta and kappa opioid receptors through the application of molecular modeling techniques in concert with the 'message-address' concept. Here, this approach was used in an attempt to rationalize the unique pharmacological profile of a recently cloned novel opioid receptor, ZFOR1 (ZebraFish Opioid Receptor 1). Specifically, a model of the transmembrane domains of ZFOR1 was constructed and used to explore the binding modes of various prototypical opioid ligands. The results show that the 'message' portion of the binding pocket of ZFOR1 is highly conserved; hence, the binding modes of non-selective opioid ligands are well preserved. In contrast, a small number of variant residues at the extracellular end of the binding pocket, particularly Lys288 (VI:26) and Trp304 (VII:03), are shown to create adverse steric interactions with all delta and kappa selective ligands examined, thereby disrupting their binding modes. These results are consistent with, and serve as an explanation for, the observed pharmacology of this receptor, lending support to both the validity of the 'message-address' concept itself and to the use of molecular modeling approaches in its application.  相似文献   

20.
Wu Z  Ruoho AE 《Biochemistry》2000,39(42):13044-13052
To develop molecules capable of directly probing the catechol binding region of the beta(2)-adrenergic receptor (beta(2)AR), novel benzophenone- and fluorenone-based beta(2)AR antagonists were prepared as potential photoaffinity probes. While the benzophenone-containing ligands bound with relatively modest affinity, one of the fluorenone-based compounds, 4-(2-hydroxy-3-isopropylaminopropoxy)-7-amino-6-iodofluorenone+ ++ (iodoaminoflisopolol, IAmF), showed very high affinity for the beta(2)AR, inhibiting [(125)I]ICYP binding with an apparent K(i) of approximately 1 x 10(-)(9) M. In comparison to the benzophenone ligands, the fluorenone ligands have one additional carbon-carbon bond that creates a planar unsaturated ring system and leads to a large increase in receptor binding affinity. Unlike previous beta(2)AR photoaffinity ligands, an attractive and unique feature of the fluorenone derivative IAmF is that the large planar unsaturated ring (believed to correspond to the catechol end of other beta(2)AR ligands) serves as both the binding pharmacophore and the photoreaction center for this molecule. With this potential for directly probing the catechol binding region of the beta(2)AR, we synthesized and tested IAmF in carrier-free radioiodinated form ([(125)I]IAmF). When photoreduction was conducted at 350 nm for 20 min, [(125)I]IAmF was able to produce cross-linked products in both triethylamine and methanol, with a reactivity pattern similar to that found in benzophenone photochemistry. As a final test of suitability as a photoaffinity label, specific labeling of the beta(2)AR in membranes (protectable by 10 microM alprenolol) was demonstrated. [(125)I]IAmF represents a new class of beta(2)AR photoaffinity labels that can directly probe the catechol-analogous antagonist pharmacophore binding site in the beta(2)AR ligand binding pocket.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号