首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanism of resistance of Bacillus subtilis spores to chlorhexidine   总被引:1,自引:0,他引:1  
Chlorhexidine diacetate (CHA) was rather more sporicidal at 20 degrees C to urea-dithreitol-sodium lauryl sulphate (UDS)-treated spores of Bacillus subtilis NCTC 8236 than to urea-dithiothreitol (UDT)-treated or normal (untreated) spores. UDS spores adsorbed more CHA from solution than did the other two forms. No differences in hydrophobicity, as determined by hydrophobic interaction chromatography (HIC) or bacterial adherence to hydrocarbon (BATH), could be detected between the three spore types. Germinating spores took up much less CHA than did outgrowing spores. Germinating cells were considerably more hydrophobic, as measured by the BATH technique, than outgrowing cells or normal spores. Chlorhexidine diacetate increased the apparent hydrophobicity of the two latter forms, but this effect could be partially reversed by subsequent exposure to a non-ionic surfactant.  相似文献   

2.
The surface hydrophobicity of nine Bacillus subtilis strains in different states (spores, vegetative cells, and dead cells) was assessed by water contact angle measurements, hydrophobic interaction chromatography (HIC) and bacterial adhesion to hydrocarbon (BATH). Electrokinetic properties of B. subtilis strains were characterized by zeta potential measurements and found to differ appreciably according to the strain. Correlations between HIC data, BATH data and zeta potential showed that HIC and BATH are influenced by electrostatic interactions. Water contact angle measurements thus provide a better estimate of cell surface hydrophobicity. The water contact angle of B. subtilis varied according to the strain and the state, the spores tending to be more hydrophobic than vegetative cells.  相似文献   

3.
Chlorhexidine diacetate (CHA) increased the hydrophobicity of the cell surface of cells of three strains of Providencia stuartii. Removal of at least some of the CHA from the cells by washing them with an appropriate antidote partially reversed the hydrophobicity-increasing action of the biguanide. The effects of other treatments on cell surface hydrophobicity were examined with these strains and, for comparison, with two strains each of Escherichia coli and Pseudomonas aeruginosa: ethylenediamine tetraacetic acid affected all strains, although not to the same extent, whereas thermal injury (55 degrees C) produced marked changes only with the two E. coli strains.  相似文献   

4.
Chlorhexidine diacetate (CHA) increased the hydrophobicity of the cell surface of cells of three strains of Providencia stuartii. Removal of at least some of the CHA from the cells by washing them with an appropriate antidote partially reversed the hydrophobicity-increasing action of the biguanide. The effects of other treatments on cell surface hydrophobicity were examined with these strains and, for comparison, with two strains each of Escherichia coli and Pseudomonas aeruginosa: ethyl-enediamine tetraacetic acid affected all strains, although not to the same extent, whereas thermal injury (55°C) produced marked changes only with the two E. coli strains.  相似文献   

5.
The surfaces of mutants of Escherichia coli and Pseudomonas aeruginosa were markedly more hydrophobic than the corresponding wild types, as were the latter when the organisms were pre-treated with chlorhexidine diacetate (CHA) or phenoxyethanol (POE). A combination of CHA and POE demonstrated that only at higher concentrations was there a marked effect on hydrophobicity compared with that of either drug used alone. The three methods used to determine hydrophobicity correlated well as long as constant conditions were employed.  相似文献   

6.
Surface hydrophobicity of spores of Bacillus spp   总被引:5,自引:0,他引:5  
The surface hydrophobicity of 12 strains of Bacillus spp. was examined in a hexadecane-aqueous partition system. Mature and germinated spores of Bacillus megaterium QM B1551 transferred to the hexadecane layer, while vegetative and sporulating cells did not. Wild-type spores were more hydrophobic than spores of an exosporium-deficient mutant of B. megaterium QM B1551, although the mutant spores were shown to be hydrophobic to some extent by using increased volumes of hexadecane. This result suggests that the exosporium is more hydrophobic than the spore coat and that the surface hydrophobicity of spores depends mainly on components of the exosporium. The surface hydrophobicity of spores of nine other species of Bacillus was also examined, and spores having an exosporium were more hydrophobic than those lacking an exosporium. Thus measurement of the hydrophobicity of spores by the hexadecane partition method may provide a simple and rapid preliminary means of determining the presence or absence of an exosporium.  相似文献   

7.
The cell surface hydrophobicities of a variety of aquatic and terrestrial gliding bacteria were measured by an assay of bacterial adherence to hydrocarbons (BATH), hydrophobic interaction chromatography, and the salt aggregation test. The bacteria demonstrated a broad range of hydrophobicities. Results among the three hydrophobicity assays performed on very hydrophilic strains were quite consistent. Bacterial adhesion to glass did not correlate with any particular measure of surface hydrophobicity. Several adhesion-defective mutants of Cytophaga sp. strain U67 were found to be more hydrophilic than the wild type, particularly by the BATH assay and hydrophobic interaction chromatography. The very limited adhesion of these mutants correlated well with hydrophilicity as determined by the BATH assay. The hydrophobicities of several adhesion-competent revertants ranged between those of the wild type and the mutants. As measured by the BATH assay, starvation increased hydrophobicity of both the wild type and an adhesion-defective mutant. During filament fragmentation of Flexibacter sp. strain FS-1, marked changes in hydrophobicity and adhesion were accompanied by changes in the arrays of surface-exposed proteins as detected by an immobilized radioiodination procedure.  相似文献   

8.
Uptake of glutaraldehyde to bacterial spores, germinating and outgrowing spores, vegetative cells (sporing and non-sporing bacteria), various types of rubber, plastic and an endoscope was investigated. Escherichia coli NCTC 10418 exhibited greatest uptake, followed by Bacillus subtilis NCTC 8236 vegetative cells and Staphylococcus aureus NCTC 6571. Germinated and outgrowing B. subtilis spores adsorbed more glutaraldehyde than resting spores, but less than vegetative cells. Low concentrations of alkaline and acid glutaraldehyde increased the surface hydrophobicity and inhibited the germination of bacterial spores, the alkaline solution to a greater extent in both cases.
Rubbers exhibited varying degrees of uptake and are listed in decreasing order of uptake: red rubber, fluorinated rubber (Vinescol), silicone rubber (Silescol), butyl rubber (Butyl XX). Polypropylene, the only plastic examined, was found not to adsorb any glutaraldehyde. The endoscope adsorbed more glutaraldehyde (per gram) than fluorinated rubber but less than red rubber. No damage was observed.  相似文献   

9.
Uptake of glutaraldehyde to bacterial spores, germinating and outgrowing spores, vegetative cells (sporing and non-sporing bacteria), various types of rubber, plastic and an endoscope was investigated. Escherichia coli NCTC 10418 exhibited greatest uptake, followed by Bacillus subtilis NCTC 8236 vegetative cells and Staphylococcus aureus NCTC 6571. Germinated and outgrowing B. subtilis spores adsorbed more glutaraldehyde than resting spores, but less than vegetative cells. Low concentrations of alkaline and acid glutaraldehyde increased the surface hydrophobicity and inhibited the germination of bacterial spores, the alkaline solution to a greater extent in both cases. Rubbers exhibited varying degrees of uptake and are listed in decreasing order of uptake: red rubber, fluorinated rubber (Vinescol), silicone rubber (Silescol), butyl rubber (Butyl XX). Polypropylene, the only plastic examined, was found not to adsorb any glutaraldehyde. The endoscope adsorbed more glutaraldehyde (per gram) than fluorinated rubber but less than red rubber. No damage was observed.  相似文献   

10.
Adhesion of bacillus spores in relation to hydrophobicity   总被引:4,自引:0,他引:4  
The adhesion of spores of five different Bacillus species to solid surfaces of different hydrophobicity was evaluated. The spore surface hydrophobicity was measured using hydrophobic interaction chromatography (HIC). A large variation in hydrophobicity was found among the spores of the different species tested. The degree of adhesion of spores to the solid surfaces was consistent with the results obtained using the HIC method. The most hydrophobic spores, according to the HIC method, adhered in a much larger extent to the hydrophobic surfaces. Furthermore, spores generally adhered to a greater extent to hydrophobic and hydrophilic surfaces than did the vegetative cells.  相似文献   

11.
The sequential bacterial adherence to hydrocarbons (BATH) of successive generations of hydrophobic fractions of Paenibacillus sp. R0032A and Burkholderia cepacia gave rise to bacterial populations of increasing cell-surface hydrophobicity. Thus, hydrophobicity of the first generation (H1) was less than that of the second generation (H2), which was less than that of the third generation (H3). Beyond H3, the hydrophobic populations became less stable and tended to lyse in hexadecane after violent (vortex) agitation, resulting in an apparent decline in BATH value. The exhaustively fractionated aqueous-phase population (L) was very hydrophilic. The overall cell-surface distribution of the population was L < parental strain < H1 < H2 < H3. The ability to degrade crude oil, hexadecane, or phenanthrene matched the degree of cell-surface hydrophobicity: L < P < H1 < H2 < H3. Thus, in natural populations of hydrocarbon-degrading Paenibacillus sp. R0032A and B. cepacia, there is a heterogeneity in the hydrophobic surface characteriistics that affects the ability of cells to use various hydrocarbon substrates.  相似文献   

12.
Gramicidin S is known to prolong the outgrowth stage of spore germination in the producing culture. Bacillus brevis strain Nagano and its gramicidin S-negative mutant, BI-7, were compared with respect to cell-surface hydrophobicity and germination of their spores. Parental spores were hydrophobic as determined by adhesion to hexadecane, whereas mutant spores showed no affinity to hexadecane. Addition of gramicidin S to mutant spores resulted in a high cell surface hydrophobicity and a delay in germination outgrowth. The hydrophobicity of parental spores was retained throughout most of the germination period. Hydrophobicity was lost as outgrowing spores entered into the stage of vegetative growth. The data indicate that gramicidin S is responsible for the hydrophobicity of B. brevis spores. It is suggested that in making spores hydrophobic, the antibiotic plays a role in concentrating the spores at interfaces where there is a higher probability of finding nutrients for germination and growth.Abbreviation GS Gramicidin S  相似文献   

13.
Adhesion of bacillus spores in relation to hydrophobicity   总被引:3,自引:3,他引:0  
R önner , U., H usmark , U. & H enriksson , A. 1990. Adhesion of bacillus spores in relation to hydrophobicity. Journal of Applied Bacteriology 69 , 550–556.
The adhesion of spores of five different Bacillus species to solid surfaces of different hydrophobicity was evaluated. The spore surface hydrophobicity was measured using hydrophobic interaction chromatography (HIC). A large variation in hydrophobicity was found among the spores of the different species tested. The degree of adhesion of spores to the solid surfaces was consistent with the results obtained using the HIC method. The most hydrophobic spores, according to the HIC method, adhered in a much larger extent to the hydrophobic surfaces. Furthermore, spores generally adhered to a greater extent to hydrophobic and hydrophilic surfaces than did the vegetative cells.  相似文献   

14.
Hydrophobicity of Bacillus and Clostridium spores.   总被引:3,自引:1,他引:2       下载免费PDF全文
The hydrophobicities of spores and vegetative cells of several species of the genera Bacillus and Clostridium were measured by using the bacterial adherence to hexadecane assay and hydrophobic interaction chromatography. Although spore hydrophobicity varied among species and strains, the spores of each organism were more hydrophobic than the vegetative cells. The relative hydrophobicities determined by the two methods generally agreed. Sporulation media and conditions appeared to have little effect on spore hydrophobicity. However, exposure of spore suspensions to heat treatment caused a considerable increase in spore hydrophobicity. The hydrophobic nature of Bacillus and Clostridium spores suggests that hydrophobic interactions may play a role in the adhesion of these spores to surfaces.  相似文献   

15.
The hydrophobicities of spores and vegetative cells of several species of the genera Bacillus and Clostridium were measured by using the bacterial adherence to hexadecane assay and hydrophobic interaction chromatography. Although spore hydrophobicity varied among species and strains, the spores of each organism were more hydrophobic than the vegetative cells. The relative hydrophobicities determined by the two methods generally agreed. Sporulation media and conditions appeared to have little effect on spore hydrophobicity. However, exposure of spore suspensions to heat treatment caused a considerable increase in spore hydrophobicity. The hydrophobic nature of Bacillus and Clostridium spores suggests that hydrophobic interactions may play a role in the adhesion of these spores to surfaces.  相似文献   

16.
17.
The influence of medium and salinity on the cell surface hydrophobicity of Renibacterium salmoninarum was investigated using three different methods: bacterial adherence to hydrocarbons (BATH), salt agglutination test (SAT), and binding to nitrocellulose filters (NCF). The possible relationship among hydrophobicity, haemagglutination and adherence to cell lines was also evaluated. R. salmoninarum showed to be highly hydrophobic regardless of the growth conditions or technique employed. Nevertheless, slight differences can be detected depending on the method used. In the SAT and NCF assays very uniform values were obtained within the strains. All the R. salmoninarum isolates agglutinated in (NH4)2SO4 in a range of 0.05-0.2 M and displayed a 77-100% of adherence to nitrocellulose filters. However, more variable results were observed in the BATH method depending on the hydrocarbon, buffer and strain employed. Although all of the isolates produced haemagglutinins for homeotherm erythrocytes, the majority of them failed to agglutinate poikilothermic red blood cells and were unable to adhere to fish cell lines. Therefore, a general correlation among hydrophobicity, agglutinating capacity for fish erythrocytes and adherence to fish cells can not be established for R. salmoninarum.  相似文献   

18.
The dimorphic fungus Mucor racemosus was found to contain the cyclic nucleotide guanosine 3′,5′-monophosphate (cGMP). Approximately equivalent amounts of the compound were found in ungerminated spores, yeastlike cells, and mycelia. Germinating spores contained severalfold higher amounts of cGMP than the other cell forms. cGMP levels did not change significantly during the morphogenetic conversion of yeast to mycelia. Added exogenous cGMP or the dibutyryl derivative did not influence cell morphology in any way and did not alter the effect that cyclic adenosine 3′,5′-monophosphate has upon cell morphology.  相似文献   

19.
从胜利油田油水样中分离到一株能够在60℃高温条件下利用烃类产生生物表面活性剂的菌株芽孢杆菌(Bacillus sp.)A1.结果表明:A1的细胞表面具有很强的疏水性,这有助于菌体细胞对烃类的摄取.该菌株对石油烃具有良好的乳化作用,并可在20%的高盐环境和100℃高温条件下仍显示很高的乳化活性.同时,A1可明显改变油藏岩石表面的润湿性,使其亲水性显著增强.对油藏中的岩石模拟试片石英、灰岩和玻璃作用后的接触角均减小60%以上.油藏中岩石的润湿性能增强,水驱油时更易于剥落滞留在岩石表面上的油滴或油膜,从而提高石油采收率.  相似文献   

20.
BACKGROUND: At present the study of endospore germination is conducted using microbiological methods which are slow and yield data based on the means of large heterogeneous populations. Flow cytometry (FCM) offers the potential to rapidly quantify and identify germination and outgrowth events for large numbers of individual endospores. METHODS: Standard methods were employed to arrest the germination of Bacillus cereus endospores at defined stages. Endospores were then stained with SYTO 9 alone or carboxyfluorescein diacetate (CFDA) together with Hoechst 33342 and analysed using FCM. Comparisons were made between FCM as a method to measure germination rate and standard microbiological techniques. RESULTS: Germinating endospores displayed increases in permeability to SYTO 9 and hydrolysis of CFDA compared with controls. Statistically significant correlations were found between the standard plate count method and both FCM methods for measuring the percentage of germinating and outgrowing endospores up to 75 min after addition of germinant. CONCLUSIONS: Using FCM, the percentage of germinating or outgrowing endospores at various time points during germination and/or outgrowth can be quantified. FCM with CFDA/Hoechst 33342 staining may be used to estimate overall germination rate, whereas FCM with SYTO 9 staining may be used to quantify ungerminated, germinating and outgrowing endospores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号