首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The initiation of chromosome replication in Escherichia coli requires the recruitment of the replicative helicase DnaB from the DnaBC complex to the unwound region within the replication origin oriC, supported by the oriC-bound initiator protein DnaA. We defined physical contacts between DnaA and DnaB that involve residues 24-86 and 130-148 of DnaA and residues 154-210 and 1-156 of DnaB respectively. We propose that contacts between DnaA and DnaB occur via two interaction sites on each of the proteins. Interaction domain 24-86 of DnaA overlaps with its N-terminal homo-oligomerization domain (residues 1-86). Interaction domain 154-210 of DnaB overlaps or is contiguous with the domains known to interact with plasmid initiator proteins. Loading of the DnaBC helicase in vivo can only be performed by DnaA derivatives containing (in addition to residues 24-86 and the DNA-binding domain 4) a structurally intact domain 3. Nucleotide binding by domain 3 is, however, not required. The parts of DnaA required for replication of pSC101 were clearly different from those used for helicase loading. Domains 1 and 4 of DnaA, but not domain 3, were found to be involved in the maintenance of plasmid pSC101.  相似文献   

2.
The RepA protein of the plasmid Rts1, consisting of 288 amino acids, is a trans-acting protein essential for initiation of plasmid replication. To study the functional domains of RepA, hybrid proteins of Rts1 RepA with the RepA initiator protein of plasmid P1 were constructed such that the N-terminal portion was from Rts1 RepA and the C-terminal portion was from P1 RepA. Six hybrid proteins were examined for function. The N-terminal region of Rts1 RepA between amino acid residues 113 and 129 was found to be important for Rts1 ori binding in vitro. For activation of the origin in vivo, an Rts1 RepA subregion between residues 177 and 206 as well as the DNA binding domain was required. None of the hybrid initiator proteins activated the P1 origin. Both in vivo and in vitro studies showed, in addition, that a C-terminal portion of Rts1 RepA was required along with the DNA binding and ori activating domains to achieve autorepression, suggesting that the C-terminal region of Rts1 RepA is involved in dimer formation. A hybrid protein consisting of the N-terminal 145 amino acids of Rts1 and the C-terminal 142 amino acids from P1 showed strong interference with both Rts1 and P1 replication, whereas other hybrid proteins showed no or little effect on P1 replication.  相似文献   

3.
RepA, a plasmid-encoded gene product required for pSC101 replication in Escherichia coli, is shown here to inhibit the replication of pSC101 in vivo when overproduced 4- to 20-fold in trans. Unlike plasmids whose replication is prevented by mutations in the repA gene, plasmids prevented from replicating by overproduction of the RepA protein were lost rapidly from the cell population instead of being partitioned evenly between daughter cells. Removal of the partition (par) locus increased the inhibitory effect of excess RepA on replication, while host and plasmid mutations that compensate for the absence of par, or overproduction of the E. coli DnaA protein, diminished it. A repA mutation (repA46) that elevates pSC101 copy number almost entirely eliminated the inhibitory effect of RepA at high concentration and stimulated replication when the protein was moderately overproduced. As the RepA protein can exist in both monomer and dimer forms, we suggest that overproduction promotes RepA dimerization, reducing the formation of replication initiation complexes that require the RepA monomer and DnaA; we propose that the repA46 mutation alters the ability of the mutant protein to dimerize. Our discovery that an elevated intracellular concentration of RepA specifically impedes plasmid partitioning implies that the RepA-containing complexes initiating pSC101 DNA replication participate also in the distribution of plasmids at cell division.  相似文献   

4.
Boundaries of the pSC101 minimal replicon are conditional.   总被引:5,自引:3,他引:2       下载免费PDF全文
The DNA segment essential for plasmid replication commonly is referred to as the core or minimal replicon. We report here that host and plasmid genes and sites external to the core replicon of plasmid pSC101 determine the boundaries and competence of the replicon and also the efficiency of partitioning. Missense mutations in the plasmid-encoded RepA protein or mutation of the Escherichia coli topoisomerase I gene enable autonomous replication of a 310-bp pSC101 DNA fragment that contains only the actual replication origin plus binding sites for RepA and the host-encoded DnaA protein. However, in the absence of a repA or topA mutation, the DNA-bending protein integration host factor (IHF) and either of two cis-acting elements are required. One of these, the partitioning (par) locus, is known to promote negative DNA supercoiling; our data suggest that the effects of the other element, the inverted repeat (IR) sequences that overlap the repA promoter, are mediated through the IR's ability to bind RepA. The concentrations of RepA and DnaA, which interact with each other and with plasmid DNA in the origin region (T. T. Stenzel, T. MacAllister, and D. Bastia, Genes Dev. 5:1453-1463, 1991), also affect both replication and partitioning. Our results, which indicate that the sequence requirements for replication of pSC101 are conditional rather than absolute, compel reassessment of the definition of a core replicon. Additionally, they provide further evidence that the origin region RepA-DnaA-DNA complex initiating replication of pSC101 also mediates the partitioning of pSC101 plasmids at cell division.  相似文献   

5.
Summary We have shown that the plasmid pSC101 is unable to be maintained in strains of E. coli carrying deletions in the genes himA and hip which specify the pleitropic heterodimeric DNA binding protein, IHF. We show that this effect is not due to a modulation of the expression of the pSC101 RepA protein, required for replication of the plasmid. Inspection of the DNA sequence of the essential replication region of pSC101 reveals the presence of a site, located between the DnaA binding-site and that of RepA, which shows extensive homology with the consensus IHF binding site. The proximity of the sites suggests that these three proteins, IHF, DnaA, and RepA may interact in generating a specific DNA structure required for initiation of pSC101 replication.  相似文献   

6.
7.
Control of DNA replication initiation is essential for normal cell growth. A unifying characteristic of DNA replication initiator proteins across the kingdoms of life is their distinctive AAA+ nucleotide-binding domains. The bacterial initiator DnaA assembles into a right-handed helical oligomer built upon interactions between neighbouring AAA+ domains, that in vitro stretches DNA to promote replication origin opening. The Bacillus subtilis protein Soj/ParA has previously been shown to regulate DnaA-dependent DNA replication initiation; however, the mechanism underlying this control was unknown. Here, we report that Soj directly interacts with the AAA+ domain of DnaA and specifically regulates DnaA helix assembly. We also provide critical biochemical evidence indicating that DnaA assembles into a helical oligomer in vivo and that the frequency of replication initiation correlates with the extent of DnaA oligomer formation. This work defines a significant new regulatory mechanism for the control of DNA replication initiation in bacteria.  相似文献   

8.
DNA replication of plasmid P1 requires a plasmid-encoded origin DNA-binding protein, RepA. RepA is an inactive dimer and is converted by molecular chaperones into an active monomer that binds RepA binding sites. Although the sequence of RepA is not homologous to that of F plasmid RepE, we found by using fold-recognition programs that RepA shares structural homology with RepE and built a model based on the RepE crystal structure. We constructed mutants in the two predicted DNA binding domains to test the model. As expected, the mutants were defective in P1 DNA binding. The model predicted that RepA binds the first half of the binding site through interactions with the C-terminal DNA binding domain and the second half through interactions with the N-terminal domain. The experiments supported the prediction. The model was further supported by the observation that mutants defective in dimerization map to the predicted subunit interface region, based on the crystal structure of pPS10 RepA, a RepE family member. These results suggest P1 RepA is structurally homologous to plasmid initiators, including those of F, R6K, pSC101, pCU1, pPS10, pFA3, pGSH500, Rts1, RepHI1B, RepFIB, and RSF1010.  相似文献   

9.
The replication initiator protein RepA of the IncB plasmid pMU720 was purified and used in DNase I protection assays in vitro. RepA protected a 68-bp region of the origin of replication of pMU720. This region, which lies immediately downstream of the DnaA box, contains four copies of the sequence motif 5'AANCNGCAA3'. Mutational analyses identified this sequence as the binding site specifically recognized by RepA (the RepA box). Binding of RepA to the RepA boxes was ordered and sequential, with the box closest to the DnaA binding site (box 1) occupied first and the most distant boxes (boxes 3 and 4) occupied last. However, only boxes 1, 2, and 4 were essential for origin activity, with box 3 playing a lesser role. Changing the spacing between box 1 and the other three boxes affected binding of RepA in vitro and origin activity in vivo, indicating that the RepA molecules bound to ori(B) interact with one another.  相似文献   

10.
The mini-P1 plasmid origin of replication is contained on a 246 base pair (bp) piece of DNA. At one end there are five 19-bp binding sites for the P1 initiator protein, RepA, and near the other end there are two 9-bp DnaA protein-binding sites. To further define the limits of the origin, we cloned the origin region in M13 and constructed deletions of either end. We sequenced the DNA and tested the replicative form I DNA of the deletion phages for their ability to support RepA-dependent DNA replication in an in vitro system. The origin that is functional in vitro could be reduced to 202 bp. It includes three intact and one incomplete RepA-binding sites at one end and the two DnaA-binding sites at the other end. When the two naturally occurring DnaA-binding sites were replaced with one or two synthetic sites, only the construction containing two sites was active in vitro. We found that the minimal origin that is functional in vivo contains all of the five RepA and the two DnaA-binding sites. Mini-P1 plasmid replication both in vivo and in vitro requires two initiator proteins, the Escherichia coli DnaA protein and the P1 RepA protein. We have found that the ADP form of DnaA is as active as the ATP form of the protein in the in vitro replication of mini-P1. In contrast, only the ATP form is active for in vitro replication of plasmids carrying the E. coli origin (Bramhill, D., and Kornberg, A. (1988) Cell 52, 743-755).  相似文献   

11.
The origin of replication of the IncL/M plasmid pMU604 was analyzed to identify sequences important for binding of initiator proteins and origin activity. A thrice repeated sequence motif 5'-NANCYGCAA-3' was identified as the binding site (RepA box) of the initiator protein, RepA. All three copies of the RepA box were required for in vivo activity and binding of RepA to these boxes appeared to be cooperative. A DnaA R box (box 1), located immediately upstream of the RepA boxes, was not required for recruitment of DnaA during initiation of replication by RepA of pMU604 unless a DnaA R box located at the distal end of the origin (box 3) had been inactivated. However, DnaA R box 1 was important for recruitment of DnaA to the origin of replication of pMU604 when the initiator RepA was that from a distantly related plasmid, pMU720. A mutation which scrambled DnaA R boxes 1 and 3 and one which scrambled DnaA R boxes 1, 3 and 4 had much more deleterious effects on initiation by RepA of pMU720 than on initiation by RepA of pMU604. Neither Rep protein could initiate replication from the origin of pMU604 in the absence of DnaA, suggesting that the difference between them might lie in the mechanism of recruitment of DnaA to this origin. DnaA protein enhanced the binding and origin unwinding activities of RepA of pMU604, but appeared unable to bind to a linear DNA fragment bearing the origin of replication of pMU604 in the absence of other proteins.  相似文献   

12.
The replication initiator protein RepA of the IncB plasmid pMU720 was shown to induce localized unwinding of its cognate origin of replication in vitro. DnaA, the initiator protein of Escherichia coli, was unable to induce localized unwinding of this origin of replication on its own but enhanced the opening generated by RepA. The opened region lies immediately downstream of the last of the three binding sites for RepA (RepA boxes) and covers one turn of DNA helix. A 6-mer sequence, 5'-TCTTAA-3', which lies within the opened region, was essential for the localized unwinding of the origin in vitro and origin activity in vivo. In addition, efficient unwinding of the origin of replication of pMU720 in vitro required the native positioning of the binding sites for the initiator proteins. Interestingly, binding of RepA to RepA box 1, which is essential for origin activity, was not required for the localized opening of the origin in vitro.  相似文献   

13.
14.
We have found that DnaA dependent replication of R1 still occurred when 5 of the 9 bases in the dnaA box present in oriR were changed by site directed mutagenesis although the replication efficiency decreased to 20% and 70% of the wild-type origin in vitro and in vivo respectively. Additional mutation of a second dnaA box, 28 bp upstream oriR, that differs in only one base from the consensus sequence, did not affect the level of replication whereas polyclonal antibodies against DnaA totally abolished in vitro replication in the absence of the dnaA box. Wild-type RepA as well as a RepA mutant, RepA2623, that binds to oriR but that is inactive in promoting in vitro replication of plasmid R1, induce efficient binding of DnaA to the dnaA box. However, specific binding of DnaA to oriR was not detected by DNase I protection experiments in the absence of the dnaA box. These results suggest that the entrance of the DnaA protein in oriR is promoted initially by interactions with a RepA-oriR pre-initiation complex and that, in the absence of the dnaA box, these interactions can support, with reduced efficiency, DnaA dependent replication of plasmid R1.  相似文献   

15.
We report here that the Escherichia coli replication proteins DnaA, which is required to initiate replication of both the chromosome and plasmid pSC101, and DnaB, the helicase that unwinds strands during DNA replication, have effects on plasmid partitioning that are distinct from their functions in promoting plasmid DNA replication. Temperature-sensitive dnaB mutants cultured under conditions permissive for DNA replication failed to partition plasmids normally, and when cultured under conditions that prevent replication, they showed loss of the entire multicopy pool of plasmid replicons from half of the bacterial population during a single cell division. As was observed previously for DnaA, overexpression of the wild-type DnaB protein conversely stabilized the inheritance of partition-defective plasmids while not increasing plasmid copy number. The identification of dnaA mutations that selectively affected either replication or partitioning further demonstrated the separate roles of DnaA in these functions. The partition-related actions of DnaA were localized to a domain (the cell membrane binding domain) that is physically separate from the DnaA domain that interacts with other host replication proteins. Our results identify bacterial replication proteins that participate in partitioning of the pSC101 plasmid and provide evidence that these proteins mediate plasmid partitioning independently of their role in DNA synthesis.  相似文献   

16.
Initiation of chromosome replication in Escherichia coli is governed by the interaction of the initiator protein DnaA with the replication origin oriC. Here we present evidence that homo-oligomerization of DnaA via its N-terminus (amino acid residues 1-86) is also essential for initiation. Results from solid-phase protein-binding assays indicate that residues 1-86 (or 1-77) of DnaA are necessary and sufficient for self interaction. Using a 'one-hybrid-system' we found that the DnaA N-terminus can functionally replace the dimerization domain of coliphage lambda cl repressor: a lambdacl-DnaA chimeric protein inhibits lambda plasmid replication as efficiently as lambdacI repressor. DnaA derivatives with deletions in the N-terminus are incapable of supporting chromosome replication from oriC, and, conversely, overexpression of the DnaA N-terminus inhibits initiation in vivo. Together, these results indicate that (i) oligomerization of DnaA N-termini is essential for protein function during initiation, and (ii) oligomerization does not require intramolecular cross-talk with the nucleotide-binding domain III or the DNA-binding domain IV. We propose that E. coli DnaA is composed of largely independent domains - or modules - each contributing a partial, though essential, function to the proper functioning of the 'holoprotein'.  相似文献   

17.
18.
Chromosomal replication is initiated from the replication origin oriC in Escherichia coli by the active ATP-bound form of DnaA protein. The regulatory inactivation of DnaA (RIDA) system, a complex of the ADP-bound Hda and the DNA-loaded replicase clamp, represses extra initiations by facilitating DnaA-bound ATP hydrolysis, yielding the inactive ADP-bound form of DnaA. However, the mechanisms involved in promoting the DnaA-Hda interaction have not been determined except for the involvement of an interaction between the AAA+ domains of the two. This study revealed that DnaA Leu-422 and Pro-423 residues within DnaA domain IV, including a typical DNA-binding HTH motif, are specifically required for RIDA-dependent ATP hydrolysis in vitro and that these residues support efficient interaction with the DNA-loaded clamp·Hda complex and with Hda in vitro. Consistently, substitutions of these residues caused accumulation of ATP-bound DnaA in vivo and oriC-dependent inhibition of cell growth. Leu-422 plays a more important role in these activities than Pro-423. By contrast, neither of these residues is crucial for DNA replication from oriC, although they are highly conserved in DnaA orthologues. Structural analysis of a DnaA·Hda complex model suggested that these residues make contact with residues in the vicinity of the Hda AAA+ sensor I that participates in formation of a nucleotide-interacting surface. Together, the results show that functional DnaA-Hda interactions require a second interaction site within DnaA domain IV in addition to the AAA+ domain and suggest that these interactions are crucial for the formation of RIDA complexes that are active for DnaA-ATP hydrolysis.  相似文献   

19.
Plasmid pSC101 encodes a 37.5 kDa Rep (RepA) protein, which binds to three 21-base repeats (DR-1, DR-2, and DR-3) in the replication origin region (ori) of the plasmid to initiate replication. Rep also binds to two palindromic sequences (IR-1 and IR-2) which overlap the rep promoter. The binding of Rep to IR-2 represses the production of Rep itself. It is highly likely that the balance of these functions of Rep plays a major role in controlling the copy number of pSC101. In this study, we developed a positive-selection system for replication-deficient mutants of the initiator protein. This system can be applied to the study of other replication systems by changing ori and rep of pSC101 to the corresponding genes. Thirty-four replication-deficient (Ini(-)) mutants were isolated with this system, and analyzed as to the relation between the structure and function of the Rep protein. Seventeen of these 34 Ini(-) mutants were found to lack auto-repressor activity as well as initiator activity. DNA sequence analysis showed that one-third (from the C-terminus) of Rep is dispensable for the auto-repressor activity, while the initiator activity seems to require the whole protein.  相似文献   

20.
Replication of P1 plasmid requires both the plasmid-specific initiator, RepA, and the host initiator, DnaA. Here we show that DnaA can make the P1 origin reactive to the single-strand specific reagents KMnO4 and mung bean nuclease. Addition of RepA further increased the KMnO4 reactivity of the origin, although RepA alone did not influence the reaction. The increased reactivity implies that the two initiators interact in some way to alter the origin conformation. The KMnO4 reactivity was restricted to one strand of the origin. We suggest that the roles of DnaA in P1 plasmid and bacterial replication are similar: origin opening and loading of the DnaB helicase. The strand-bias in chemical reactivity at the P1 origin most likely indicates that only one of the strands is used for the loading of DnaB, a scenario consistent with the unidirectional replication of the plasmid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号