首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombination between Sindbis virus RNAs.   总被引:27,自引:18,他引:9       下载免费PDF全文
  相似文献   

2.
3.
Sindbis virus-specific polypeptides were synthesized in lysates of rabbit reticulocytes in response to added 26 S or 49 S RNA. Sindbis 26 S RNA was translated into as many as three polypeptides which co-migrate in acrylamide gels with proteins found in infected cells.Wild type 26 S RNA was translated primarily into two polypeptides, which appear to be the Sindbis nucleocapsid protein (mol. wt 30,000) and the precursor of the two glycoproteins of the virion (mol. wt 100,000). A larger polypeptide (mol. wt 130,000) was synthesized in response to ts2 26 S RNA, a species of RNA which was isolated from cells infected with the ts2 mutant of Sindbis virus. This large polypeptide is apparently the protein which accumulates in cells infected with the mutant virus and which is thought to be a precursor of all three viral structural proteins.These results support the hypothesis that 26 S RNA is the messenger for the three structural proteins of the virion and that the RNA codes for one large polypeptide precursor. The precursor may then be cleaved at a specific site to yield the nucleocapsid protein and a second polypeptide which, in infected cells, is cleaved in a series of steps to yield the two glycoproteins of the virion.Sindbis 49 S RNA was translated into eight or nine polypeptides ranging from 60,000 to 180,000 molecular weights. The viral structural proteins, as such, were not synthesized in response to the added 49 S RNA.  相似文献   

4.
We have isolated from a single plaque a mutant of Sindbis virus characterized by an E1 glycoprotein with higher electrophoretic mobility. This higher mobility is not attributable to a different extent of glycosylation of the protein nor to an altered proteolytic maturation pathway of the polypeptide precursor, but is the result of a deletion occurring during the replication of the viral RNA. The 26S RNA (the messenger for the Sindbis structural proteins) extracted from cells infected with the mutant is about 0.75 x 10(5) daltons smaller than the 26S RNA from the parental strain. As a consequence, in cells infected with the mutant, an E1 glycoprotein is synthesized with a polypeptide chain about 70 amino acids shorter. The biological relevance of this naturally occurring deletion of the viral genome is discussed.  相似文献   

5.
Cells infected with wild-type Sindbis virus contain at least two forms of mRNA, 26S and 49S RNA. Sindbis 26S RNA (molecular weight 1.6 x 10(6)) constitutes 90% by weight of the mRNA in infected cells, and is thought to specify the structural proteins of the virus. Sindbis 49S RNA, the viral genome (molecular weight 4.3 x 10(6)), constitutes approximately 10% of the mRNA in infected cells and is thought to supply the remaining viral functions. In cells infected with ts2, a temperature-sensitive mutant of Sindbis virus, the messenger forms also include a third species of RNA with a sedimentation coefficient of 33S and an apparent molecular weight of 2.3 x 10(6). Hybridization-competition experiments showed that 90% of the base sequences in 33S RNA from these cells are also present in 26S RNA. Sindbis 33S RNA was also isolated from cells infected with wild-type virus. After reaction with formaldehyde, this species of 33S RNA appeared to be completely converted to 26S RNA. These results indicate that 33S RNA isolated from cells infected with either wild-type Sindbis or ts2 is not a unique and separate form of Sindbis RNA.  相似文献   

6.
7.
8.
Brief treatment of Sindbis virus-infected BHK-21 or Vero cells with low concentrations of trypsin irreversibly blocked further production of progeny virions after removal of the enzyme. The inhibitory effects of the trypsin treatment could only be demonstrated in cells in which virus infection was established; optimal inhibition occurred at ca. 3 h postinfection. Production of virus structural proteins PE2, E1, and C occurred at normal levels in inhibited cells. PE2 and E1 were also transported to the cell plasma membrane during inhibition; however, PE2 was not cleaved to E2, and little capsid protein became membrane associated relative to control cells. Although trypsin treatment had no effect on Sindbis protein synthesis, the production of both 26S and 42S RNA was greatly reduced. Similar trypsin treatment of BHK cells infected with vesicular stomatitis virus had no detectable effect on the course of virus infection.  相似文献   

9.
We have identified and characterized two small virus-specific polypeptides which are produced during infection of cells with Sindbis virus, but which are not incorporated into the mature virion. The larger of these is a glycoprotein with an approximate molecular weight of 9,800 and is found predominantly in the medium of infected cells. Three independent lines of evidence demonstrate conclusively that this 9,800-dalton glycoprotein is produced during the proteolytic conversion of the precursor polypeptide, PE2, to the virion glycoprotein E2. This small glycoprotein is therefore analogous to the virion glycoprotein E3 of the very closely related alphavirus, Semliki Forest virus. The 9,800-dalton glycoprotein of Sindbis virus, unlike the E3 glycoprotein of Semliki Forest virus, is not, however, present in the viral particle. The other virus-specific polypeptide is 4,200 daltons in size, does not appear to be a glycoprotein, and is neither incorporated into the mature virus nor released into the culture medium. The gene for this small polypeptide is present in the viral 26S mRNA (the mRNA which encodes all the viral structural polypeptides) and appears to be located in the portion of the mRNA which encodes the two viral glycoproteins. The possibility that this 4,200-dalton polypeptide functions as a signal peptide during the synthesis of the viral membrane glycoproteins is discussed.  相似文献   

10.
Chicken embryo fibroblasts infected with an RNA- temperature-sensitive mutant (ts24) of Sindbis virus accumulated a large-molecular-weight protein (p200) when cells were shifted from the permissive to nonpermissive temperature. Appearance of p200 was accompanied by a decrease in the synthesis of viral structural proteins, but [35S]methionine tryptic peptides from p200 were different from those derived from a 140,000-molecular-weight polypeptide that contains the amino acid sequences of viral structural proteins. Among three other RNA- ts mutants that were tested for p200 formation, only one (ts21) produced this protein. The accumulation of p200 in ts24- and ts21-infected cells could be correlated with a shift in the formation of 42S and 26S viral RNA that led to an increase in the relative amounts of 42S RNA. These data indicate that p200 is translated from the nonstructural genes of the virion 42S RNA and further suggest that this RNA does not function effectively in vivo as an mRNA for the Sindbis virus structural proteins.  相似文献   

11.
Genome analysis of MG virus, a human papovavirus.   总被引:2,自引:2,他引:0       下载免费PDF全文
The single late 26S mRNA of Semliki Forest virus (SFV) directs the synthesis of the four viral structural proteins, C, E3, E2, and E1, and the recently described nonstructural protein, 6K. We report here partial NH2-terminal amino acid sequences of the SFV polypeptides E3 and 6K and of p62, the precursor to E3 and E2. In addition, were have determined a partial NH2-terminal sequence of the Sindbis virus homolog of 6K, the 4.2K protein. p62 and E3 of SFV have identical NH2-terminal amino acid sequences. Comparison of the partial NH2-terminal sequences of 6K of SFV and 4.2K of Sindbis virus with the deduced amino acid sequence encoded by the 26S mRNA of each virus reveals that the genes for these peptides are located in each case between those for E2 and E1. The order of the genes on the 26S mRNA of the alphaviruses is therefore 5'-C-E3-E2-6K-E1-3'. We discuss two mechanisms by which the nascent viral glycoproteins may be inserted into the membrane of the endoplasmic reticulum.  相似文献   

12.
One incentive for developing the alphavirus Sindbis virus as a vector for the expression of heterologous proteins is the very high level of viral structural proteins that accumulates in infected cells. Although replacement of the structural protein genes by a heterologous gene should lead to an equivalent accumulation of the heterologous protein, the Sindbis virus capsid protein is produced at a level 10- to 20-fold higher than that of any foreign protein. Chimeric mRNAs which contain the first 275 nucleotides of the Sindbis virus 26S mRNA fused to the lacZ gene are also translated at the higher level. The enhancing sequences, located downstream of the AUG codon that initiates translation of the capsid protein, have a predicted hairpin-like structure; deletions in this region destroy the activity. These sequences enhance translation in infected cells but have the opposite effect in uninfected cells. Furthermore, translation of this RNA in infected cells is suppressed by a second viral RNA lacking the hairpin-like structure, but translation of the latter RNA is not affected. We propose that the hairpin-like structure presents a barrier to the movement of the ribosomes during translation of mRNA. In infected cells, under conditions in which this mRNA is essentially the only RNA being translated, a slowdown in the transit of the ribosomes gives factors present at low concentrations a chance to bind to the translation complex and permits a high level of functional complexes to be formed. In uninfected cells and in infected cells translating two different viral subgenomic mRNAs, a pause in the movement of the ribosomes along the RNA is no longer an advantage, because the required factors are now usurped by other translation complexes.  相似文献   

13.
Disulfide bridge-mediated folding of Sindbis virus glycoproteins.   总被引:3,自引:3,他引:0       下载免费PDF全文
The Sindbis virus envelope is composed of 80 E1-E2 (envelope glycoprotein) heterotrimers organized into an icosahedral protein lattice with T=4 symmetry. The structural integrity of the envelope protein lattice is maintained by E1-E1 interactions which are stabilized by intramolecular disulfide bonds. Structural domains of the envelope proteins sustain the envelope's icosahedral lattice, while functional domains are responsible for virus attachment and membrane fusion. We have previously shown that within the mature Sindbis virus particle, the structural domains of the envelope proteins are significantly more resistant to the membrane-permeative, sulfhydryl-reducing agent dithiothreitol (DTT) than are the functional domains (R. P. Anthony, A. M. Paredes, and D. T. Brown, Virology 190:330-336, 1992). We have used DTT to probe the accessibility of intramolecular disulfides within PE2 (the precursor to E2) and E1, as these proteins fold and are assembled into the spike heterotrimer. We have determined through pulse-chase analysis that intramolecular disulfide bonds within PE2 are always sensitive to DTT when the glycoproteins are in the endoplasmic reticulum. The reduction of these disulfides results in the disruption of PE2-E1 associations. E1 acquires increased resistance to DTT as it folds through a series of disulfide intermediates (E1alpha, -beta, and -gamma) prior to assuming its native and most compact conformation (E1epsilon). The transition from a DTT-sensitive form into a form which exhibits increased resistance to DTT occurs after E1 has folded into its E1beta conformation and correlates temporally with the dissociation of BiP-E1 complexes and the formation of PE2-E1 heterotrimers. We propose that the disulfide bonds within E1 which stabilize the protein domains required for maintaining the structural integrity of the envelope protein lattice form early within the folding pathway of E1 and become inaccessible to DTT once the heterotrimer has formed.  相似文献   

14.
Defective interfering particles of Sindbis virus contain 20S RNA identical to that found in BHK cells co-infected with standard and defective virions. We have characterized these RNAs by their oligonucleotide fingerprints. Most of the oligonucleotides were identical to those found in the mRNA (26S RNA) that codes for the virion structural proteins. Three oligonucleotides found in 20S RNA were absent from the 26S RNA pattern and may represent sequences from the 5' end of the virion RNA. Previous difficulties in describing the nature of the defective virion RNA were due to the aggregated state of the RNA. Nucleocapsids obtained from standard and defective virions were essentially the same size and had about the same density, suggesting that defective particles contain more than a single molecule of 20S RNA.  相似文献   

15.
Molecular basis of Sindbis virus neurovirulence in mice.   总被引:44,自引:37,他引:7       下载免费PDF全文
We examined a variety of strains of Sindbis virus for the genetic changes responsible for differences in neurovirulence in mice. SV1A (a low passage of the AR339 strain of Sindbis virus), a neuroadapted Sindbis virus (NSV), and two laboratory strains of Sindbis virus (HRSP and Toto1101) were examined. NSV causes severe encephalomyelitis with hind-limb paralysis and high mortality after intracerebral inoculation in weanling mice. In contrast, SV1A causes only mild, nonfatal disease in weanling mice; however, in suckling mice, SV1A causes a fatal encephalomyelitis after either intracerebral or subcutaneous inoculation. The two laboratory strains used have a greatly reduced neurovirulence for suckling mice and are avirulent for weanling mice. The nucleotide sequences and encoded amino acid sequences of the structural glycoproteins of these four strains were compared. Hybrid genomes were constructed by replacing restriction fragments in a full-length cDNA clone of Sindbis virus, from which infectious RNA can be transcribed in vitro, with fragments from cDNA clones of the various strains. These recombinant viruses allowed us to test the importance of each amino acid difference between the various strains for neurovirulence in weanling and suckling mice. Glycoproteins E2 and E1 were of paramount importance for neurovirulence in adult mice. Recombinant viruses containing the nonstructural protein region and the capsid protein region from an avirulent strain and the E1 and E2 glycoprotein regions from NSV were virulent, although they were less virulent than NSV. Furthermore, changes in either E2 (His-55 in NSV to Gln in SV1A) or E1 (Ala-72 in NSV to Val in SV1A and Asp-313 in NSV to Gly in SV1A) reduced virulence. For virulence in suckling mice, we found that a number of changes in E2 and E1 can lead to decreased virulence and that in fact, a gradient of virulence exists.  相似文献   

16.
Promoter for Sindbis virus RNA-dependent subgenomic RNA transcription   总被引:27,自引:22,他引:5       下载免费PDF全文
  相似文献   

17.
Defects in RNA and protein synthesis of seven Sindbis virus and seven Semliki Forest virus RNA-negative, temperature-sensitive mutants were studied after shift to the restrictive temperature (39 degrees C) in the middle of the growth cycle. Only one of the mutants, Ts-6 of Sindbis virus, a representative of complementation group F, was clearly unable to continue RNA synthesis at 39 degrees C, apparently due to temperature-sensitive polymerase. The defect was reversible and affected the synthesis of both 42S and 26S RNA equally, suggesting that the same polymerase component(s) is required for the synthesis of both RNA species. One of the three Sindbis virus mutants of complementation group A, Ts-4, and one RNA +/- mutant of Semliki Forest virus, ts-10, showed a polymerase defect even at the permissive temperature. Seven of the 14 RNA-negative mutants showed a preferential reduction in 26S RNA synthesis. The 26S RNA-defective mutants of Sindbis virus were from two different complementation groups, A and G, indicating that functions of two viral nonstructural proteins ("A" and "G") are required in the regulation of the synthesis of 26S RNA. Since the synthesis of 42S RNA continued, these functions of proteins A and G are not needed for the polymerization of RNA late in infection. The RNA-negative phenotype of 26S RNA-deficient mutants implies that proteins regulating the synthesis of this subgenomic RNA must have another function vital for RNA synthesis early in infection or in the assembly of functional polymerase. Several of the mutants having a specific defect in the synthesis of 26S RNA showed an accumulation of a large nonstructural precursor protein with a molecular weight of about 200,000. One even larger protein was demonstrated in both Semliki Forest virus- and Sindbis virus-infected cells which probably represents the entire nonstructural polyprotein.  相似文献   

18.
目的:对引进的一株辛德毕斯病毒的基因组序列进行测定,阐明其与已报道毒株序列的关系。方法:对辛德毕斯病毒基因组编码区进行分段RT-PCR扩增,对非编码区采用RACE法进行扩增,将扩增产物直接进行测序,应用DNAStar软件将测序结果拼接得到基因组序列,采用MEGA3.1软件对9株辛德毕斯病毒基因组序列进行系统进化发生树的构建。结果与结论:此株辛德毕斯病毒基因组共11663nt,编码3745个氨基酸残基,其中5'端的2/3基因组编码4种非结构蛋白NSp1、NSp2、NSp3和NSp4,3'端的1/3基因组编码5种结构蛋白E1、E2、E3、6K和C;结构基因和非结构基因之间有48nt的连接区为非翻译区;病毒基因组5'末端和3'末端分别有59、318nt的非编码区;序列同源性分析结果表明,此株病毒与S.A.AR86株的同源性最高,两者核苷酸序列的同源性为99.7%,氨基酸序列的同源性为99.6%,而与本室保存的另一辛德毕斯病毒MEI株的遗传进化关系稍远,系统进化发生树处于不同分支上。  相似文献   

19.
Previous work has shown that the Sindbis structural proteins, core, the internal protein, and PE2 and E1, the integral membrane glycoproteins are synthesized as a polyprotein from a 26S mRNA; core PE2 and E1 are derived by proteolytic cleavage of a nascent chain. Newly synthesized core protein remains on the cytoplasmic side of the endoplasmic reticulum while newly synthesized PE2 and E1 are inserted into the lipid bilayer, presumably via their amino-termini. PE2 and E1 are glycosylated as nascent chains. Here, we examine a temperature-sensitive mutant of Sindbis virus which fails to cleave the structural proteins, resulting in the production of a polyprotein of 130,000 mol wt in which the amino-termini of PE2 and E1 are internal to the protein. Although the envelope sequences are present in this protein, it is not inserted into the endoplasmic reticulum bilayer, but remains on the cytoplasmic side as does the core protein in cells infected with wild-type Sindbis virus. We have also examined the fate of PE2 and E1 in cells treated with tunicamycin, an inhibitor of glycosylation. Unglycosylated PE2 and E1 are inserted normally into the lipid bilayer as are the glycosylated proteins. These results are consistent with the notion that a specific amino-terminal sequence is required for the proper insertion of membrane proteins into the endoplasmic reticulum bilayer, but that glycosylation is not required for this insertion.  相似文献   

20.
Defective-interfering (DI) particles are helper-dependent deletion mutants which interfere specifically with the replication of the homologous standard virus. Serial passaging of alphaviruses in cultured cells leads to the accumulation of DI particles whose genomic RNAs are heterogeneous in size and sequence composition. In an effort to examine the sequence organization of an individual DI RNA species generated from Sindbis virus, we isolated and sequenced a representative cDNA clone derived from a Sindbis DI RNA population. Our data showed that: (i) the 3' end of the DI RNA template was identical to the 50 nucleotides at the 3' end of the standard RNA; (ii) the majority (75%) of the DI RNA template was derived from the 1,200 5'-terminal nucleotides of the standard RNA and included repeats of these sequences; and (iii) the 5' end of the DI RNA template was not derived from the standard RNA, but is nearly identical to a cellular tRNAAsp (S. S. Monroe and S. Schlesinger, Proc. Natl. Acad. Sci. U.S.A. 80:3279-3283, 1983). We have also utilized restriction fragments from cloned DNAs to probe by blot hybridization for the presence of conserved sequences in several independently derived DI RNA populations. These studies indicated that: (i) a 51-nucleotide conserved sequence located close to the 5' end of several alphavirus RNAs was most likely retained in the DI RNAs; (ii) the junction region containing the 5' end of the subgenomic 26S mRNA was deleted from the DI RNAs; and (iii) the presence of tRNAAsp sequences was a common occurrence in Sindbis virus DI RNAs derived by passaging in chicken embryo fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号