首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
低氧预处理对大鼠海巴神经元缺氧耐受性和IL—1β表达 …   总被引:3,自引:0,他引:3  
目的:观察低氧预处理对大鼠海巴神经元缺氧耐受性和白细胞介素-1β(IL-1β)表达的影响。方法:取培养12d的两组(对照组和低氧预处理组)培养神经元,同时置于缺氧环境(0.9L/LN2,0.1L/LCO2)中培养2、4、8和12h。分别观察它们的形态变化和神经元存活数,并用抗rhIL-1β单克隆抗体进行免疫组织化学染色,观察缺氧对大鼠海马培养神经元IL-1β表达的影响。结果:经低氧预处理的海马神经  相似文献   

2.
3.
Wisse BE  Ogimoto K  Schwartz MW 《Peptides》2006,27(2):265-273
In the current study we sought to determine whether hypothalamic IL-1beta is regulated by melanocortin signaling and if melanocortin-induced changes in energy balance are dependent on IL-1beta. A melanocortin agonist, MTII, increased hypothalamic IL-1beta mRNA levels by two-fold, whereas a melanocortin antagonist, SHU9119, blunted lipopolysaccharide (LPS)-mediated increase of hypothalamic IL-1beta content. Pharmacological or genetic disruption of IL-1 receptor signaling prevented MTII-mediated reductions in locomotor activity, but did not reduce MTII-induced anorexia. These data suggest a potential role for central melanocortins in mediating the decrease of ambulation characteristic of the 'sickness' response.  相似文献   

4.
As yet, little is known about the function of the glia of the enteric nervous system (ENS), particularly in an immune-stimulated environment. This prompted us to study the potential of cultured enteroglial cells for cytokine synthesis and secretion. Jejunal myenteric plexus preparations from adult rats were enzymatically dissociated, and enteroglial cells were purified by complement-mediated cytolysis and grown in tissue culture. Cultured cells were stimulated with recombinant rat interleukin (IL)-1beta, IL-6, and tumor necrosis factor (TNF)-alpha, and IL-6 mRNA expression and secretion were assessed using RT-PCR and a bioassay, respectively. Stimulation with TNF-alpha did not affect IL-6 mRNA expression, whereas IL-1beta stimulated IL-6 mRNA and protein synthesis in a time- and concentration-dependent fashion. In contrast, IL-6 significantly and dose-dependently suppressed IL-6 mRNA expression. In summary, we have presented evidence that enteric glial cells are a potential source of IL-6 in the myenteric plexus and that cytokine production by enteric glial cells can be regulated by cytokines. These findings strongly support the contention that enteric glial cells act as immunomodulatory cells in the enteric nervous system.  相似文献   

5.
Wang Y  Li XM  Wang HY 《生理学报》2002,54(3):244-250
为探讨细胞内丝裂素原活化蛋白激酶(MAPK)家族各亚类信号转导通路在炎症性细胞因子白介素-1β(IL-1β)对大鼠肾系膜细胞(rMC)表型标志物α-平滑肌肌动蛋白(α-SMA)表达及其分布中的调控作用,以IL-1β(10ng/ml)刺激体外培养的rMC,用电穿孔基因转染及免疫杂交法观察IL-1β对α-SMA基因启动子活性及蛋白表达的作用,并用共聚焦荧光显微镜及透射电镜观察IL-1β刺激前后细胞内α-SMA及微丝的分布变化。通过应用PD98059和SB203580特异阻断ERK和p38通路、共转染显性失活JNKK基因特异阻断JNK通路,观察阻断对IL-1β刺激所致α-SMA表达或启动子活性的影响。结果显示,IL-1β刺激6h可明显上调α-SMA启动子活性,在1-2d内显著促进其蛋白合成;IL-1β刺激24h后,细胞内α-SMA及微丝在细胞核周的分布增加。阻断ERK通路对IL-1β诱导的α-SMA表达无明显影响;阻断JNK及p38通路均可使IL-1β诱导的α-SMA表达明显受抑;阻断p38通路的作用比阻断JNK通路更强,而且对基础状态的α-SMA表达也有抑制作用。上述结果提示,IL-1β可刺激rMC发生表型转化,其表型标志物α-SMA可通过基因转录增强而增加蛋白表达,在细胞内的分布向核周转位积聚。JNK及p38通路是介导IL-1β刺激rMC α-SMA表达的主要信号转导途径,而ERK通路不影响IL-1β的这一作用。  相似文献   

6.
Interleukin-1beta (IL-1beta) is synthesized in a variety of tissues, including the hypothalamus, where it is implicated in the control of food intake. The current studies were undertaken to investigate whether hypothalamic IL-1beta gene expression is subject to physiological regulation by leptin and glucocorticoids (GCs), key hormones involved in energy homeostasis. Adrenalectomy (ADX) increased hypothalamic IL-1beta mRNA levels twofold, measured by real-time PCR (P < 0.05 vs. sham-operated controls), and this effect was blocked by subcutaneous infusion of a physiological dose of corticosterone. Conversely, hypothalamic IL-1beta mRNA levels were reduced by 30% in fa/fa (Zucker) rats, a model of genetic obesity caused by leptin receptor mutation (P = 0.01 vs. lean littermates), and the effect of ADX to increase hypothalamic IL-1beta mRNA levels in fa/fa rats (P = 0.02) is similar to that seen in normal animals. Moreover, fasting for 48 h (which lowers leptin and raises corticosterone levels) reduced hypothalamic IL-1beta mRNA levels by 30% (P = 0.02), and this decrease was fully reversed by refeeding for 12 h. Thus leptin and GCs exert opposing effects on hypothalamic IL-1beta gene expression, and corticosterone plays a physiological role to limit expression of this cytokine in both the presence and absence of intact leptin signaling. Consistent with this hypothesis, systemic leptin administration to normal rats (2 mg/kg ip) increased hypothalamic IL-1beta mRNA levels twofold (P < 0.05 vs. vehicle), an effect similar to that of ADX. These data support a model in which expression of hypothalamic IL-1beta is subject to opposing physiological regulation by corticosterone and leptin.  相似文献   

7.
In order to investigate if beta-endorphins anti-inflammatory effect in cartilage-damaging states is mediated via tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1 beta), we examined its influence on these two cytokines in vitro. Human articular chondrocytes were obtained from patients undergoing total knee arthroplasty and stimulated with beta-endorphin (60-6000 ng/ml). Protein levels of TNF-alpha and IL-1 beta were measured by ELISA in supernatants from articular chondrocyte cultures. beta-Endorphin significantly increased the levels of IL-1 beta for all concentrations used after 15 min incubation, and when stimulated with 600 and 6000 ng/ml after 24 h incubation. The opioid-induced increase in IL-1 beta was blocked by naltrexone in the group tested. TNF-alpha expression was also significantly stimulated by 60 and 600 ng/ml beta-endorphin after 15 min, an effect blocked by naltrexone in the group tested. These findings indicate that the mechanism of beta-endorphins anti-inflammatory influence in cartilage-damaging states is not apparently mediated via these two cytokines modulation.  相似文献   

8.
The RT-PCR analysis of RNA from progenitor and differentiated primary rat oligodendrocytes, and from the oligodendrocyte CG-4 cell line, shows the presence of the IL-1beta mRNA, the type I IL-1beta receptor and the IL-1 receptor accessory protein in these cells. In situ hybridization of a rat IL-1beta probe to primary progenitor and differentiated rat oligodendrocytes results in a positive signal. The double hybridization of the IL-1beta probe, together with an oligodendrocyte-specific differentiation marker, to sections of postnatal rat brain at different stages of differentiation is also positive. The double immuno-labelling technique utilized indicates coincidence of the signals on the brain slices. The results show that IL-1beta mRNA is constitutively expressed in rat brain oligodendrocytes from 1 day after birth onward. In agreement with this observation, CG-4 cells, primary progenitor and differentiated rat oligodendrocytes are positively stained by antibodies against IL-1beta. Postnatal brain slices from 1 and 4 day old and adult rats, labelled with a double immunofluorescence technique, are also stained by antibodies against IL-1beta. This signal coincides with that of antibodies against oligodendrocyte-specific surface markers. We conclude that IL-1beta is constitutively expressed in rat brain progenitor and differentiated oligodendrocytes.  相似文献   

9.
Although recently polymorphonuclear leukocytes (PMN) have been identified as producers of IL-1 beta in response to LPS and granulocyte/monocyte colony stimulating factor, little is known regarding the ability of other cytokines to induce the production of IL-1 beta in the PMN. Inasmuch as IL-1 and TNF have been shown to be important priming agents, as well as agents that induce migration of PMN, we investigated their effect on IL-1 beta gene expression in human peripheral blood PMN. In the present study, we demonstrate that human peripheral blood PMN produce IL-1 beta in response to IL-1 alpha, IL-1 beta, and TNF-alpha. Control (unstimulated) human PMN had virtually undetectable levels of IL-1 beta mRNA. Either IL-1 beta or TNF, induced PMN to transiently express IL-1 beta mRNA with peak expression at 1 h, returning to untreated levels by 2 h. A dose response indicated that as little as 0.05 ng/ml of IL-1 beta or TNF resulted in IL-1 beta induction, with maximal effects at 1 ng/ml of IL-1 beta and 5 ng/ml of TNF. IL-1 alpha or IL-1 beta exhibited similar dose responses in IL-1 beta mRNA induction. Inasmuch as cytokines have been shown to have synergistic effects in cell function studies, we induced PMN with a combination of maximally effective doses of TNF plus IL-1 beta. They demonstrated a cooperative effect on IL-1 beta gene expression, in that mRNA levels were sustained for three hours. IL-1 beta Ag expression, as measured by ELISA, paralleled IL-1 beta mRNA expression with cell associated peak levels at 2 to 4 h. IL-1 beta Ag levels in PMN lysates and supernatants correlated with IL-1 beta mRNA levels, i.e., TNF + IL-1 greater than TNF greater than IL-1. Thus, these studies represent the first demonstration of IL-1 and TNF induction of IL-1 beta gene expression in the PMN. Furthermore, the time course of induction is unique to the PMN, with peak induction of mRNA at 1 h, which is consistent with the short lived nature of these cells in inflammatory lesions.  相似文献   

10.
11.
Effects of recombinant human interleukin-1 beta (rhIL-1 beta) on the c-fos expression of cultured rat hippocampal neurons in vitro induced by anoxia were studied by using an immunohistochemical method. The results showed that the percentage and the mean optical density of the Fos-positive neuronal nuclei in cultured hippocampal neurons increased markedly as anoxia prolonged, while those in hippocampal neurons pretreated with rhIL-1 beta were significantly lower than those of control. The results indicate that anoxia can induce c-fos expression of cultured rat hippocampal neurons in vitro and this can be inhibited by rhIL-1 beta, suggesting that rhIL-1 beta may protect neurons from damage in a certain degree during anoxia.  相似文献   

12.
13.
Effects of endothelin-1 (ET-1) on glial cell line-derived neurotrophic factor (GDNF) production in cultured astrocytes were examined. Treatment of cultured astrocytes with ET-1 (100 nM) increased mRNA levels of GDNF in 1-6h. The effect of ET-1 was inhibited by BQ788, an ET(B) receptor antagonist, but not by FR139317, an ET(A) receptor antagonist. ET-1 stimulated release of GDNF into culture medium. Dexamethasone (1 microM) and pyrrolidine dithiocarbamate (PDTC, 100 microM), which inhibit activation of NFkappaB, prevented the increases in GDNF mRNA by H(2)O(2). In contrast, the effect of ET-1 was not affected by dexamethasone and PDTC. The increase of astrocytic GDNF mRNA by ET-1 was inhibited by BAPTA/AM (30 microM) and PD98059 (50 microM), but not by calphostin C, staurosporine, and cyclosporine A. These results suggest that ET-1 stimulated expression of astrocytic GDNF through ET(B) receptor-mediated increases in cytosolic Ca(2+) and ERK activation.  相似文献   

14.
15.
Intestinal epithelial cells have been shown to produce IL-1beta in vivo. This gene expression is rapid and precedes most determinants of inflammation, suggesting a pivotal role for IL-1beta in the early events leading to inflammation. To better understand the mechanisms leading to this IL-1beta production, we have developed an in vitro model system employing a nontransformed intestinal epithelial cell line that does not constitutively express IL-1beta. Following detachment, these cells rapidly expressed IL-1beta mRNA. This expression was enhanced, but not induced, by LPS. IL-1beta protein was detected by immunoprecipitation in the culture medium from passaged IEC-18 but not intracellularly, suggesting an efficient secretion of the molecule following induction. Interestingly, culture supernatants from passaged cells were without IL-1 bioactivity, suggesting the presence of an inhibitor as well. RT-PCR and Western blot analysis showed expression of IL-1RII by IEC-18 following detachment, possibly explaining the observed lack of bioactivity. These results indicate a novel pathway for IL-1beta production and suggest that proinflammatory effects of IEC-derived IL-1 may be modulated by the simultaneous production of IL-1 antagonists.  相似文献   

16.
Chlomethiazole and pyridinyl imidazole compounds, exemplified by SB203580, are structurally distinct p38 mitogen-activated protein kinase inhibitors with neuroprotective properties in models of cerebral ischaemia. We have examined their effects in interleukin-1beta (IL-1beta) synthesis, release and signalling in rat cortical glial cells, given the important role of IL-1beta in cerebral ischaemia. We analysed (i) IL-1beta mRNA expression by northern blot, (ii) IL-1beta protein precursor levels within the cells by western blot, and (iii) the levels of the mature IL-1beta protein secreted into the medium by enzyme-linked immunosorbent assay (ELISA) after treatment of rat cortical glial cells with lipopolysaccharide. While the induction of IL-1beta expression by lipopolysaccharide or by IL-1beta itself was very sensitive to nuclear factor kappa B (NF-kappaB) inhibitors, chlomethiazole or SB203580 were nearly without effect, indicating a differential regulation as compared to peripheral cells, e.g. monocytes. In contrast, chlomethiazole and SB203580 potently inhibited the IL-1beta-induced expression of c-fos and inducible nitric oxide synthase, as monitored by northern blot and quantitative RT-PCR, respectively. Because IL-1beta-induced expression of c-fos and inducible nitric oxide synthase is believed to directly contribute to the pathology of cerebral ischaemic injury, the results suggest a direct mechanism for the neuroprotective effects of chlomethiazole and SB203580, and further establish the anti-inflammatory properties of chlomethiazole.  相似文献   

17.
Differential regulation and function of Fas expression on glial cells   总被引:8,自引:0,他引:8  
Fas/Apo-1 is a member of the TNF receptor superfamily that signals apoptotic cell death in susceptible target cells. Fas or Fas ligand (FasL)-deficient mice are relatively resistant to the induction of experimental allergic encephalomyelitis, implying the involvement of Fas/FasL in this disease process. We have examined the regulation and function of Fas expression in glial cells (astrocytes and microglia). Fas is constitutively expressed by primary murine microglia at a low level and significantly up-regulated by TNF-alpha or IFN-gamma stimulation. Primary astrocytes express high constitutive levels of Fas, which are not further affected by cytokine treatment. In microglia, Fas expression is regulated at the level of mRNA expression; TNF-alpha and IFN-gamma induced Fas mRNA by approximately 20-fold. STAT-1alpha and NF-kappaB activation are involved in IFN-gamma- or TNF-alpha-mediated Fas up-regulation in microglia, respectively. The cytokine TGF-beta inhibits basal expression of Fas as well as cytokine-mediated Fas expression by microglia. Upon incubation of microglial cells with FasL-expressing cells, approximately 20% of cells underwent Fas-mediated cell death, which increased to approximately 60% when cells were pretreated with either TNF-alpha or IFN-gamma. TGF-beta treatment inhibited Fas-mediated cell death of TNF-alpha- or IFN-gamma-stimulated microglial cells. In contrast, astrocytes are resistant to Fas-mediated cell death, however, ligation of Fas induces expression of the chemokines macrophage inflammatory protein-1beta (MIP-1beta), MIP-1alpha, and MIP-2. These data demonstrate that Fas transmits different signals in the two glial cell populations: a cytotoxic signal in microglia and an inflammatory signal in the astrocyte.  相似文献   

18.
19.
Incubation of rat hepatocytes in primary culture with IL-1beta at a concentration of 2.5 units/ml resulted in an increase (+80%) in the amount of apoE mRNA without any effect upon apoE synthesis. IL-6 at a low concentration (10 units/ml) induced a decrease (-35%) in the amount of apoE mRNA, but increased apoE synthesis (+28%). No effect was observed with higher concentrations of IL-1beta (10 units/ml) or IL-6 (100 units/ml). These results suggest that inflammatory cytokines IL-1beta and IL-6 modulate the expression of apoE gene in cultured rat hepatocytes, at a concentration that does not induce the acute phase response.  相似文献   

20.
The transport of glycine in C6 glioma cells takes place mainly in a heterogeneous Na+-dependent manner which can be resolved into different components. A Na+- and Cl(-)-dependent component with high affinity for glycine is pH-sensitive and inhibited by sarcosine, all these characteristics corresponding to System Gly. The low-affinity component of the transport of glycine can be discriminated as two components, namely System A and System ASC. The main proportion of glycine transport through the low-affinity system is carried out by the ASC System, which appears to be constitutively expressed by the cells. The adaptive response of the low-affinity Na+-dependent transport of glycine to amino acid deprivation was identified with System A on the basis of its ion-dependency, pH-sensitivity and by inhibition analysis. The possible physiological role of the high- and low-affinity components of the transport system for glycine in glial cells is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号