首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cystic fibrosis (CF) patients are highly susceptible to chronic pulmonary disease caused by mucoid Pseudomonas aeruginosa strains that overproduce the exopolysaccharide alginate. We showed here that a mutation in zwf, encoding glucose-6-phosphate dehydrogenase (G6PDH), leads to a approximately 90% reduction in alginate production in the mucoid, CF isolate, P. aeruginosa FRD1. The main regulator of alginate, sigma-22 encoded by algT (algU), plays a small but demonstrable role in the induction of zwf expression in P. aeruginosa. However, G6PDH activity and zwf expression were higher in FRD1 strains than in PAO1 strains. In PAO1, zwf expression and G6PDH activity are known to be subject to catabolite repression by succinate. In contrast, FRD1 zwf expression and G6PDH activity were shown to be refractory to such catabolite repression. This was apparently not due to a defect in the catabolite repression control (Crc) protein. Such relaxed control of zwf was found to be common among several examined CF isolates but was not seen in other strains of clinical and environmental origin. Two sets of clonal isolates from individual CF patient indicated that the resident P. aeruginosa strain underwent an adaptive change that deregulated zwf expression. We hypothesized that high-level, unregulated G6PDH activity provided a survival advantage to P. aeruginosa within the lung environment. Interestingly, zwf expression in P. aeruginosa was shown to be required for its resistance to human sputum. This study illustrates that adaptation to the CF pulmonary environment by P. aeruginosa can include altered regulation of basic metabolic activities, including carbon catabolism.  相似文献   

2.
Pseudomonas aeruginosa chronic lung infections are the major cause of morbidity and mortality in cystic fibrosis (CF) patients. The P. aeruginosa strains PAO1 and PA14 were compared with the Liverpool epidemic strain LESB58 to assess in vivo growth, infection kinetics, and bacterial persistence and localization within tissues in a rat model of chronic lung infection. The three P. aeruginosa strains demonstrated similar growth curves in vivo but differences in tissue distribution. The LESB58 strain persisted in the bronchial lumen, while the PAO1 and PA14 strains were found localized in the alveolar regions and grew as macrocolonies after day 7 postinfection. Bacterial strains were compared for swimming and twitching motility and for the production of biofilm. The P. aeruginosa LESB58 strain produced more biofilm than PAO1 and PA14. Competitive index (CI) analysis of PAO1, PA14, and LESB58 in vivo indicated CI values of 0.002, 0.0002, and 0.14 between PAO1-PA14, PAO1-LESB58, and LESB58-PA14, respectively. CI analysis comparing the in vivo growth of the PAO1 DeltaPA5441 mutant and four PA14 surface attachment-defective (sad) mutants gave CI values 10 to 1,000 times lower in competitions with their respective wild-type strains PAO1 and PA14. P. aeruginosa strains studied in the rat model of chronic lung infection demonstrated similar in vivo growth but differences in virulence as shown with a competitive in vivo assay. These differences were further confirmed with biofilm and motility in vitro assays, where strain LESB58 produced more biofilm but had less capacity for motility than PAO1 and PA14.  相似文献   

3.
Alginate overproduction by P. aeruginosa strains, also known as mucoidy, is associated with chronic lung infections in cystic fibrosis (CF). It is not clear how alginate induction occurs in the wild-type (wt) mucA strains. When grown on Pseudomonas isolation agar (PIA), P. aeruginosa strains PAO1 and PA14 are non-mucoid, producing minimal amounts of alginate. Here we report the addition of ammonium metavanadate (AMV), a phosphatase inhibitor, to PIA (PIA-AMV) induced mucoidy in both these laboratory strains and early lung colonizing non-mucoid isolates with a wt mucA. This phenotypic switch was reversible depending on the availability of vanadate salts and triclosan, a component of PIA. Alginate induction in PAO1 on PIA-AMV was correlated with increased proteolytic degradation of MucA, and required envelope proteases AlgW or MucP, and a two-component phosphate regulator, PhoP. Other changes included the addition of palmitate to lipid A, a phenotype also observed in chronic CF isolates. Proteomic analysis revealed the upregulation of stress chaperones, which was confirmed by increased expression of the chaperone/protease MucD. Altogether, these findings suggest a model of alginate induction and the PIA-AMV medium may be suitable for examining early lung colonization phenotypes in CF before the selection of the mucA mutants.  相似文献   

4.
Pseudomonas aeruginosa causes chronic pulmonary infections, which can persist for decades, in patients with cystic fibrosis (CF). Current evidence suggests that the glyoxylate pathway is an important metabolic pathway for P. aeruginosa growing within the CF lung. In this study, we identified glcB, which encodes for the second key enzyme of the glyoxylate pathway, malate synthase, as a requirement for virulence of P.?aeruginosa on alfalfa seedlings. While expression of glcB in PAO1, an acute isolate of P. aeruginosa, responds to some carbon sources that use the glyoxylate pathway, expression of glcB in FRD1, a CF isolate, is constitutively upregulated. Malate synthase activity is moderately affected by glcB expression and is nearly constitutive in both backgrounds, with slightly higher activity in FRD1 than in PAO1. In addition, RpoN negatively regulates glcB in PAO1 but not in FRD1. In summary, the genes encoding for the glyoxylate-specific enzymes appear to be coordinately regulated, even though they are not located within the same operon on the P.?aeruginosa genome. Furthermore, both genes encoding for the glyoxylate enzymes can become deregulated during adaptation of the bacterium to the CF lung.  相似文献   

5.
Pseudomonas aeruginosa causes chronic infections in the lungs of cystic fibrosis (CF) individuals and remains the leading cause of morbidity and mortality associated with the disease. Biofilm growth and phenotypic diversification are factors thought to contribute to this organism's persistence. Most studies have focused on laboratory isolates such as strain PAO1, and there are relatively few reports characterizing the properties of CF strains, especially under decreased oxygen conditions such as occur in the CF lung. This study compared the phenotypic and functional properties of P. aeruginosa from chronically infected CF adults with those of strain PAO1 and other clinical non-CF isolates under aerobic and anaerobic culture conditions. The CF isolates overall displayed a reduced ability to form biofilms in standard in vitro short-term models. They also grew more slowly in culture, and exhibited decreased adherence to glass and decreased motilities (swimming, swarming and twitching). All of these characteristics were markedly accentuated by anaerobic growth conditions. Moreover, the CF strain phenotypes were not readily reversed by culture manipulations designed to encourage planktonic growth. The CF strains were thus inherently different from strain PAO1 and most of the other non-CF clinical P. aeruginosa isolates tested. In vitro models used to research CF isolate biofilm growth need to take the above properties of these strains into account.  相似文献   

6.
Chronic lung infections by Pseudomonas aeruginosa strains are a major cause of morbidity and mortality in cystic fibrosis (CF) patients. Although there is no clear evidence for a primary defect in the immune system of CF patients, the host is generally unable to clear P. aeruginosa from the airways. PTX3 is a soluble pattern recognition receptor that plays nonredundant roles in the innate immune response to fungi, bacteria, and viruses. In particular, PTX3 deficiency is associated with increased susceptibility to P. aeruginosa lung infection. To address the potential therapeutic effect of PTX3 in P. aeruginosa lung infection, we established persistent and progressive infections in mice with the RP73 clinical strain RP73 isolated from a CF patient and treated them with recombinant human PTX3. The results indicated that PTX3 has a potential therapeutic effect in P. aeruginosa chronic lung infection by reducing lung colonization, proinflammatory cytokine levels (CXCL1, CXCL2, CCL2, and IL-1β), and leukocyte recruitment in the airways. In models of acute infections and in in vitro assays, the prophagocytic effect of PTX3 was maintained in C1q-deficient mice and was lost in C3- and Fc common γ-chain-deficient mice, suggesting that facilitated recognition and phagocytosis of pathogens through the interplay between complement and FcγRs are involved in the therapeutic effect mediated by PTX3. These data suggested that PTX3 is a potential therapeutic tool in chronic P. aeruginosa lung infections, such as those seen in CF patients.  相似文献   

7.
Considerable lung injury results from the inflammatory response to Pseudomonas aeruginosa infections in patients with cystic fibrosis (CF). The P. aeruginosa laboratory strain PAO1, an environmental isolate, and isolates from CF patients were cultured in vitro and outer membrane vesicles from those cultures were quantitated, purified, and characterized. Vesicles were produced throughout the growth phases of the culture and vesicle yield was strain-independent. Strain-dependent differences in the protein composition of vesicles were quantitated and identified. The aminopeptidase PaAP (PA2939) was highly enriched in vesicles from CF isolates. Vesicles from all strains elicited IL-8 secretion by lung epithelial cells. These results suggest that P. aeruginosa colonizing the CF lung may produce vesicles with a particular composition and that the vesicles could contribute to inflammation.  相似文献   

8.
9.
Pseudomonas aeruginosa strains from the chronic lung infections of cystic fibrosis (CF) patients are phenotypically and genotypically diverse. Using strain PAO1 whole genome DNA microarrays, we assessed the genomic variation in P. aeruginosa strains isolated from young children with CF (6 months to 8 years of age) as well as from the environment. Eighty-nine to 97% of the PAO1 open reading frames were detected in 20 strains by microarray analysis, while subsets of 38 gene islands were absent or divergent. No specific pattern of genome mosaicism defined strains associated with CF. Many mosaic regions were distinguished by their low G + C content; their inclusion of phage related or pyocin genes; or by their linkage to a vgr gene or a tRNA gene. Microarray and phenotypic analysis of sequential isolates from individual patients revealed two deletions of greater than 100 kbp formed during evolution in the lung. The gene loss in these sequential isolates raises the possibility that acquisition of pyomelanin production and loss of pyoverdin uptake each may be of adaptive significance. Further characterization of P. aeruginosa diversity within the airways of individual CF patients may reveal common adaptations, perhaps mediated by gene loss, that suggest new opportunities for therapy.  相似文献   

10.
11.
The intensive antibiotic treatment of cystic fibrosis (CF) patients with chronic lung infection with Pseudomonas aeruginosa has improved the survival rate and the clinical condition of Danish patients. Acquirement of resistance to anti-pseudomonal antibiotics is one of the main drawbacks of this therapeutic strategy and our results showed the development of resistance of P. aeruginosa to several antibiotics during 25 years of intensive antibiotic treatment. Our studies have been concentrating on the development of resistance to beta-lactam antibiotics. We have shown an association between the development of resistance to beta-lactam antibiotics and the occurrence of high beta-lactamase producing strains and between the MIC of the beta-lactams and the levels of beta-lactamase expression. Partially derepressed mutants, characterized by high basal levels of beta-lactamase with the possibility of induction to even higher levels during treatment with beta-lactam antibiotics, were the most frequent phenotype found among resistant Danish P. aeruginosa CF isolates. We have also shown that the high alginate producing P. aeruginosa isolates, that characterize the chronic lung infection in CF patients, are more susceptible to antibiotics and produce less beta-lactamase than the non-mucoid paired isolates. We propose that the non-mucoid isolates are exposed to a relatively higher antibiotic pressure than the mucoid isolates and therefore, they become easily antibiotic resistant and in consequence produce high levels of beta-lactamase. The beta-lactamase produced by the non-mucoid isolates might play a protective role in the biofilm, defending the mucoid isolates from the action of beta-lactam antibiotics and helping them to maintain their antibiotic susceptibility. We have also shown that beta-lactamase, which is a periplasmic enzyme, can be secreted extracellulary packed in membrane vesicles liberated by high beta-lactamase-producing P. aeruginosa. The continuos presence in the CF lungs of bacteria producing high basal levels of beta-lactamase (partial derepressed) induces a humoral immune response to beta-lactamase. We have shown that antibodies against the chromosomally encoded beta-lactamase (a beta ab) might be considered a marker of the development of resistance to beta-lactam antibiotics. We investigated the humoral immune response to beta-lactamase by quantifying a beta ab specific IgG and IgG subclass antibodies, by investigating the influence of the allotypes on the IgG subclass response and by measuring the avidity of the IgG a beta ab. We found that CF patients with good lung function had in the early stages of the chronic lung infection higher titers of a beta ab of good avidity than patients with poor lung function. Therefore, we raised the hypothesis that some of the a beta ab might have beta-lactamase neutralizing effect, playing a beta-lactamase inhibitor role and improving the effect of the treatment with beta-lactam antibiotics. Finally, we tested our hypothesis in the rat model of chronic lung infection by assessing the effect of a beta ab raised by vaccination with purified chromosomal beta-lactamase on the outcome of the treatment with ceftazidime of bacteria resistant to beta-lactam antibiotics. Our results showed that significantly lower bacterial load and better lung pathology were found in rats with neutralizing antibodies compared to non-immunized rats or rats without neutralizing antibodies. Our findings might be of potential importance for the improvement of the treatment with beta-lactam antibiotics of resistant P. aeruginosa hyperproducing chromosomal beta-lactamase that represent a threat especially for patients with CF and chronic lung infection.  相似文献   

12.
The autosomal recessive disorder cystic fibrosis (CF) affects approximately 70,000 people worldwide and is characterized by chronic bacterial lung infections with the opportunistic pathogen Pseudomonas aeruginosa. To form a chronic CF lung infection, P. aeruginosa must grow and proliferate within the CF lung, and the highly viscous sputum within the CF lung provides a likely growth substrate. Recent evidence indicates that anaerobic microenvironments may be present in the CF lung sputum layer. Since anaerobic growth significantly enhances P. aeruginosa biofilm formation and antibiotic resistance, it is important to examine P. aeruginosa physiology and metabolism in anaerobic environments. Measurement of nitrate levels revealed that CF sputum contains sufficient nitrate to support significant P. aeruginosa growth anaerobically, and mutational analysis revealed that the membrane-bound nitrate reductase is essential for P. aeruginosa anaerobic growth in an in vitro CF sputum medium. In addition, expression of genes coding for the membrane-bound nitrate reductase complex is responsive to CF sputum nitrate levels. These findings suggest that the membrane-bound nitrate reductase is critical for P. aeruginosa anaerobic growth with nitrate in the CF lung.  相似文献   

13.
The opportunistic pathogen Pseudomonas aeruginosa is among the main colonizers of the lungs of cystic fibrosis (CF) patients. We have isolated and sequenced several P. aeruginosa isolates from the sputum of CF patients and compared them with each other and with the model strain PAO1. Phenotypic analysis of CF isolates showed significant variability in colonization and virulence-related traits suggesting different strategies for adaptation to the CF lung. Genomic analysis indicated these strains shared a large set of core genes with the standard laboratory strain PAO1, and identified the genetic basis for some of the observed phenotypic differences. Proteomics revealed that in a conventional laboratory medium PAO1 expressed 827 proteins that were absent in the CF isolates while the CF isolates shared a distinctive signature set of 703 proteins not detected in PAO1. PAO1 expressed many transporters for the uptake of organic nutrients and relatively few biosynthetic pathways. Conversely, the CF isolates expressed a narrower range of transporters and a broader set of metabolic pathways for the biosynthesis of amino acids, carbohydrates, nucleotides and polyamines. The proteomic data suggests that in a common laboratory medium PAO1 may transport a diverse set of “ready-made” nutrients from the rich medium, whereas the CF isolates may only utilize a limited number of nutrients from the medium relying mainly on their own metabolism for synthesis of essential nutrients. These variations indicate significant differences between the metabolism and physiology of P. aeruginosa CF isolates and PAO1 that cannot be detected at the genome level alone. The widening gap between the increasing genomic data and the lack of phenotypic data means that researchers are increasingly reliant on extrapolating from genomic comparisons using experimentally characterized model organisms such as PAO1. While comparative genomics can provide valuable information, our data suggests that such extrapolations may be fraught with peril.  相似文献   

14.
The sputum (mucus) layer of the cystic fibrosis (CF) lung is a complex substrate that provides Pseudomonas aeruginosa with carbon and energy to support high-density growth during chronic colonization. Unfortunately, the CF lung sputum layer has been difficult to mimic in animal models of CF disease, and mechanistic studies of P. aeruginosa physiology during growth in CF sputum are hampered by its complexity. In this study, we performed chromatographic and enzymatic analyses of CF sputum to develop a defined, synthetic CF sputum medium (SCFM) that mimics the nutritional composition of CF sputum. Importantly, P. aeruginosa displays similar phenotypes during growth in CF sputum and in SCFM, including similar growth rates, gene expression profiles, carbon substrate preferences, and cell-cell signaling profiles. Using SCFM, we provide evidence that aromatic amino acids serve as nutritional cues that influence cell-cell signaling and antimicrobial activity of P. aeruginosa during growth in CF sputum.  相似文献   

15.
Complementary 2D-PAGE and 'shotgun' LC-MS/MS approaches were combined to identify medium and low-abundant proteins in sera of Cystic Fibrosis (CF) patients (mild or severe pulmonary disease) in comparison with healthy CF-carrier and non-CF carrier individuals aiming to gain deeper insights into the pathogenesis of this multifactorial genetic disease. 78 differentially expressed spots were identified from 2D-PAGE proteome profiling yielding 28 identifications and postulating the existence of post-translation modifications (PTM). The 'shotgun' approach highlighted altered levels of proteins actively involved in CF: abnormal tissue/airway remodeling, protease/antiprotease imbalance, innate immune dysfunction, chronic inflammation, nutritional imbalance and Pseudomonas aeruginosa colonization. Members of the apolipoproteins family (VDBP, ApoA-I, and ApoB) presented gradually lower expression from non-CF to CF-carrier individuals and from those to CF patients, results validated by an independent assay. The multifunctional enzyme NDKB was identified only in the CF group and independently validated by WB. Its functions account for ion sensor in epithelial cells, pancreatic secretion, neutrophil-mediated inflammation and energy production, highlighting its physiological significance in the context of CF. Complementary proteomics-based approaches are reliable tools to reveal pathways and circulating proteins actively involved in a heterogeneous disease such as CF.  相似文献   

16.
The proteomes of cultured Pseudomonas aeruginosa isolates from chronically infected cystic fibrosis (CF) lungs were compared by using genetically divergent clones and isogenic morphotypes of one strain. Cellular extracts gave very similar protein patterns in two-dimensional gels, suggesting that the conserved species-specific core genome encodes proteins that are expressed under standard culture conditions in vitro. In contrast, the protein profiles of extracts of culture supernatants were dependent on the growth phase, and there were significant differences between clones. The profiles also varied within clonally related morphotypes from one CF patient, including a hyperpiliated small-colony variant. Mass spectrometry revealed that this variant overexpressed proteins secreted by the type I secretion system (including proteins involved in iron acquisition) and by the type III secretion system. Furthermore, the proteins in the supernatant extracts from the small-colony variant which were recognized by sera from different CF patients varied greatly. We concluded that the secretome expression is a sensitive measure of P. aeruginosa strain variation.  相似文献   

17.
ABSTRACT: BACKGROUND: The accumulation of thick stagnant mucus provides a suitable environment for the growth of Pseudomonas aeruginosa and Staphylococcus aureus within the lung alveoli of cystic fibrosis (CF) patients. These infections cause significant lung damage, leading to respiratory failure and death. In an artificial mucin containing medium ASM+, P. aeruginosa forms structures that resemble typical biofilms but are not attached to any surface. We refer to these structures as biofilm like structures (BLS). Using ASM+ in a static microtiter plate culture system, we examined the roles of mucin, extracellular DNA, environmental oxygen (EO2), and quorum sensing (QS) in the development of biofilm-like structures (BLS) by P. aeruginosa; and the effect of EO2 and P. aeruginosa on S. aureus BLS. RESULTS: Under 20% EO2, P. aeruginosa strain PAO1 produced BLS that resemble typical biofilms but are confined to the ASM+ and not attached to the surface. Levels of mucin and extracellular DNA within the ASM+ were optimized to produce robust well developed BLS. At 10% EO2, PAO1 produced thicker, more developed BLS, while under 0% EO2, BLS production was diminished. In contrast, the S. aureus strain AH133 produced well-developed BLS only under 20% EO2. In PAO1, loss of the QS system genes rhlI and rhlR affected the formation of BLS in ASM+ in terms of both structure and architecture. Whether co-inoculated into ASM+ with AH133, or added to established AH133 BLS, PAO1 eliminated AH133 within 48--56 h. CONCLUSIONS: The thick, viscous ASM+, which contains mucin and extracellular DNA levels similar to those found in the CF lung, supports the formation of biofilm-like structures similar to the aggregates described within CF airways. Alterations in environmental conditions or in the QS genes of P. aeruginosa, as occurs naturally during the progression of CF lung infection, affect the architecture and quantitative structural features of these BLS. Thus, ASM+ provides an in vitro medium in which the effect of changing levels of substances produced by the host and the bacteria can be analyzed to determine the effect on such structures and on the susceptibility of the bacteria within the BLS to various treatments.  相似文献   

18.
Under iron-limiting conditions, Pseudomonas aeruginosa PAO1 secretes a fluorescent siderophore called pyoverdine (Pvd). After chelating iron, this ferric siderophore is transported back into the cells via the outer membrane receptor FpvA. The Pvd-dependent iron uptake pathway requires several essential genes involved in both the synthesis of Pvd and the uptake of ferric Pvd inside the cell. A previous study describing the global phenotype of a tat-deficient P. aeruginosa strain showed that the defect in Pvd-mediated iron uptake was due to the Tat-dependent export of proteins involved in Pvd biogenesis and ferric Pvd uptake (U. Ochsner, A. Snyder, A. I. Vasil, and M. L. Vasil, Proc. Natl. Acad. Sci. USA 99:8312-8317, 2002). Using biochemical and biophysical tools, we showed that despite its predicted Tat signal sequence, FpvA is correctly located in the outer membrane of a tat mutant and is fully functional for all steps of the iron uptake process (ferric Pvd uptake and recycling of Pvd on FpvA after iron release). However, in the tat mutant, no Pvd was produced. This suggested that a key element in the Pvd biogenesis pathway must be exported to the periplasm by the Tat pathway. We located PvdN, a still unknown but essential component in Pvd biogenesis, at the periplasmic side of the cytoplasmic membrane and showed that its export is Tat dependent. Our results further support the idea that a critical step of the Pvd biogenesis pathway involving PvdN occurs at the periplasmic side of the cytoplasmic membrane.  相似文献   

19.
20.
Strains of Pseudomonas aeruginosa can be phenotypically classified by their mode of pathogenicity as either invasive, where the bacterium is internalised by host cells, or cytotoxic, where the host cell is killed without internalisation through the expression of cytotoxicity factors. These phenotypes are thought to depend primarily on the interactions of pseudomonal membrane and secreted proteins with host cells. We report here comparisons of outer membrane and extracellular protein-enriched fractions from invasive (PAO1) and cytotoxic (6206) strains of P. aeruginosa separated by two-dimensional (2-D) gel electrophoresis. Gel image comparisons revealed the two strains express essentially identical membrane protein profiles under the conditions investigated. Membrane protein strain differences were typically the result of minor amino acid sequence variations resulting in small mass and isoelectric point shifts visible on 2-D gels. Analysis of extracellular proteins from stationary phase growth, however, revealed significantly different protein profiles. Extracellular fractions from the invasive PAO1 strain were dominated by extracellular proteases including elastase (LasB), LasA protease and chitin-binding protein, as well as several previously designated 'hypothetical' proteins. LasB appeared to be highly processed with 28 discrete mass and isoelectric point forms detected in this study. The significant number of active extracellular proteases (including LasB itself) may account for this processing. Conversely, extracellular fractions from strain 6206 consisted mainly of cellular and membrane exposed proteins including GroEL, DnaK and flagellar subunits. These are thought to result from cellular turnover during growth and the reliance on the secretory mechanisms of this strain to produce high levels of cytotoxicity factors, such as ExoU, which may be produced only upon specific interactions with host cells. These studies will aid in elucidating the differences between invasive and cytotoxic P. aeruginosa at the proteome level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号