首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
5.
6.
The p300-mediated acetylation of enzymes involved in DNA repair and replication has been previously shown to stimulate or inhibit their activities in reconstituted systems. To explore the role of acetylation on DNA repair in cells we constructed plasmid substrates carrying inactivating damages in the EGFP reporter gene, which should be repaired in cells through DNA mismatch repair (MMR) or base excision repair (BER) mechanisms. We analyzed efficiency of repair within these plasmid substrates in cells exposed to deacetylase and acetyltransferase inhibitors, and also in cells deficient in p300 acetyltransferase. Our results indicate that protein acetylation improves DNA mismatch repair in MMR-proficient HeLa cells and also in MMR-deficient HCT116 cells. Moreover, results suggest that stimulated repair of mismatches in MMR-deficient HCT116 cells is done though a strand-displacement synthesis mechanism described previously for Okazaki fragments maturation and also for the EXOI-independent pathway of MMR. Loss of p300 reduced repair of mismatches in MMR-deficient cells, but did not have evident effects on BER mechanisms, including the long patch BER pathway. Hypoacetylation of the cells in the presence of acetyltransferase inhibitor, garcinol generally reduced efficiency of BER of 8-oxoG damage, indicating that some steps in the pathway are stimulated by acetylation.  相似文献   

7.
Leishmania infantum is a parasitic protozoan which infects humans. This paper reports the expression in Escherichia coli and purification of the L. infantum gene product (AF182167), as well as its characterization as a DNA polymerase beta (Polbeta)-like, template-dependent DNA repair enzyme, with a metal preference for Mn2+ over Mg2+. As is the case with mammalian Polbeta and DNA polymerase lambda (Pollambda), L. infantum DNA polymerase beta (Li Polbeta) prefers gapped-DNA substrates having a 5'-phosphate end, in agreement with its role in DNA repair reactions. Purified Li Polbeta also displayed a 5'-deoxyribose-5-phosphate (dRP) lyase activity, consistent with a beta-elimination mechanism. The concerted action of dRP lyase and DNA polymerization activities of Li Polbeta on a uracil-containing DNA suggests its participation in "single-nucleotide" base excision repair (BER). Analysis of Li Polbeta DNA polymerization activity at different stages of the L. infantum infective cycle supports a role for Li Polbeta in nuclear DNA repair after the oxidative damage occurring inside the macrophage.  相似文献   

8.
9.
Mutations in mitochondrial DNA (mtDNA) are involved in a variety of pathologies, including cancer and neurodegenerative diseases, as well as in aging. mtDNA mutations result predominantly from damage by reactive oxygen species (ROS) that is not repaired prior to replication. Repair of ROS-damaged bases occurs mainly via base excision repair (BER) in mitochondria and nuclei. In nuclear BER, the two penultimate steps are carried out by DNA polymerase-beta (Polbeta), which exhibits both 5'-deoxyribose-5-phosphate (5'-dRP) lyase and DNA polymerase activities. In mitochondria, DNA polymerase-gamma (Polgamma) is believed to be the sole polymerase and is therefore assumed to function in mitochondrial BER. However, a recent report suggested the presence of Polbeta or a "Polbeta-like" enzyme in bovine mitochondria. Consequently, in the present work, we tested the hypothesis that Polbeta is present and functions in mammalian mitochondria. Initially we identified two DNA polymerase activities, one corresponding to Polgamma and the other to Polbeta, in mitochondrial preparations obtained by differential centrifugation and discontinuous sucrose density gradient centrifugation. However, upon further fractionation in linear Percoll gradients, we were able to separate Polbeta from mitochondria and to show that intact mitochondria, identified by electron microscopy, lacked Polbeta activity. In a functional test for the presence of Polbeta function in mitochondria, we used a new assay for detection of random (i.e., non-clonal) mutations in single mtDNA molecules. We did not detect enhanced mutation frequency in mtDNA from Polbeta null cells. In contrast, mtDNA from cells harboring mutations in the Polgamma exonuclease domain that abolish proofreading displayed a >or=17-fold increase in mutation frequency. We conclude that Polbeta is not an essential component of the machinery that maintains mtDNA integrity.  相似文献   

10.
The myogenic protein MyoD requires two nuclear histone acetyltransferases, CREB-binding protein (CBP)/p300 and PCAF, to transactivate muscle promoters. MyoD is acetylated by PCAF in vitro, which seems to increase its affinity for DNA. We here show that MyoD is constitutively acetylated in muscle cells. In vitro, MyoD is acetylated both by CBP/p300 and by PCAF on two lysines located at the boundary of the DNA binding domain. MyoD acetylation by CBP/p300 (as well as by PCAF) increases its activity on a muscle-specific promoter, as assessed by microinjection experiments. MyoD mutants that cannot be acetylated in vitro are not activated in the functional assay. Our results provide direct evidence that MyoD acetylation functionally activates the protein and show that both PCAF and CBP/p300 are candidate enzymes for MyoD acetylation in vivo.  相似文献   

11.
12.
13.
14.
15.
16.
17.
H Chen  R J Lin  W Xie  D Wilpitz  R M Evans 《Cell》1999,98(5):675-686
Nuclear receptors have been postulated to regulate gene expression via their association with histone acetylase (HAT) or deacetylase complexes. We report that hormone induces dramatic hyperacetylation at endogenous target genes through the HAT activity of p300/CBP. Unexpectedly, this hyperacetylation is transient and coincides with attenuation of hormone-induced gene activation. In exploring the underlying mechanism, we found that the acetylase ACTR can be acetylated by p300/CBP. The acetylation neutralizes the positive charges of two lysine residues adjacent to the core LXXLL motif and disrupts the association of HAT coactivator complexes with promoter-bound estrogen receptors. These results provide strong in vivo evidence that histone acetylation plays a key role in hormone-induced gene activation and define cofactor acetylation as a novel regulatory mechanism in hormonal signaling.  相似文献   

18.
19.
Oxidative DNA base damage is mainly corrected by the base excision repair (BER) pathway, which can be divided into two subpathways depending on the length of the resynthetized patch, either one nucleotide for short patch BER or several nucleotides for long patch BER. The role of proteins in the course of BER processes has been investigated in vitro using purified enzymes and cell-free extracts. In this study, we have investigated the repair of 8-oxo-7,8-dihydroguanine (8-oxoG) in vivo using wild-type, polymerase beta(-/-) (Polbeta(-/-)), poly(ADP-ribose) polymerase-1(-/-) (PARP-1(-/-)), and Polbeta(-/-)PARP-1(-/-) 3T3 cell lines. We used non replicating plasmids containing a 8-oxoG:C base pair to study the repair of the lesion located in a transcribed sequence (TS) or in a non-transcribed sequence (NTS). The results show that 8-oxoG repair in TS is not significantly impaired in cells deficient in Polbeta or PARP-1 or both. Whereas 8-oxoG repair in NTS is normal in Polbeta-null cells, it is delayed in PARP-1-null cells and greatly impaired in cells deficient in both Polbeta and PARP-1. The removal of 8-oxoG and presumably the cleavage at the resulting apurinic/apyrimidinic site are not affected in the PARP-1(-/-)Polbeta(-/-) cell lines. However, 8-oxoG repair is incomplete, yielding plasmid molecules with a nick at the site of the lesion. Therefore, PARP-1(-/-)Polbeta(-/-) cell lines cannot perform 5'-dRP removal and/or DNA repair synthesis. Furthermore, the poly(ADP-ribosyl)ation activity of PARP-1 is essential for 8-oxoG repair in a Polbeta(-/-) context, because expression of the catalytically inactive PARP-1 (E988K) mutant does not restore 8-oxoG repair, whereas an wild type PARP-1 does.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号