首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some metabolic aspects of tolerance to bacterial endotoxin   总被引:10,自引:3,他引:7  
Berry, L. Joe (Bryn Mawr College, Bryn Mawr, Pa.), and Dorothy S. Smythe. Some metabolic aspects of tolerance to bacterial endotoxin. J. Bacteriol. 90:970-977. 1965.-The tolerance to bacterial endotoxins which is produced in mice given a series of daily injections of heat-killed Salmonella typhimurium failed to occur when actinomycin D was administered with the heat-killed cells. Neither ethionine nor 2-thiouracil, when given with endotoxin, altered the development of tolerance. An injection of endotoxin, actinomycin D, or ethionine lowered the activity of the liver enzyme tryptophan pyrrolase more significantly at either 4 or 17 hr postinjection in normal mice than in tolerant mice. Similarly, an injection of either saccharated iron oxide or Thorotrast lowered liver tryptophan pyrrolase activity more extensively in normal than in tolerant animals. Activation of the reticuloendothelial system (RES) of tolerant mice, as determined by an accelerated rate of carbon clearance from the blood, was observed, but this was prevented by the appropriate dose of actinomycin D. Similar results were obtained when saccharated iron oxide, rather than endotoxin, was used to activate the RES, but these animals were not resistant to endotoxin and their tryptophan pyrrolase was normally diminished after an injection of endotoxin. Thus, RES activation may occur without tolerance developing. A more nearly normal level of enzyme activity appears to be characteristic of the tolerant state.  相似文献   

2.
This paper presents data that inspired a new explanation for the mechanism of early phase endotoxin tolerance. Rabbits injected intravenously with LPS from Salmonella abortus developed a two-phase fever (6 h) and monophasic hyperlipidemia of very low density lipoproteins (two consecutive days). If during these days rabbits were injected with the same dose of LPS at 24-h intervals, the second phase of fever disappeared, i.e. early phase pyrogenic tolerance was obtained. This was correlated with a decrease of lipoprotein hyperlipidemia (measured 1.5 h after LPS injection) and an accumulation of lipids rich in double bonds in monocytes (measured 3.5 h after LPS injection). Results showed that the degree of unsaturation of acyl chains (AC) in monocytes (AC/DB, DB=double bonds) is negatively correlated (r=-0.72) with fever response (fever index). The authors maintain that a gradual increase in monocyte membrane fluidity is an adaptation to repeated exposure of monocytes to lipid A and is responsible for the progressive desensitization of monocytes to endotoxin. It is suggested that disorders of this mechanism lead to an accumulation of abnormal quantities of saturated lipids and cholesterol within macrophages, which, as foam cells, are the starting point for atherosclerosis pathology.  相似文献   

3.
Repeated exposure to low doses of endotoxin results in progressive hyporesponsiveness to subsequent endotoxin challenge, a phenomenon known as endotoxin tolerance. In spite of its clinical significance in sepsis and characterization of the TLR4 signaling pathway as the principal endotoxin detection mechanism, the molecular determinants that induce tolerance remain obscure. We investigated the role of the TRIF/IFN-beta pathway in TLR4-induced endotoxin tolerance. Lipid A-induced homotolerance was characterized by the down-regulation of MyD88-dependent proinflammatory cytokines TNF-alpha and CCL3, but up-regulation of TRIF-dependent cytokine IFN-beta. This correlated with a molecular phenotype of defective NF-kappaB activation but a functional TRIF-dependent STAT1 signaling. Tolerance-induced suppression of TNF-alpha and CCL3 expression was significantly relieved by TRIF and IFN regulatory factor 3 deficiency, suggesting the involvement of the TRIF pathway in tolerance. Alternatively, selective activation of TRIF by poly(I:C)-induced tolerance to lipid A. Furthermore, pretreatment with rIFN-beta also induced tolerance, whereas addition of IFN-beta-neutralizing Ab during the tolerization partially alleviated tolerance to lipid A but not TLR2-induced endotoxin homo- or heterotolerance. Furthermore, IFNAR1-/- murine embryonal fibroblast and bone-marrow derived macrophages failed to induce tolerance. Together, these observations constitute evidence for a role of the TRIF/IFN-beta pathway in the regulation of lipid A/TLR4-mediated endotoxin homotolerance.  相似文献   

4.
In a model of human chorioamnionitis, fetal sheep exposed to a single injection, but not repeated injections, of intra-amniotic endotoxin develop lung injury responses. We hypothesized that repeated exposure to intra-amniotic endotoxin induces endotoxin tolerance. Fetal sheep were given intra-amniotic injections of saline (control) or Escherichia coli LPS O55:B5 (10 mg) either 2 days (2-day group, single exposure), 7 days (7-day group, single exposure), or 2 plus 7 days (2- and 7-day repeat exposure) before preterm delivery at 124 days gestation (term=150 days). Endotoxin responses were assessed in vivo in the lung and liver, and in vitro in monocytes from the blood and the lung. Compared with the single 2-day LPS exposure group, the (2 plus 7 days) repeat LPS-exposed lambs had: 1) decreased lung neutrophil and monocyte inducible NO synthase (NOSII) expression, and 2) decreased lung cytokine and liver serum amyloid A3 mRNA expression. In the lung, serum amyloid A3 mRNA expression decreased in the airway epithelial cells but not in the lung inflammatory cells. Unlike the single 7-day LPS exposure group, peripheral blood and lung monocytes from the repeat-LPS group did not increase IL-6 secretion or hydrogen peroxide production in response to in vitro LPS. Compared with controls, TLR4 expression did not change but IL-1R-associated kinase M expression increased in the monocytes from repeat LPS-exposed lambs. These results are consistent with the novel finding of endotoxin tolerance in preterm fetal lungs exposed to intra-amniotic LPS. The findings have implications for preterm infants exposed to chorioamnionitis for both responses to lung injury and postnatal nosocomial infections.  相似文献   

5.
Altered macrophage arachidonic acid metabolism may play a role in endotoxic shock and the phenomenon of endotoxin tolerance induced by repeated injections of endotoxin. Studies were initiated to characterize both lipoxygenase and cyclooxygenase metabolite formation by endotoxin tolerant and non-tolerant macrophages in response to 4 different stimuli, i.e. endotoxin, glucan, zymosan, and the calcium ionophore A23187. In contrast to previous reports of decreased prostaglandin synthesis by tolerant macrophages, A23187-stimulated immunoreactive (i) leukotriene (LT)C4/D4 and prostaglandin (PG)E2 production by tolerant cells was greater than that by non-tolerant controls (p less than 0.001). However, A23187-stimulated i-6-keto-PGF1 alpha levels were lower in tolerant macrophages compared to controls. Stimulation of prostaglandin and thromboxane (Tx)B2 synthesis by endotoxin or glucan was significantly less in tolerant macrophages compared to controls (p less than 0.05). iLTC4/D4 production was not significantly stimulated by endotoxin or glucan, but was stimulated by zymosan in the non-tolerant cells. Synthesis of iLTB4 by control macrophages was stimulated by endotoxin (p less than 0.01). These results demonstrate that arachidonic acid metabolism via the lipoxygenase and cyclooxygenase pathways in macrophages is differentially altered by endotoxin tolerance.  相似文献   

6.
Altered macrophage arachidonic acid metabolism may play a role in endotoxic shock and the phenomenon of endotoxin tolerance induced by repeated injections of endotoxin. Studies were initiated to characterize both lipoxygenase metabolite formation by endotoxin tolerant and non-tolerant macrophages in response to 4 different stimuli, i.e. endotoxin, glucan, zymosan, and the calcium ionophore A23187. In contrast to previous reports of decreased prostaglandin synthesis by tolerant macrophages, A23187-stimulated immunoreactive (i) leukotriene (LT)C4/D4 and prostaglandin (PG)E2 production by tolerant cells was greater than that by non-tolerant controls (p<0.001). However, A23187-stimulated i-6-keto-PGF levels were lower in tolerant macrophages compared to controls. Stimulation of prostaglandin and thromboxane (Tx)B2 synthesis by endotoxin or glucam was significantly less in tolerant macrophages compaared to controls (p<0.05). iLTC4/D4 production was not significantly stimulated by endotoxin or glucan, but was stimulated by zymosan in the non-tolerant cells. Synthesis ofb iLTB4 by control macrophages was stimulated by endotoxin (p<0.01). These results demonstrate that arachidonic acid metabolism via the lipoxygenase and cyclooxygenase pathways in macrophages is differentially altered by endotoxin tolerance.  相似文献   

7.
A synthetic lipid A (preparation 516), containing seven acyl groups and representing one component of natural free lipid A of Salmonella minnesota R595, has been investigated for biological activity in a number of endotoxin test systems. It was found that the synthetic preparation was, in typical in vivo endotoxin tests (lethality, pyrogenicity, Shwartzman reactivity) as well as in its antigenicity and macrophage activation capacity, significantly less active than natural Salmonella lipid A. However, in other in vitro assay systems (B-cell mitogenicity, complement activation, Limulus amoebocyte lysate gelation) it expressed similar activity as Salmonella lipid A.  相似文献   

8.
Previous studies have suggested that guanine nucleotide regulatory (G) proteins modulate endotoxin-stimulated peritoneal macrophage arachidonic acid (AA) metabolism. Endotoxin-stimulated metabolism of AA by peritoneal macrophages is decreased in endotoxin tolerance (Rogers et al. Prostaglandins 31: 639-650, 1986). These observations led to a study of G protein function and AA metabolism by peritoneal macrophages in endotoxin tolerance. Endotoxin tolerance was induced by the administration of sublethal doses of endotoxin. AA metabolism was assessed by measurement of thromboxane B2 (TxB2), a cyclooxygenase metabolite. NaF (5 mM), an activator of G proteins, significantly stimulated TxB2 synthesis in control macrophages from 7.7 +/- 0.2 to 19.1 +/- 0.6 (SE) ng/ml (P less than 0.05) at 2 h and was partially inhibited by pertussis toxin, suggesting a G protein-dependent mechanism. Salmonella enteritidis endotoxin (50 micrograms/ml) stimulated a similar increase in TxB2 levels (23 +/- 0.4 ng/ml, P less than 0.05). In contrast to control macrophages, macrophages from endotoxin-tolerant rats stimulated with either NaF or S. enteritidis endotoxin had TxB2 levels that were only 30 and 2% of the respective stimulated control cells. Basal guanosine-triphosphatase (GTPase) activity (33 +/- 6 pmol.mg-1.min-1) in endotoxin-tolerant macrophage membranes was significantly lower (P less than 0.05) than control basal activity (158 +/- 5 pmol.mg-1.min-1). This suppression of macrophage GTPase activity was apparent 48 h after the first in vivo sublethal endotoxin injection (100 micrograms/kg ip). The reduced GTPase activity paralleled in vitro cellular hyporesponsiveness to endotoxin-stimulated TxB2 production.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Role of nitric oxide in tolerance to lipopolysaccharide in mice.   总被引:2,自引:0,他引:2  
The injection of repeated doses of lipopolysaccharide (LPS) results in attenuation of the febrile response, which is called endotoxin tolerance. We tested the hypothesis that nitric oxide (NO) arising from inducible NO synthase (iNOS) plays a role in endotoxin tolerance, using not only pharmacological trials but also genetically engineered mice. Body core temperature was measured by biotelemetry in mice treated with NG-monomethyl-L-arginine (L-NMMA, 40 mg/kg; a nonselective NO synthase inhibitor) or aminoguanidine (AG, 10 mg/kg; a selective iNOS inhibitor) and in mice deficient in the iNOS gene (iNOS KO) mice. Tolerance to LPS was induced by means of three consecutive LPS (100 microg/kg) intraperitoneal injections at 24-h intervals. In wild-type mice, we observed a significant reduction of the febrile response to repeated administration of LPS. Injection of L-NMMA and AG markedly enhanced the febrile response to LPS in tolerant animals. Conversely, iNOS-KO mice repeatedly injected with LPS did not become tolerant to the pyrogenic effect of LPS. These data are consistent with the notion that NO modulates LPS tolerance in mice and that iNOS isoform is involved in NO synthesis during LPS tolerance.  相似文献   

10.
The effects of cholera toxin or pertussis toxin and nonhydrolyzable GTP analogs on Salmonella enteritidis endotoxin stimulation of iTxB2 and i6-keto-PGF1 alpha synthesis in control and endotoxin tolerant rat peritoneal macrophages were determined. Pretreatment with pertussis toxin alone had no effect on basal macrophage iTxB2 or i6-keto-PGF1 alpha production, but pertussis toxin (0.1, 1.0 and 10 ng/ml) significantly inhibited endotoxin-stimulated iTxB2 and i6-keto-PGF1 alpha synthesis. Pretreatment with cholera toxin, which did not affect basal iTxB2 or i6-keto-PGF1 alpha synthesis, significantly enhanced endotoxin-induced synthesis of iTxB2 and i6-keto-PGF1 alpha. The effects of pertussis and cholera toxin with or without endotoxin were significantly (P less than 0.05) less in macrophages from endotoxin tolerant rats compared to control macrophages. GTP[gamma-S] (100 microM) significantly increased iTxB2 synthesis and significantly augmented endotoxin-stimulated iTxB2 synthesis in control macrophages (P less than 0.05). However, in macrophages from endotoxin tolerant rats the effect of GTP[gamma-S] on iTxB2 synthesis was significantly less (P less than 0.05) compared to control macrophages. Collectively, these data suggest that: (1) guanine nucleotide binding regulatory proteins mediate endotoxin-stimulated arachidonic acid metabolism in rat peritoneal macrophages; and (2) endotoxin tolerance induces alterations in guanine nucleotide binding protein activity.  相似文献   

11.
The development of pyrogenic tolerance was studied in rabbits treated with varying doses of E. coli lipopolysaccharide (LPS). The following results were obtained. 1) Development of pyrogenic tolerance seemed to proceed in two steps: that is, the first in which tolerance appeared rapidly and the second in which tolerance proceeded more gradually or steadily in response to repeated injections of a constant dose. 2) Tolerance induced by the latter method was not absolute; the rabbits were still sensitive to increased doses of LPS. 3) Rabbits immunized with E. coli vaccine lost their pyrogenic sensitivity of parent LPS to some extent. 4) Following intracisternal injection of LPS into tolerant rabbit, pyrogenic response was not decreased but rather enhanced in comparison with control. 5) The contents of nor-epinephrine and serotonin in the brain did not differ between normal and tolerant rabbits. 6) The mechanisms of endotoxin tolerance remain to be further studied.  相似文献   

12.
Endotoxin translocation in two models of experimental acute pancreatitis   总被引:11,自引:0,他引:11  
To test the hypothesis that endotoxin is absorbed from the gut into the circulation in rats with experimental acute pancreatitis we studied two different animal models. In the first model necrotizing pancreatitis was induced by the ligation of the disatl bilio-pancreatic duct while in the second, experimental oedematous acute pancreatitis was induced by subcutaneous injections of caerulein. In both experiments, in the colon of rats with acute pancreatitis endotoxin from Salmonella abortus equi was injected. Endotoxin was detected by immunohistochemistry in peripheral organs with specific antibodies. The endotoxin was found only in rats with both acute pancreatitis and endotoxin injected into the colon and not in the control groups. The distribution of endotoxin in liver at 3 and 5 days was predominantly at hepatocytes level around terminal hepatic venules, while in lung a scattered diffuse pattern at the level of alveolar macrophages was identified. A positive staining was observed after 12 hours in the liver, lung, colon and mesenteric lymph nodes of rats with both caerulein pancreatitis and endotoxin injected into the colon. We conclude that the experimental acute pancreatitis leads to early endotoxin translocation from the gut lumen in the intestinal wall and consequent access of gut-derived endotoxin to the mesenteric lymph nodes, liver and lung.  相似文献   

13.
We have recently found that a single endotoxin administration to rats reduced the hypothalamic-pituitary-adrenal response to another endotoxin administration 4 weeks later, which may be an example of the well-known phenomenon of endotoxin tolerance. However, the time elapsed between the two doses of endotoxin was long enough to consider the above results as an example of late tolerance, whose mechanisms are poorly characterized. To know if the brain plays a role in this phenomenon and to characterize the putative areas involved, we compared the c-fos mRNA response after a final dose of endotoxin in animals given vehicle or endotoxin 4 weeks before. Endotoxin caused a widespread induction of c-fos mRNA in the brain, similar to that previously reported by other laboratories. Whereas most of the brain areas were not sensitive to the previous experience with endotoxin, a few showed a reduced response in endotoxin-pretreated rats: the parvocellular and magnocellular regions of the paraventricular hypothalamic nucleus, the central amygdala, the lateral division of the bed nucleus and the locus coeruleus. We hypothesize that late tolerance to endotoxin may involve plastic changes in the brain, likely to be located in the central amygdala. The reduced activation of the central amygdala in rats previously treated with endotoxin may, in turn, reduce the activation of other brain areas, including the hypothalamic paraventicular nucleus.  相似文献   

14.
Endotoxin tolerance is defined as a reduced capacity of a cell to respond endotoxin (lipopolysaccharide, LPS) challenge after an initial encounter with endotoxin in advance. The body becomes tolerant to subsequent challenge with a lethal dose of endotoxin and cytokines release and cell/tissue damage induced by inflammatory reaction are significantly reduced in the state of endotoxin tolerance. The main characteristics of endotoxin tolerance are downregulation of inflammatory mediators such as tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), and C-X-C motif chemokine 10 (CXCL10) and upregulation of anti-inflammatory cytokines such as IL-10 and transforming growth factor β (TGF-β). Therefore, endotoxin tolerance is often regarded as the regulatory mechanism of the host against excessive inflammation. Endotoxin tolerance is a complex pathophysiological process and involved in multiple cellular signal pathways, receptor alterations, and biological molecules. However, the exact mechanism remains elusive up to date. To better understand the underlying cellular and molecular mechanisms of endotoxin tolerance, it is crucial to investigate the comprehensive cellular signal pathways, signaling proteins, cell surface molecules, proinflammatory and anti-inflammatory cytokines, and other mediators. Endotoxin tolerance plays an important role in reducing the mortality of sepsis, endotoxin shock, and other endotoxin-related diseases. Recent reports indicated that endotoxin tolerance is also related to other diseases such as cystic fibrosis, acute coronary syndrome, liver ischemia-reperfusion injury, and cancer. The aim of this review is to discuss the recent advances in endotoxin tolerance mainly based on the cellular and molecular mechanisms by outline the current state of the knowledge of the involvement of the toll-like receptor 4 (TLR4) signaling pathways, negative regulate factor, microRNAs, apoptosis, chromatin modification, and gene reprogramming of immune cells in endotoxin tolerance. We hope to provide a new idea and scientific basis for the rational treatment of endotoxin-related diseases such as endotoxemia, sepsis, and endotoxin shock clinically.  相似文献   

15.
Well-characterized Salmonella mutants formerly used in biosynthetic studies of lipopolysaccharides were used to study the toxic portion of the complex endotoxin. Endotoxins prepared from wild types and their mutants were tested for their biological activities, including pyrogenicity, lethality, and immunogenicity. There was little difference either in the endotoxin yields or in the toxicities between endotoxins from the wild-type and O-antigen deficient mutants. Endotoxin containing mostly lipid A and keto-deoxyoctonate (KDO) prepared from the mutant deficient in both O- and R-antigens and the backbone sugar, heptose, was biologically active. Possibly because of the difference in solubility in water, the yield of endotoxin from the heptoseless mutant was about 10% of the wild type. There was complete reciprocal cross-immunity between all endotoxins tested. These observations suggest that the common toxic moiety is not present in the O- and R-polysaccharides or the backbone sugar heptose, but rather is associated with the lipid portion of the molecule which includes mostly lipid A and KDO.  相似文献   

16.
Nine unmodified endotoxin preparations constituted of Re-, Rd-, and Rc-type lipopolysaccharides (2 to 5 glycoses), representing four species of enterobacteria were analyzed by 252Cf plasma desorption mass spectrometry. The constituent lipopolysaccharides were characterized by the ion pair: (M-H)- and its corresponding lipid fragment ion. The lipid fragment ion is produced by cleavage of the glycosidic bond of the 3-deoxy-D-manno-oct-2-ulosonic acid unit that substitutes O-6' of the glucosamin beta 1'-6glucosamine ("lipid A backbone") disaccharide of the lipid A moiety. These lipid fragment ions were identical to the (M-H)- ions seen in the spectra of homologous isolated lipid A preparations that were obtained by hydrolysis (pH 4.5, 100 degrees C) promoted by sodium dodecyl sulfate. Since the molecular components present in the endotoxin preparations analyzed are known, the ion pair (M-H)(-)-lipid fragment ion defines the molecular compositions of each individual lipopolysaccharide. Heterogeneity of the R-type endotoxin preparations analyzed was due almost exclusively to differing lipid A moieties. In three Salmonella minnesota 595 Re endotoxin preparations 10 different lipopolysaccharides were identified, only two of which were common to all three preparations. Of the nine lipopolysaccharides identified in two S. minnesota R7 endotoxin preparations, only two were present in both.  相似文献   

17.
内毒素耐受机制的研究进展   总被引:5,自引:0,他引:5  
Luo FL  Wan JY  Zhou QX 《生理科学进展》2006,37(4):319-324
内毒素耐受(endotoxin tolerance)早在50多年前就已经引起人们的关注,但其具体的分子机制至今尚不清楚。Toll样受体4(Toll-1ike receptor-4,TLR4)作为脂多糖(LPS)的主要受体,参与LPS信号的跨膜转导,与LPS耐受密切相关。在内毒素耐受过程中,TLR4转导通路中的信号蛋白及下游转录因子在数量、结构和功能上发生改变,可引起炎性因子释放减少、抗炎因子产生增加,并导致特定信号通路(如P13K通路)和负性调节因子(如SHIP1、SOCS、FLN29等)的激活。除此之外,TLR2通路、Gi蛋白、蛋白激酶C(protein kinase C,PKC)以及一些信号分子的剪接异构体等也参与了内毒素耐受现象的发生。总之,内毒素耐受是一个由多种原因引起的、多种生物物质参与的复杂病理生理过程,是机体抵抗G-细菌感染的重要保护机制。因此,探索内毒素耐受的机制,寻求机体内源性的抗炎机制将为败血症等一些致死性感染性疾病的治疗提供新的思路和理论依据。  相似文献   

18.
The chemical structure of the biologically active lipid A portion of Gram-negative endotoxin [lipopolysaccharide (LPS)] has recently been elucidated. This was greatly facilitated by the isolation of an Escherichia coli mutant that accumulates large quantities of lipid X, a novel monosaccharide precursor of lipid A (C. R. H. Raetz, Rev. Infect. Dis. 6: 463-471, 1984). We now report on the activity of lipid X in the lung-lymph model in sheep. We have measured the response to cumulative bolus injections of lipid X (2,3-diacylglucosamine 1-phosphate) in six chronically instrumented unanesthetized sheep. Lipid X at a total dose of 40 micrograms/kg produced a biphasic pattern of changes. The early phase was characterized by a rapid transient pulmonary arterial constrictive response that was dose dependent, accompanied by a delayed transient increase in lung-lymph flow (P less than 0.05), a significant (P less than 0.01) decrease in arterial blood O2 tension and an increase (P less than 0.05) in lung-lymph protein clearance. Protein permeability changes in the first phase are not usually seen following endotoxin injection. However, like endotoxin, lipid X also produced a late phase (3-6 h later) of increased lung vascular permeability to fluid and protein as reflected by significant (P less than 0.05) increases in both lung-lymph flow and lung-lymph protein clearance in the presence of stable pulmonary vascular pressures at or below base-line levels. We conclude that some of the pulmonary pressor activity of the endotoxin molecule can be attributed to the lipid X substructure. Furthermore, changes in vascular permeability may also be initiated by this substance.  相似文献   

19.
The innate immune system, acting as the first line of host defense, senses and adapts to foreign challenges through complex intracellular and intercellular signaling networks. Endotoxin tolerance and priming elicited by macrophages are classic examples of the complex adaptation of innate immune cells. Upon repetitive exposures to different doses of bacterial endotoxin (lipopolysaccharide) or other stimulants, macrophages show either suppressed or augmented inflammatory responses compared to a single exposure to the stimulant. Endotoxin tolerance and priming are critically involved in both immune homeostasis and the pathogenesis of diverse inflammatory diseases. However, the underlying molecular mechanisms are not well understood. By means of a computational search through the parameter space of a coarse-grained three-node network with a two-stage Metropolis sampling approach, we enumerated all the network topologies that can generate priming or tolerance. We discovered three major mechanisms for priming (pathway synergy, suppressor deactivation, activator induction) and one for tolerance (inhibitor persistence). These results not only explain existing experimental observations, but also reveal intriguing test scenarios for future experimental studies to clarify mechanisms of endotoxin priming and tolerance.  相似文献   

20.
An analysis of which component of lipopolysaccharides (LPS), the lipid or the polysaccharide (PS), is active in stimulating the murine granulopoietic system has been performed. LPS with different structures, isolated from different mutant strains of Salmonella and chemical degradation products of lipopolysaccharides have been used. Lipid A obtained by acid hydrolysys of the LPS and complexed to bovine serum albumin (BSA) (lipid A-BSA) was shown to be active in generating serum colony stimulating factor (CSF) and in increasing the splenic colony forming cells (CFC) levels, although it was less active than the parent LPS. The polysaccharide (PS) showed no significant activity at the concentrations used. LPS (glycolipids) from R mutants of Salmonella minnesota were active to the same extent as the LPS. The fact that even the most defective LPS from the R mutant R595 which contains lipid A and KDO only is a potent endotoxin, points unequivocally, to lipid A, as the active principle in stimulating the granulopoietic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号