首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The backbone dynamics of ferricytochrome b(562), a four-helix bundle protein from Escherichia coli, have been studied by NMR spectroscopy. The consequences of the introduction of a c-type thioether linkage between the heme and protein and the reduction to the ferrous cytochrome have also been analyzed. (15)N relaxation rates R(1) and R(2) and (1)H-(15)N NOEs were measured at proton Larmor frequencies of 500 and 600 MHz for the oxidized and reduced protein as well as for the oxidized R98C variant. In the latter protein, an "artificial" thioether covalent bond has been introduced between the heme group and the protein frame [Arnesano, F., Banci, L., Bertini, I., Ciofi-Baffoni, S., de Lumley Woodyear, T., Johnson, C. M., and Barker, P. D. (2000) Biochemistry 39, 1499-1514]. The (15)N relaxation data were analyzed with the ModelFree protocol, and the mobility parameters on the picosecond to nanosecond time scale were compared for the three species. The three forms are rather rigid as a whole, with average generalized order parameters values of 0.87 +/- 0.08 (oxidized cytochrome b(562)), 0.84 +/- 0.07 (reduced cytochrome b(562)), and 0.85 +/- 0.07 (oxidized R98C cytochrome b(562)), indicating similar mobility for each system. Lower order parameters (S(2)) are found for residues belonging to loops 1 and 2. Higher mobility, as indicated by lower order parameters, is found for heme binding helices alpha 1 and alpha 4 in the R98C variant with respect to the wild-type protein. The analysis requires a relatively long rotational correlation time (tau(m) = 9.6 ns) whose value is accounted for on the basis of the anisotropy of the molecular shape and the high phosphate concentration needed to ensure the occurrence of monomer species. A parallel study of motions in the millisecond to microsecond time scale has also been performed on oxidized wild-type and R98C cytochrome b(562). In a CPMG experiment, decay rates were analyzed in the presence of spin-echo pulse trains of variable spacing. The dynamic behavior on this time scale is similar to that observed on the sub-nanosecond time scale, showing an increased mobility in the residues connected to the heme ligands in the R98C variant. It appears that the increased protein stability of the variant, established previously, is not correlated with an increase in rigidity.  相似文献   

2.
Hyperfine 1H NMR signals of the 2Fe-2S* vegetative ferredoxin from Anabaena 7120 have been studied by two-dimensional (2D) magnetization exchange spectroscopy. The rapid longitudinal relaxation rates of these signals required the use of very short nuclear Overhauser effect (NOE) mixing times (0.5-20 ms). The resulting pattern of NOE cross-relaxation peaks when combined with previous 1D NOE results [Dugad, L. B., La Mar, G. N., Banci, L., & Bertini, I. (1990) Biochemistry 29, 2263-2271] led to elucidation of the carbon-bound proton spin systems from each of the four cysteines ligated to the 2Fe-2S* cluster in the reduced ferredoxin. Additional NOE cross peaks were observed that provide information about other amino acid residues that interact with the iron-sulfur cluster. NOE cross peaks were assigned tentatively to Leu27, Arg42, and Ala43 on the basis of the X-ray coordinates of oxidized Anabaena 7120 ferredoxin [Rypniewski, W.R., Breiter, D.R., Benning, M.M., Wesenberg, G., Oh, B.-H., Markley, J.L., Rayment, I., & Holden, H. M. (1991) Biochemistry 30, 4126-4131]. Three chemical exchange cross peaks were detected in magnetization exchange spectra of half-reduced ferredoxin and assigned to the 1H alpha protons of Cys49 and Cys79 [both of whose sulfur atoms are ligated to Fe(III)] and Arg42 (whose amide nitrogen is hydrogen-bonded to one of the inorganic sulfurs of the 2Fe-2S* cluster). The chemical exchange cross peaks provide a means of extending assignments in the spectrum of reduced ferredoxin to assignments in the spectrum of the oxidized protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
In this paper the interaction of cytoplasmic CopZ and the N-terminal domain of the CopA ATPase from Bacillus subtilis has been studied by NMR through (15)N-(1)H HSQC experiments in order to understand the role of the two proteins in the whole copper trafficking mechanism of the bacteria. It appears that the two proteins interact in a fashion similar to that of the yeast homologue proteins [Arnesano, F., Banci, L., Bertini, I., Cantini, F., Ciofi-Baffoni, S., Huffman, D. L., and O'Halloran, T. V. (2001) J. Biol. Chem. 276, 41365-41376], although the surface potentials are reversed. A structural model for the interaction is proposed. (15)N mobility studies on the free proteins and on their complex are also reported. From these data, it appears that copper is largely transferred from CopZ to CopA, thus suggesting their possible involvement in a detoxification process. Comparing functional data of homologous proteins of other bacteria, it can be concluded that this class of proteins is involved in copper homeostasis but the specific roles are species dependent.  相似文献   

4.
5.
Inactivation, dissociation, and unfolding of tetrameric alcohol dehydrogenase I from Kluyveromyces lactis (KlADH I) were investigated using guanidinium chloride (GdmCl) as denaturant. Protein transitions were monitored by enzyme activity, intrinsic fluorescence and gel filtration chromatography. At low denaturant concentrations (less than 0.3 M), reversible transformation of enzyme into tetrameric inactive form occurs. At denaturant concentrations between 0.3 and 0.5 M, the enzyme progressively dissociates into structured monomers through an irreversible reaction. At higher denaturant concentrations, the monomers unfold completely. Refolding studies indicate that a total reactivation occurs only with the enzyme denatured between 0 and 0.3 M GdmCl concentrations. The enzyme denatured at GdmCl concentrations higher than 0.3 M refolds only partially. All together, our results indicate that unfolding of the KlADH I is a multistep process, i.e., inactivation of the structured tetramer, dissociation into partially structured monomers, followed by complete unfolding.  相似文献   

6.
Understanding the molecular basis for protein denaturation by urea and guanidinium chloride (GdmCl) should accommodate the observation that, on a molar basis, GdmCl is generally 2-2.5-fold more effective as a protein denaturant than urea. Previous studies [Smith, J. S., and Scholtz, J. M. (1996) Biochemistry 35, 7292-7297] have suggested that the effects of GdmCl on the stability of alanine-based helical peptides can be separated into denaturant and salt effects, since adding equimolar NaCl to urea enhanced urea-induced unfolding to an extent that was close to that of Gdm. We reinvestigated this observation using an alanine-based helical peptide (alahel) that lacks side chain electrostatic contributions to stability, and compared the relative denaturant sensitivities of this peptide with that of tryptophan zipper peptides (trpzip) whose native conformations are stabilized largely by cross-strand indole ring interactions. In contrast to the observations of Smith and Scholtz, GdmCl was only slightly more powerful as a denaturant of alahel than urea in salt-free buffer (the denaturant m value m(GdmCl)/m(urea) ratio = 1.4), and the denaturation of alahel by urea exhibited only a small dependence on NaCl or KCl. The trpzip peptides were much more sensitive to GdmCl than to urea (m(GdmCl)/m(urea) = 3.5-4). These observations indicate that the m(GdmCl)/m(urea) ratio of 2-2.5 for proteins results from a combination of effects on the multiple contributions to protein stability, for which GdmCl may be only slightly more effective than urea (e.g., hydrogen bonds) or considerably more effective than urea (e.g., indole-indole interactions).  相似文献   

7.
The interaction of formate and acetate ions with cobalt-substituted carbonic anhydrase (CA) has been investigated through 13C-NMR and one-dimensional and two-dimensional 1H-NMR spectroscopy. 13C data on formate are consistent with a regularly coordinated ligand, as previously proposed for the acetate anion [Bertini, I., Luchinat, C. & Scozzafava, A. (1977) J. Chem. Soc. Dalton Trans., 1962-1965]. 1H-NOE experiments on both anions give evidence of through-space interactions between ligand protons and protein protons. The latter are assigned to specific residues in the active cavity through nuclear Overhauser effect spectroscopy (NOESY) experiments. The 13C-derived and 1H-derived constrains allow reliable docking of these ligands in the active-site cavity. The resulting geometries are similar to one another and consistent with five-coordinated structures around the metal ion, as previously proposed from electronic spectroscopy [Bertini, I., Canti, G., Luchinat, C. & Scozzafava, A. (1978) J. Am. Chem. Soc. 100, 4873-4877]. The results are discussed in light of the current debate on anion binding to metal ions in carbonic anhydrase [Lindahl, M., Svensson, A. & Liljas, A. (1992) Proteins, in the press]; Bertini, I., Luchinat, C., Pierattelli, R. & Vila, A. J. (1992) Inorg. Chem., in the press; Banci, L. & Merz, K. (1992) unpublished results] and, in particular, of the proposed long Zn-O distance found in the recent X-ray results on the formate adduct [Hakanson, K., Carlsson, M., Svensson, A. & Liljas, A. (1992) J. Mol. Biol., in the press].  相似文献   

8.
Dong XY  Shi GQ  Li W  Sun Y 《Biotechnology progress》2004,20(4):1213-1219
The simplified kinetic model that assumes competition between first-order folding and third-order aggregation was used to model the fed-batch refolding of denatured-reduced lysozyme. It was found that the model was able to describe the process at limited concentration ranges, i.e., 1-2 and 5-7 mg mL(-)(1), respectively, at extensive guanidinium chloride (GdmCl) concentrations and controlled concentrations of oxidizing and reducing agents. The folding or aggregation rate constant was different at the two protein concentration ranges and strongly dependent on the denaturant concentration. As a result, both rate constants at the two concentration ranges were expressed as functions of GdmCl concentration. The rate constants determined by fed-batch experiments could be employed for the prediction of the fed-batch process but were not able to be extended to a batch refolding by direct dilution. Computer simulations show that the denaturant concentration and fed-batch flow rate are important factors influencing the refolding yield. Prolonged fed-batch time is beneficial to keep the transient intermediate concentration at a low level and to increase the yield of correctly folded protein. This is of importance when the denaturant concentration in refolding buffer solution is low. Thus, at a low denaturant concentration, fed-batch time should be sufficiently long, whereas at an appropriately high GdmCl concentration, a short fed-batch time or a high feed rate of the denatured protein is effective to give a high refolding yield.  相似文献   

9.
Chemical denaturants are frequently used to unfold proteins and to characterize mechanisms and transition states of protein folding reactions. The molecular basis of the effect of urea and guanidinium chloride (GdmCl) on polypeptide chains is still not well understood. Models for denaturant--protein interaction include both direct binding and indirect changes in solvent properties. Here we report studies on the effect of urea and GdmCl on the rate constants (k(c)) of end-to-end diffusion in unstructured poly(glycine-serine) chains of different length. Urea and GdmCl both lead to a linear decrease of lnk(c) with denaturant concentration, as observed for the rate constants for protein folding. This suggests that the effect of denaturants on chain dynamics significantly contributes to the denaturant-dependence of folding rate constants for small proteins. We show that this linear dependency is the result of two additive non-linear effects, namely increased solvent viscosity and denaturant binding. The contribution from denaturant binding can be quantitatively described by Schellman's weak binding model with binding constants (K) of 0.62(+/-0.01)M(-1) for GdmCl and 0.26(+/-0.01)M(-1) for urea. In our model peptides the number of binding sites and the effect of a bound denaturant molecule on chain dynamics is identical for urea and GdmCl. The results further identify the polypeptide backbone as the major denaturant binding site and give an upper limit of a few nanoseconds for residence times of denaturant molecules on the polypeptide chain.  相似文献   

10.
We have recently concluded from the heat-induced denaturation studies that polyols do not affect deltaG(D) degrees (the Gibbs free energy change (deltaG(D)) at 25 degrees C) of ribonuclease-A and lysozyme at physiological pH and temperature, and their stabilizing effect increases with decrease in pH. Since the estimation of deltaG(D) degrees of proteins from heat-induced denaturation curves requires a large extrapolation, the reliability of this procedure for the estimation of deltaG(D) degrees is always questionable, and so are conclusions drawn from such studies. This led us to measure deltaG(D) degrees of ribonuclease-A and lysozyme using a more accurate method, i.e., from their isothermal (25 degrees C) guanidinium chloride (GdmCl)-induced denaturations. We show that our earlier conclusions drawn from heat-induced denaturation studies are correct. Since the extent of unfolding of heat- and GdmCl-induced denatured states of these proteins is not identical, the extent of stabilization of the proteins by polyols against heat and GdmCl denaturations may also differ. We report that in spite of the differences in the structural nature of the heat- and GdmCl-denatured states of each protein, the extent of stabilization by a polyol is same. We also report that the functional dependence of deltaG(D) of proteins in the presence of polyols on denaturant concentration is linear through the full denaturant concentration range. Furthermore, polyols do not affect the secondary and tertiary structures of the native and GdmCl-denatured states.  相似文献   

11.
Heterogeneous nuclear ribonucleoprotein (hnRNP) D0 has two ribonucleoprotein (RNP) -type RNA-binding domains (RBDs), each of which can specifically bind to the UUAG-sequence. hnRNP D0 also binds specifically to single-stranded d(TTAGGG)(n), the human telomeric DNA repeat. We have already reported the structure and interactions with RNA of the N-terminal RBD (RBD1). Here, the structure of the C-terminal RBD (RBD2) determined by NMR is presented. It folds into a compact alpha beta structure comprising an antiparallel beta-sheet packed against two alpha-helices, which is characteristic of RNP-type RBDs. In addition to the four beta-strands commonly found in RNP-type RBDs, an extra beta-strand, termed beta 4(-), was found just before the fourth beta-strand, yielding a five-stranded beta-sheet. Candidate residues of RBD2 involved in the interactions with RNA were identified by chemical shift perturbation analysis. Perturbation was detected on the beta-sheet side, not on the opposite alpha-helix side, as observed for RBD1. It is notable that the beta 4(-) to beta 4 region of RBD2 is involved in the interactions in contrast to the case of RBD1. The chemical shift perturbation analysis also showed that RBD2 interacts with DNA in essentially the same way as with RNA. Changes in the backbone dynamics upon complex formation with DNA were examined by means of model free analysis of relaxation data. In free RBD2, the beta 4(-) to beta 4 region exhibits slow conformational exchange on the milli- to microsecond time scale. The exchange is quenched upon complex formation. The flexibility of free RBD2 may be utilized in the recognition process by allowing different conformational states to be accessed and facilitating induced fit. Additionally, faster flexibility on the nano- to picosecond time scale was observed for loop 3 located between beta 2 and beta 3 in free RBD2, which is retained by the complex as well.  相似文献   

12.
Inactivation, dissociation, and unfolding of the homodimeric glutathione transferase (bbGSTP1-1) from Bufo bufo embryos were investigated at equilibrium, using guanidinium chloride (GdmCl) as denaturant. Protein transitions were monitored by enzyme activity, intrinsic fluorescence, far UV circular dichroism, glutaraldehyde cross-linking, and gel-filtration chromatography. At low denaturant concentrations (less than 0.5 M), reversible inactivation of the enzyme occurs. At denaturant concentrations between 0.5 and 1.5 M the enzyme progressively dissociates into structured monomers. At higher denaturant concentrations the monomers unfold completely. Refolding studies indicate that a total reactivation occurs only by starting from the enzyme denatured at concentrations below 0.5 M. The enzyme denatured at GdmCl concentrations higher than 0.5 M only partially refolds. Globally our results indicate that unfolding of the amphibian bbGSTP1-1 is a multistep process, i.e., inactivation of the structured dimer, dissociation into partially structured monomers, followed by complete unfolding.  相似文献   

13.
The homonuclear Overhauser effect (NOE), in conjunction with nonselective spin-lattice relaxation measurements, has been employed to assign the contact-shifted resonances for the reduced form of two typical plant-type two-iron ferredoxins from the algae Spirulina platensis and Porphyra umbilicalis. These results demonstrate that the NOE should have broad general applicability for the assignments and electronic structural elucidation of diverse subclasses of paramagnetic iron-sulfur cluster proteins. NOE connectivities were detected only among sets of resonance exhibiting characteristically different deviations from Curie behavior, providing strong support for the applicability of the spin Hamiltonian formulation for the NMR properties of the antiferromagnetically coupled iron clusters [Dunham, W. R., Palmer, G., Sands, R. H., & Bearden, A. J. (1971) Biochim. Biophys. Acta 253, 373-384; Banci, L., Bertini, I., & Luchinat, C. (1989) Struct. Bonding (in press)]. The geminal beta-methylene protons for the two cysteines bound to the iron(II) center were clearly identified, as well as the C alpha H and one C beta H for each of the cysteines bound to the iron(III). The identification of the iron bound to cysteines 41 and 46 as the iron(II) in the reduced protein was effected on the basis of dipolar contacts between the bound cysteines, as predicted by crystal coordinates of S. platensis Fd [Tsukihara, T., Fukuyama, K., Nakamura, M., Katsube, Y., Tanaka, N., Kakudo, M., Wada, K., Hase, T., & Matsubara, H. (1981) J. Biochem. (Tokyo) 90, 1763-1773].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Unfolding and refolding of heterooctameric phosphofructokinase-1 from Saccharomyces cerevisiae were investigated by application of kinetic, hydrodynamic, and spectroscopic methods and by use of guanidinium chloride (GdmCl) as denaturant. Inactivation of the enzyme starts at about 0.3 M GdmCl and undergoes a sharp unfolding transition in a narrow range of the denaturant concentration. The inactivation is accompanied by a dissociation of the enzyme into dimers (at 0.6 M GdmCl), which could be detected by changes of the circular dichroism and intrinsic fluorescence. Protein aggregates were observed from 0.7 to 1.5 M GdmCl that unfold at higher denaturant concentrations. Refolding of chemically denatured phosphofructokinase proceeds as a stepwise process via the generation of elements of secondary structure, the formation of assembly-competent monomers that associate to heterodimers and the assembly of dimers to heterotetramers and heterooctamers. The assembly reactions seem to be rate-limiting. Recovery of the enzyme activity (maximum 65%) competes with an nonproductive aggregation of the subunits. alpha-Cyclodextrin functions as an artificial chaperone by preventing aggregation of the subunits, whereas ATP is suggested to support the generation of heterodimers that are competent to a further assembly.  相似文献   

15.
A Arora  M Esmann  D Marsh 《Biochemistry》1999,38(31):10084-10091
The microsecond motions of spin-labeled lipids associated with the Na(+)/K(+)-transporting ATP hydrolase (Na,K-ATPase) in native and tryptically shaved membranes from Squalus acanthias have been studied by progressive saturation electron spin resonance (ESR). This includes both the segmental mobility of the lipid chains and the exchange dynamics of the lipids interacting directly with the protein. The lipids at the protein interface display a temperature-dependent chain mobility on the submicrosecond time scale. Exchange of these lipids with those in the bulk bilayer regions of the membrane takes place on the time scale of the nitroxide spin-lattice relaxation, i.e., in the microsecond regime. The off-rates for exchange directly reflect the specificity of ionized fatty acids relative to protonated fatty acids for interaction with the Na,K-ATPase. These essential features of the lipid dynamics at the intramembranous protein surface, namely, a temperature-dependent exchange on the microsecond time scale that reflects the lipid selectivity, are preserved on removing the extramembranous parts of the Na,K-ATPase by extensive trypsinization.  相似文献   

16.
MP Pond  A Majumdar  JT Lecomte 《Biochemistry》2012,51(29):5733-5747
The cyanobacterium Synechococcus sp. PCC 7002 uses a hemoglobin of the truncated lineage (GlbN) in the detoxification of reactive species generated in the assimilation of nitrate. In view of a sensing or enzymatic role, several states of GlbN are of interest with respect to its structure-activity relationship. Nuclear magnetic resonance spectroscopy was applied to compare the structure and backbone dynamics of six GlbN forms differing in their oxidation state [Fe(II) or Fe(III)], distal ligand to the iron (histidine, carbon monoxide, or cyanide), or heme post-translational modification (b heme or covalently attached heme). Structural properties were assessed with pseudocontact shift calculations. (15)N relaxation data were analyzed by reduced spectral density mapping (picosecond to nanosecond motions) and by inspection of elevated R(2) values (microsecond to millisecond motions). On the picosecond to nanosecond time scale, GlbN exhibited little flexibility and was unresponsive to the differences among the various forms. Regions of slightly higher mobility were the CE turn, the EF loop, and the H-H' kink. In contrast, fluctuations on the microsecond to millisecond time scale depended on the form. Cyanide binding to the ferric state did not enhance motions, whereas reduction to the ferrous bis-histidine state resulted in elevated R(2) values for several amides. This response was attributed, at least in part, to a weakening of the distal histidine coordination. Carbon monoxide binding quenched some of these fluctuations. The results emphasized the role of the distal ligand in dictating backbone flexibility and illustrated the multiple ways in which motions are controlled by the hemoglobin fold.  相似文献   

17.
The denatured states of a small globular protein, apo-neocarzinostatin (NCS), have been characterized using several techniques. Structural properties were investigated by optical spectroscopy techniques and small-angle neutron scattering (SANS), as a function of guanidinium chloride (GdmCl) concentration. SANS experiments show that in heavy water, the protein keeps its native size at GdmCl concentrations below 2.5 M. A sharp transition occurs at about 3.6 M GdmCl, and NCS behaves like an excluded volume chain above 5 M. The same behavior is observed in deuterated buffer by fluorescence and circular dichroism measurements. For the H(2)O buffer, the transition occurs with lower concentration of denaturant, the shift being about 0.6 M. 8-Anilino-1-naphthalenesulfonate (ANS) was used as a hydrophobic fluorescent probe for studying the early stages of protein unfolding. Protein denaturation modifies the fluorescence intensity of ANS, a maximum of intensity being detected close to 2 M GdmCl in hydrogenated buffer, which shows the existence of at least one intermediate state populated at the beginning of the unfolding pathway. Differential scanning calorimetry (DSC) was used to obtain thermodynamic values for NCS denaturation. The melting curves recorded between 20 and 90 degrees C in the presence of various GdmCl concentrations (0-3 M) cannot be explained by a simple two-state model. Altogether, the data presented in this paper suggest that before unfolding the protein explores a distribution of states which is centered around compact states at denaturant concentrations below 2 M in H(2)O, and then shifts to less structured states by increasing denaturant concentrations.  相似文献   

18.
Hemochromatosis factor E (HFE) is a member of class I MHC family and plays a significant role in the iron homeostasis. Denaturation of HFE induced by guanidinium chloride (GdmCl) was measured by monitoring changes in [θ]222 (mean residue ellipticity at 222 nm), intrinsic fluorescence emission intensity at 346 nm (F346) and the difference absorption coefficient at 287 nm (Δε287) at pH 8.0 and 25°C. Coincidence of denaturation curves of these optical properties suggests that GdmCl‐induced denaturation (native (N) state ? denatured (D) state) is a two‐state process. The GdmCl‐induced denaturation was found reversible in the entire concentration range of the denaturant. All denaturation curves were analyzed for , Gibbs free energy change associated with the denaturation equilibrium (N state ? D state) in the absence of GdmCl, which is a measure of HFE stability. We further performed molecular dynamics simulation for 40 ns to see the effect of GdmCl on the structural stability of HFE. A well defined correlation was established between in vitro and in silico studies. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 133–142, 2016.  相似文献   

19.
We report the observation of paramagnetically shifted (hyperfine) proton resonances from vertebrate mitochondrial [2Fe-2S] ferredoxins. The hyperfine signals of human, bovine, and chick [2Fe-2S] ferredoxins are described and compared with those of Anabaena 7120 vegetative ferredoxin, a plant-type [2Fe-2S] ferredoxin studied previously [Skjeldal, L., Westler, W. M., & Markley, J. L. (1990) Arch. Biochem. Biophys. 278, 482-485]. The hyperfine resonances of the three vertebrate ferredoxins were very similar to one another both in the oxidized state and in the reduced state, and slow (on the NMR scale) electron self-exchange was observed in partially reduced samples. For the oxidized vertebrate ferredoxins, hyperfine signals were observed downfield of the diamagnetic envelope from +13 to +50 ppm, and the general pattern of peaks and their anti-Curie temperature dependence are similar to those observed for the oxidized plant-type ferredoxins. For the reduced vertebrate ferredoxins, hyperfine signals were observed both upfield (-2 to -18 ppm) and downfield (+15 to +45 ppm), and all were found to exhibit Curie-type temperature dependence. This pattern and temperature dependence are distinctly different from those found with reduced plant-type ferredoxins which have signal centered around +120 ppm with Curie-type temperature dependence, assigned to cysteines which interact with Fe(III), and signals centered around +20 ppm with anti-Curie temperature dependence, assigned to cysteines which interact with Fe(II) [Dugad, L. B., La Mar, G. N., Banci, L., & Bertini, I. (1990) Biochemistry 29, 2263-2271].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Differential scanning calorimetry (DSC) provides authentic and accurate value of DeltaC(p)(X), the constant-pressure heat capacity change associated with the N (native state)<-->X (heat denatured state), the heat-induced denaturation equilibrium of the protein in the absence of a chemical denaturant. If X retains native-like buried hydrophobic interaction, DeltaC(p)(X) must be less than DeltaC(p)(D), the constant-pressure heat capacity change associated with the transition, N<-->D, where the state D is not only more unfolded than X but it also has its all groups exposed to water. One problem is that for most proteins D is observed only in the presence of chemical denaturants such as guanidinium chloride (GdmCl) and urea. Another problem is that DSC cannot yield authentic DeltaC(p)(D), for its measurement invokes the existence of putative specific binding sites for the chemical denaturants on N and D. We have developed a non-calorimetric method for the measurements of DeltaC(p)(D), which uses thermodynamic data obtained from the isothermal GdmCl (or urea)-induced denaturation and heat-induced denaturation in the presence of the chemical denaturant concentration at which significant concentrations of both N and D exist. We show that for each of the proteins (ribonuclease-A, lysozyme, alpha-lactalbumin and chymotrypsinogen) DeltaC(p)(D) is significantly higher than DeltaC(p)(X). DeltaC(p)(D) of the protein is also compared with that estimated using the known heat capacities of amino acid residues and their fractional area exposed on denaturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号