共查询到20条相似文献,搜索用时 0 毫秒
1.
1. Gut content analyses (GCA) of benthic macroinvertebrates, supplemented by carbon and nitrogen stable isotope analyses (SIA), were used to determine the relative contribution of leaf litter and autochthonous food sources to consumer biomass in five shaded and five unshaded streams in tropical Hong Kong. 2. Only four obligate shredders and two facultative shredders were identified out of 58 morphospecies dissected. Non‐shredder taxa consumed little (<23% food eaten) coarse particulate organic matter (CPOM) in spite of its abundance in streams, and GCA revealed that fine particulate organic matter was the major food (25–99%) of most primary consumers. 3. Stable isotope analysis results were in general agreement with the findings of GCA, and confirmed that three of the four obligate shredders had a high dependence (55–78% of assimilated carbon) on CPOM. 4. Autochthonous energy sources were important in all streams: non‐shredding primary consumers examined, which accounted for 72% of total macroinvertebrate abundance in shaded streams, derived (on average) 61% of their biomass from autochthonous foods; the equivalent values for unshaded streams were 72% (abundance) and 71% (biomass). 相似文献
2.
Food quality, feeding preferences, survival and growth of shredders from temperate and tropical streams 总被引:12,自引:0,他引:12
1. The importance of leaf quality to the nutritional ecology of lotic shredders is well established for temperate species but virtually unknown for tropical taxa. In the present study, we compared the feeding behaviour and performance of two tropical and two temperate shredders in a series of pair‐wise experiments. 2. Specifically, we tested whether leaf conditioning status (stream‐conditioned versus unconditioned leaves) and geographical origin (temperate Alnus glutinosa versus tropical Hura crepitans leaves) affect the food preference, survivorship, and growth of selected shredders from low and high latitudes in a consistent manner. The animals used in experiments were the caddis‐flies Nectopsyche argentata and Phylloicus priapulus from Venezuela, Sericostoma vittatum from Central Portugal, and the amphipod Gammarus pulex from Northern Germany. 3. In general, all shredders exhibited the same high preference for conditioned over unconditioned leaves, irrespective of the geographical origin of the leaf or shredder species. 4. A corresponding tendency for higher growth was found for sets of animals offered conditioned leaves, with the differences in growth being clearer in the two tropical shredders. Survivorship of the two temperate species was consistently high (> 83%) regardless of the diet offered, whereas the tropical shredders survived better on conditioned (77–90%) as compared with unconditioned (54–87%) leaves, although not significantly so. 5. With the exception of the temperate S. vittatum, shredders did not select or perform better on leaves to which they had previously been exposed, indicating a potential adaptation to native leaf species is over‐ridden by intrinsic leaf properties. 6. Taken together, the results of this study suggest that tropical shredders may exhibit the same basic patterns of food exploitation as their temperate counterparts. Consequently, current concepts relating to the role of shredders in stream detritus dynamics may well be applicable to tropical streams, although essentially derived from temperate systems. 相似文献
3.
Seasonal flow variation allows 'time-sharing' by disparate aquatic insect communities in montane desert streams 总被引:2,自引:0,他引:2
1. Flow variation can drive major abiotic changes in stream environments between seasons. Theoretically, disparate biotic communities could be maintained during different seasons at a single site if suitable refuges and colonist sources were available. Using isolated montane desert streams in south‐east Arizona as a model system, we hypothesised that two disparate aquatic insect faunas (montane temperate and neotropical) could be maintained at the same sites through strong seasonal variation in abiotic conditions. 2. We collected aquatic insects representing 59 families from seven streams during high‐flow (March–April) and low‐flow (June) sampling periods across two years. We assessed changes in aquatic insect community and functional feeding group composition by habitat (riffle, pool) and season (high flow, low flow). 3. Within sites, wetted stream area decreased by an average of 97% between high‐flow (predominately riffles) and low‐flow (predominately pools) seasons. Community composition likewise showed strong seasonal patterns; the montane temperate fauna was strongly associated with the high‐flow season while neotropical hemipterans and coleopterans were associated with the low‐flow season. Increased water temperature was significantly associated with this shift from temperate to neotropical assemblages. 4. Functional feeding group composition shifted dramatically by season. The proportion of predators increased from 24.5% (high flow) to 75.2% (low flow) while collector–filterers and shredders declined from 38.4% (high flow) to 1.7% (low flow). 5. We suggest that habitat ‘time‐sharing’ by disparate communities is facilitated via strong seasonal variation in temperature and flow and the presence of high elevation refuges or diapause stages for temperate montane taxa to survive the dry season. 相似文献
4.
Functional biodiversity of macroinvertebrate assemblages along major ecological gradients of boreal headwater streams 总被引:7,自引:0,他引:7
JANI HEINO 《Freshwater Biology》2005,50(9):1578-1587
1. Biodiversity–environment relationships are increasingly well‐understood in the context of species richness and species composition, whereas other aspects of biodiversity, including variability in functional diversity (FD), have received rather little rigorous attention. For streams, most studies to date have examined either taxonomic assemblage patterns or have experimentally addressed the importance of species richness for ecosystem functioning. 2. I examined the relationships of the functional biodiversity of stream macroinvertebrates to major environmental and spatial gradients across 111 boreal headwater streams in Finland. Functional biodiversity encompassed functional richness (FR – the number of functional groups derived from a combination of functional feeding groups and habit trait groups), FD – the number of functional groups and division of individuals among these groups, and functional evenness (FE – the division of individuals among functional groups). Furthermore, functional structure (FS) comprised the composition and abundance of functional groups at each site. 3. FR increased with increasing pH, with additional variation related to moss cover, total nitrogen, water colour and substratum particle size. FD similarly increased with increasing pH and decreased with increasing canopy cover. FE decreased with increasing canopy cover and water colour. Significant variation in FS was attributable to pH, stream width, moss cover, substratum particle size, nitrogen, water colour with the dominant pattern in FS being related to the increase of shredder‐sprawlers and the decrease of scraper‐swimmers in acidic conditions. 4. In regression analysis and redundancy analysis, variation in functional biodiversity was not only related to local environmental factors, but a considerable proportion of variability was also attributable to spatial patterning of environmental variables and pure spatial gradients. For FR, 23.4% was related to pure environmental effects, 15.0% to shared environmental and spatial effects and 8.0% to spatial trends. For FD, 13.8% was attributable to environmental effects, 15.2% to shared environmental and spatial effects and 5% to spatial trends. For FE, 9.0% was related to environmental variables, 12.7% to shared effects of environmental and spatial variables and 4.5% to spatial variables. For FS, 13.5% was related to environmental effects, 16.9% to shared environmental and spatial effects and 15.4% to spatial trends. 5. Given that functional biodiversity should portray variability in ecosystem functioning, one might expect to find functionally rather differing ecosystems at the opposite ends of major environmental gradients (e.g. acidity, stream size). However, the degree to which variation in the functional biodiversity of stream macroinvertebrates truly portrays variability in ecosystem functioning is difficult to judge because species traits, such as feeding roles and habit traits, are themselves strongly affected by the habitat template. 6. If functional characteristics show strong responses to natural environmental gradients, they also are likely to do so to anthropogenic environmental changes, including changes in habitat structure, organic inputs and acidifying elements. However, given the considerable degree of spatial structure in functional biodiversity, one should not expect that only the local environment and anthropogenic changes therein are responsible for this variability. Rather, the spatial context, as well as natural variability along environmental gradients, should also be explicitly considered in applied research. 相似文献
5.
The influence of riparian vegetation on macroinvertebrate community structure and functional organization in six new Guinea streams 总被引:1,自引:1,他引:1
David Dudgeon 《Hydrobiologia》1994,294(1):65-85
Information on the ecology of New Guinea streams is meagre, and data are needed on the trophic basis of aquatic production in rivers such as the Sepik in Papua New Guinea which have low fish yields. This study investigates the relationship between riparian shading (from savanna grassland to primary rainforest), algal and detrital food, and macroinvertebrate abundance and community structure in 6 Sepik River tributary streams. A particular aim was to elucidate macroinvertebrate community responses to changes in riparian conditions. All streams supported diverse benthic communities, but morphospecies richness (overall total 64) was less than in streams on the tropical Asian mainland; population densities of benthic invertebrates, by contrast, were similar to those recorded elsewhere. Low diversity could reflect limited taxonomic penetration, but may result from the absence of major groups (Plecoptera, Heptageniidae, Ephemerellidae, Psephenidae, Megaloptera, etc.) which occur on the Asian mainland. Population densities of all 19 of the most abundant macroinvertebrate taxa varied significantly among the 6 study streams, but community composition in each was broadly similar with dominance by Baetidae and (in order of decreasing importance), Leptophlebiidae, Orthocladiinae, Elmidae and Hydropsychidae. Principal components analysis (PCA) undertaken on counts of abundant macroinvertebrate taxa clearly separated samples taken in two streams from the rest. Both streams contained high detrital standing stocks and one was completely shaded by rainforest. Stepwise multiple-regression analysis indicated that population densities of the majority of abundant taxa (11 out of 19) across streams (10 samples per stream; n = 60) were influenced by algae and/or detritus, although standing stocks of these variables were not clearly related to riparian conditions. When regression analysis was repeated on mean counts of taxa per stream (dependent variables) versus features of each stream as a whole (thus n = 6), % shading and detritus were the independent variables yielding significant regression models most frequently, but pH, total-nitrogen loads and algae were also significant predictors of faunal abundance. Further regression analysis, undertaken separately on samples (n = 10) from each stream, confirmed the ability of algae and detritus to account for significant portions of the variance in macroinvertebrate abundance, but the significance of these variables varied among streams with the consequence that responses of individual taxa to algae or detritus was site-specific.Community functional organization — revealed by investigation of macroinvertebrate functional feeding groups (FFGs) — was rather conservative, and streams were codominated by collector-gatherers (mean across 6 streams = 43%) and grazers (36%), followed by filter-feeders (15%) and predators (7%). The shredder FFG was species-poor and comprised only 0.4% of total macroinvertebrate populations; shredders did not exceed 2% of benthic populations in any stream. PCA of FFG abundance data was characterized by poor separation among streams, although there was some evidence of clustering of samples from unshaded sites. The first 2 PCA axes accounted for 84% of the variation in the data suggesting that the poor separation resulted from the general similarity of FFG representation among streams. Although stepwise multiple-regression analysis indicated that algae and detritus accounted for significant proportions of the variations in population density and relative abundance of some FFGs, the response of community functional organization to changes in riparian conditions and algal and detrital food base was weak — unlike the deterministic responses that may be typical of north-temperate streams. 相似文献
6.
Effects of nutrient enrichment on boreal streams: invertebrates, fungi and leaf-litter breakdown 总被引:3,自引:0,他引:3
JENNY BERGFUR RICHARD K. JOHNSON LEONARD SANDIN WILLEM GOEDKOOP KRISTIINA NYGREN 《Freshwater Biology》2007,52(8):1618-1633
1. The effect of nutrient enrichment on structural (invertebrate indices) and functional (leaf‐litter breakdown rates) characteristics of stream integrity was studied in nine boreal streams. 2. The results showed predicted changes in biotic indices and leaf‐litter breakdown along a complex (principal component) nutrient gradient. Biotic indices were better correlated with nutrient effects than leaf‐litter breakdown. 3. Fungal biomass and invertebrate densities in the litter bags were positively correlated with leaf‐litter breakdown, and both were also positively related to the nutrient gradient. 4. Invertebrate community composition influenced breakdown rate. High breakdown rates at one site were associated with the high abundance of the detritivore Asellus aquaticus. 5. This study lends support to the importance of invertebrate and fungi as mediators of leaf‐litter decomposition. However, our study also shows that study design (length of incubation) can confound the interpretation of nutrient‐induced effects on decomposition. 相似文献
7.
Stable isotope analysis of macroinvertebrates and their food sources in a glacier stream 总被引:5,自引:0,他引:5
Rainer Zah Peter Burgherr Stefano M. Bernasconi & Urs Uehlinger 《Freshwater Biology》2001,46(7):871-882
1. Food sources and trophic structure of the macroinvertebrate community along a longitudinal gradient were examined in a glacier stream of the Swiss Alps (Val Roseg). Analysis of multiple stable isotopes (δ13 C and δ15 N) and measurement of C : N ratios were used to differentiate between allochthonous and autochthonous organic matter.
2. Although isotopic signatures of algae varied widely among sites and dates, it was possible to discriminate between allochthonous and autochthonous food sources using a site-specific approach.
3. Dominant food sources of herbivorous invertebrates in all main channel sites were epilithic diatoms and the filamentous gold alga Hydrurus foetidus . Allochthonous organic matter was of some importance only in a groundwater-fed stream close to the floodplain margin.
4. Seasonal changes in the δ13 C signature of the macroinvertebrates corresponded with seasonal changes in δ13 C of the gold alga H. foetidus . This indicated that the energy base remains autochthonous throughout the year.
5. Because of limited food sources, feeding plasticity of the invertebrate community was high. Both grazers and shredders fed predominantly on algae, whereas gatherer-collectors seemed to be omnivorous.
6. The overall enrichment of δ15 N was 2.25‰ ( r 2 =0.99) per trophic level. On a gradient from the glacier site to a downstream forested site trophic enrichment was constant but variation in δ15 N within trophic levels decreased. 相似文献
2. Although isotopic signatures of algae varied widely among sites and dates, it was possible to discriminate between allochthonous and autochthonous food sources using a site-specific approach.
3. Dominant food sources of herbivorous invertebrates in all main channel sites were epilithic diatoms and the filamentous gold alga Hydrurus foetidus . Allochthonous organic matter was of some importance only in a groundwater-fed stream close to the floodplain margin.
4. Seasonal changes in the δ
5. Because of limited food sources, feeding plasticity of the invertebrate community was high. Both grazers and shredders fed predominantly on algae, whereas gatherer-collectors seemed to be omnivorous.
6. The overall enrichment of δ
8.
Soil food webs are particularly important in terrestrial systems, but studying them is difficult. Here we report on the first study to apply a molecular approach to identify species-specific trophic interactions in below-ground food webs. To identify the invertebrate predator guild of the garden chafer Phyllopertha horticola (Coleoptera, Scarabaeidae) whose root-feeding larvae can be highly abundant in grasslands, a specific DNA marker was developed. It allowed detection of P. horticola egg and white grub meals within the gut content of Poecilus versicolor (Coleoptera, Carabidae) larvae for up to 24 h post-feeding. Soil samples from an alpine grassland revealed a diverse below-ground macro-invertebrate community with earthworms, P. horticola larvae, and centipedes as well as beetle larvae as the most abundant detritivores, herbivores, and predators, respectively. Garden chafer DNA was detected in 18.6%, 4.1%, and 4.4% of field-collected Geophilidae (n = 124), beetle larvae (n = 159), and Lithobiidae (n = 49), respectively. We conclude that most of the investigated predators actively preyed on P. horticola, as secondary predation is unlikely to be detected in below-ground systems. Moreover, scavenging most likely contributes only to a small percentage of the revealed trophic links due to the low availability of carrion. Sampling date did not influence prey detection rates, indicating that both P. horticola eggs and larvae were preyed on. Only 2.7% of the below-ground predators tested positive for earthworms, an alternative, highly abundant prey, suggesting that P. horticola represents an important prey source for centipedes and predatory beetle larvae during summer within the soil food web. 相似文献
9.
Lentic macroinvertebrate assemblage structure along gradients in spatial heterogeneity, habitat size and water chemistry 总被引:3,自引:7,他引:3
Jani Heino 《Hydrobiologia》2000,418(1):229-242
Littoral zones of small water bodies are spatially heterogeneous habitats, harbouring diverse biotic communities. Despite this apparent heterogeneity, many studies have stressed the importance of water chemistry in determining the structure of littoral macroinvertebrate assemblages. The purpose of this study was to consider the relative importance of several spatial and water chemistry variables in explaining the patterns in the structure of macroinvertebrate assemblages in 21 lentic water bodies in northeastern Finland. Water bodies were selected to represent various habitat conditions ranging from small permanent bog ponds to small forest lakes. According to canonical correspondence analysis (CCA), the most important environmental factors related to assemblage composition were water body area, moss cover, total nitrogen and water hardness. In general, species composition in small bog ponds tended to differ from that in larger lakes with forested shoreline. Total species richness was best explained by a composite variable (PCA) describing physical habitat heterogeneity, species richness being lowest in small bog lakes with simple bottom structure and low amount of aquatic plants. Species numbers in dominant functional feeding groups were related to different environmental factors. Shredder species richness was best explained by a regression model incorporating total nitrogen and the amount of organic matter, both of which were negatively related to the number of shredder species. The number of gatherer species increased with mean substratum particle size. Scraper species richness was negatively affected by the abundance of detritus and positively affected by depth, and a model including both variables explained most of the variation. Variation in the number of predatory species was best explained by a regression model including moss cover and lake area. 相似文献
10.
We studied headwater streams in 4 watersheds of Washington's Coastal Mountain region from June to August 1998 to establish macroinvertebrate reference conditions and describe variation in macroinvertebrate assemblage structure among stream orders and among substrates. Macroinvertebrates were sampled with mesh baskets (30 × 30 cm) filled with equal volumes of wood (1.5 l) and cobble (1.5 l) that were installed into fifteen 1st-order, six 2nd-order, and three 3rd-order streams. Low taxa richness and low macroinvertebrate densities were found in all streams. Crayfish dominated (92.7%) biomass estimates, with shredders dominating the non-crayfish component of the biomass. The importance of shredders declined from 1st- to 3rd-order streams. An abundance of wood and a lack of algae and non-wood based detritus in the 1st-order streams led us to suspect that food webs were wood based. We tested this hypothesis by comparing macroinvertebrate assemblages in substrate baskets filled with equal volumes (3 l) of naturally conditioned (1) wood, (2) cobble, or (3) wood and cobble (1.5 l of each). Macroinvertebrate richness was higher in wood-only and mixed baskets than the cobble-only baskets (p = 0.0118), and macroinvertebrate biomass was higher in mixed than cobble-only baskets (p = 0.044). 相似文献
11.
We examined the variability of macroinvertebrate assemblage structure, species identities, and functional feeding group composition in relation to stream size, tributary position, and in-stream factors in a boreal watershed in Finland. Our study included three riffle sites in each of three stream sections in each of three stream size classes. Multi-response permutation procedure, indicator value method, and canonical correspondence analysis revealed clear differences in assemblage structure among the stream size classes, with a gradual increase of species richness as the stream size increased. Significant differences in assemblage structure were also found among the tributary river systems. The functional feeding group composition broadly followed the river continuum concept, i.e., headwaters were dominated by shredders, gatherers, or filterers, whereas scrapers increased in relative abundance with stream size. There was, however, considerable variation in the functional feeding group composition both among and within the headwater stream sections. Our findings refer to a strong influence of stream size on macroinvertebrate assemblages, but also factors prevailing at the scale of individual riffles should be considered in biodiversity conservation of lotic ecosystems. 相似文献
12.
1. Floodplain rivers in Australia's wet/dry tropics are regarded as being among the most ecologically intact and bio-diverse lotic ecosystems in the world, yet there have been relatively few community-based studies of their aquatic fauna.
2. To investigate relationships between hydrological connectivity and biodiversity in the region, macroinvertebrates were collected from sites within two contrasting floodplain rivers, the 'tropical' Gregory River and 'dryland' Flinders River systems, during the dry season and analysed at various spatial scales. A subset of sites was re-sampled in the following dry season to explore temporal variation. The fauna consisted of 124 morphotaxa, dominated by gatherers and the Insecta.
3. As predicted, hydrological connectivity (the lotic or lentic status of waterbodies) had a major influence on macroinvertebrate assemblage composition and diversity, both in space and time. Assemblages from waterbodies with similar connection histories were most alike, and beta-diversity between assemblages was greatest between lotic and lentic waterbodies, tending to increase with increasing spatial separation.
4. At smaller spatial scales, a number of within-waterbody, habitat and water quality characteristics were important for explaining variation (61%) in the taxonomic organization of assemblages, and characteristics associated with primary productivity and habitat diversity were important for explaining variation (45%) in the functional organization of assemblages. However, much of the small-scale environmental variation across the study region appeared to be related to broad-scale variation in hydrological connectivity, which had both direct and indirect effects on macroinvertebrate assemblages.
5. Conservation of the biodiversity in Australia's wet/dry tropics may depend on conserving the natural variation in hydrological connectivity and the unregulated flow of floodplain rivers. 相似文献
2. To investigate relationships between hydrological connectivity and biodiversity in the region, macroinvertebrates were collected from sites within two contrasting floodplain rivers, the 'tropical' Gregory River and 'dryland' Flinders River systems, during the dry season and analysed at various spatial scales. A subset of sites was re-sampled in the following dry season to explore temporal variation. The fauna consisted of 124 morphotaxa, dominated by gatherers and the Insecta.
3. As predicted, hydrological connectivity (the lotic or lentic status of waterbodies) had a major influence on macroinvertebrate assemblage composition and diversity, both in space and time. Assemblages from waterbodies with similar connection histories were most alike, and beta-diversity between assemblages was greatest between lotic and lentic waterbodies, tending to increase with increasing spatial separation.
4. At smaller spatial scales, a number of within-waterbody, habitat and water quality characteristics were important for explaining variation (61%) in the taxonomic organization of assemblages, and characteristics associated with primary productivity and habitat diversity were important for explaining variation (45%) in the functional organization of assemblages. However, much of the small-scale environmental variation across the study region appeared to be related to broad-scale variation in hydrological connectivity, which had both direct and indirect effects on macroinvertebrate assemblages.
5. Conservation of the biodiversity in Australia's wet/dry tropics may depend on conserving the natural variation in hydrological connectivity and the unregulated flow of floodplain rivers. 相似文献
13.
Michael Power Geoffrey Power Francçois Caron Richard R. Doucett Karin R.A. Guiguer 《Environmental Biology of Fishes》2002,64(1-3):75-85
Arctic charr, Salvelinus alpinus, and brook charr, Salvelinus fontinalis, inhabiting three lakes in the de la Trinité River and adjacent watershed, north shore, Gulf of St. Lawrence, were sampled in 1998. Arctic charr growth differed among lakes with the smallest fish coming from the largest lake. Arctic charr weight–length equation exponents were almost identical at all sample sites. Brook charr growth was also similar in all lakes. July stomach samples from Arctic charr consisted almost entirely of cladocerans in the largest lake, less so in the intermediate sized lake and were mostly aquatic insects in the smallest lake. Brook charr stomach contents were more varied and included fish. Carbon, nitrogen and sulphur stable isotope analyses (SIA) were used to provide a spatially and temporally integrated image of charr diets. SIA corroborated observed among-lake differences and similarities in species diets and suggested lake morphometry may influence measured results. The 15N signature in brook charr muscle increased with fork-length, as a result of a shift towards piscivory with size. The 15N signature in Arctic charr muscle tissue showed a significant negative correlation with fork-length in two of the studied lakes that appears related to dietary niche shifts. Results demonstrate the ability of SIA to detect dietary shifts otherwise unobservable from standard gut content analysis. 相似文献
14.
15.
16.
17.
We tested the hypothesis that either the bovine B or C blood group system is the orthologue of human RH. A comparative linkage mapping strategy was applied, using blood typing and restriction fragment length polymorphism (RFLP) analysis of four loci linked to RH on HSA1; PGD, FGR, ALPL and FUCA1. Four sires with a total of 255 half-sib offspring were used for the linkage analysis. Strong support for linkage between ALPL, FUCA1 and FGR was obtained for all sire families (lod scores >11 for all pairwise comparisons). This new linkage group was assigned to bovine synteny group U17 based on previous somatic cell mapping of the FGR locus. The most favoured order is ALPL—FUCA1—FGR (2·18:1), with ALPL and FGR 5·4 cm and 6·3 cm , respectively, from FUCA1. The B and C blood group systems and PGD were genetically independent of each other and all other markers, indicating that neither B nor C is likely to be the bovine orthologue of human RH. However, given available comparative mapping data, there is some chance that the bovine orthologue of RH is on bovine synteny group U6. Although gene order appears to be conserved with humans, the differences in recombination rates between these three loci in cattle, humans and mice strongly suggest that it is not possible to use human map distances to predict map distances in cattle, making it imperative that bovine gene mappers continue to emphasize adding type I markers to the bovine linkage map. 相似文献
18.
WILLIAM E. MAGNUSSON VIVIANE M. G. LAYME ALBERTINA P. LIMA 《Global Change Biology》2010,16(9):2401-2406
We report on the population response of a species of rodent, Necromys lasiurus, to southern oscillation index (SOI) and extent of regional fire in an Amazonian savanna. Information on temporal variation in local abundance of N. lasiurus in a 4.0 ha savanna plot was obtained from 1985 to 1989, from 1997 to 1998 and 2000–2006, giving data on 14 of the 22 years. Throughout this period, rodent density declined by 90%. Densities were positively associated with SOI and the extent of fire in the region. Rainfall was related to SOI and negatively influenced the extent of fire. However, the amount of rain had no measurable direct effect on rat densities. Thus, small changes in temperature, and consequently fire probability and intensity, may have drastic consequences on the biota of Amazonian savannas, especially in El Niño periods. 相似文献
19.
The chicozapote ( Manilkara zapota ) is a tropical fruit tree that occurs in two morphologically distinct populations in the Yucatan peninsula of Mexico. Forest populations consist of tall, straight trees, while swamp populations have a short, shrub-like growth form. Swamp populations also have smaller leaves, fruit and seeds. We performed a random amplified polymorphic DNA (RAPD) analysis on four different populations of chicozapote to test if there was a genetic component to this variation. The populations differed in respect to habitat type (swamp vs. forest) and geographical location (east vs. west). We surveyed 80 random primers, nine of which revealed interpopulation band differences (28 band differences in total). Unweighted pair group method analysis ( UPGMA ) and neighbour-joining dendrograms showed no separation of individuals between the different populations. Analysis of the RAPD data showed no significant differences between swamp and forest populations ( P > 0.1). The lack of genetic differentiation suggests a failure to find a correlation between the RAPD loci and adaptive traits. The observed morphological differences between the swamp and forest populations of chicozapote may either be that gene flow has prevented a build-up of neutral marker differences or a plastic response to differences in habitat. 相似文献
20.
Guo JJ Liu YJ Li MX Yang YJ Recker RR Deng HW 《Biochemical and biophysical research communications》2005,332(2):602-608
Leptin (LEP) and the uncoupling proteins 2 and 3 (UCP2/UCP3) are key molecules involved in the regulation of food intake and energy expenditure. However, their contribution to variation of obesity phenotypes in the general population remains controversial. The present study is to investigate whether chromosomal regions 7q and 11q, which contain LEP and UCP2/UCP3, respectively, can be excluded for linkage with obesity phenotypes. The obesity phenotypes include body mass index (BMI), fat mass, and percentage fat mass (PFM), with the latter two measured by dual-energy X-ray absorptiometry. We conducted exclusion linkage analyses using a variance component approach in a sample of 1816 individuals coming from 79 extended Caucasian pedigrees. In this study, we were able to exclude chromosomal region 7q containing LEP as having an effect on fat mass and PFM at effect sizes of 5% or greater, and on BMI at effect sizes of 10% or greater. We were able to exclude chromosomal region 11q containing UCP2/UCP3 as having an effect on fat mass and PFM at effect sizes of 10% or greater, and on BMI at effect sizes of 5% or greater. Our results suggest that the LEP and UCP2/UCP3 genes are unlikely to have a substantial effect on variation in obesity phenotypes in this particular US Caucasian population. 相似文献