首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new type of 1-aryl-5-(4-methylsulfonylphenyl)imidazoles, possessing C-2 alkylthio (SMe or SEt) substituents, were designed and synthesized for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors with in vivo anti-inflammatory activity. The compound, 1-(4-bromophenyl)-5-(4-methylsulfonylphenyl)-2-methylthioimidazole (11g), was the most potent and selective COX-2 inhibitor (COX-2 IC50=0.43 microM with no inhibition of COX-1 up to 25 microM) relative to the reference drug celecoxib (COX-2 IC50=0.21 microM with no inhibition of COX-1 up to 25 microM) and also showed very good anti-inflammatory activity compared to celecoxib in carrageenan-induced rat paw edema assay.  相似文献   

2.
Structure-activity relationship studies directed toward the optimization of 4,5-diarylimidazole-2-carboxamide analogs as human CB1 receptor inverse agonists resulted in the discovery of the two amide derivatives 24a and b (hCB1 IC50 = 6.1 and 4.0 nM) which also demonstrated efficacy in overnight feeding studies in the rat for reduction in both food intake and overall body weight.  相似文献   

3.
A series of novel indomethacin analogues with carbaboranes as three-dimensional substitutes for the chlorophenyl ring have been prepared. Their cyclooxygenase (COX) inhibition and enzyme selectivity has been tested and compared to the corresponding adamantyl analogues. Surprisingly, only the ortho-carbaborane derivatives were active compounds. Preliminary biological studies gave an interesting insight into the validity of employing carbaboranes as pharmacophores.  相似文献   

4.
A series of novel sulfone substituted 4,5-diarylthiazoles have been synthesized and evaluated for their inhibition of the two isoforms of human cyclooxygenase (COX-1 and COX-2). This series displays exceptionally selective COX-2 inhibition.  相似文献   

5.
A group of 1,3-diarylurea derivatives, possessing a methylsulfonyl pharmacophore at the para-position of the N-1 phenyl ring, in conjunction with a N-3 substituted-phenyl ring (4-F, 4-Cl, 4-Me, 4-OMe), were designed and synthesized for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. In vitro COX-1/COX-2 isozyme inhibition structure-activity studies identified 1-(4-methylsulfonylphenyl)-3-(4-methoxyphenyl) urea (4e) as a potent COX-2 inhibitor (IC(50)=0.11 microM) with a high COX-2 selectivity index (SI=203.6) comparable to the reference drug celecoxib (COX-2 IC(50)=0.06 microM; COX-2 SI=405). The structure-activity data acquired indicate that the urea moiety constitutes a suitable scaffold to design new acyclic 1,3-diarylurea derivatives with selective COX-2 inhibitory activity.  相似文献   

6.
Thalidomide and its analogues as cyclooxygenase inhibitors   总被引:6,自引:0,他引:6  
Thalidomide showed cyclooxygenase (COX)-1/2 inhibitory activity with a potency comparable to that of aspirin. Structural development studies of thalidomide resulted in potent COX-1/2 inhibitors, and COX-1-selective and COX-2-selective inhibitors.  相似文献   

7.
A series of sulfonamide-substituted 4,5-diarylthiazoles was prepared via three synthetic routes as selective COX-2 inhibitors. Recently in the synthesis of selective COX-2 inhibitors we have discovered that the sulfonamide moiety is a suitable replacement for the methylsulfonyl moiety yielding compounds with activity both in vitro and in vivo.  相似文献   

8.
Substituted pyridazino[4,5-b]indolizines were identified as potent and selective PDE4B inhibitors. We describe the structure–activity relationships generated around an HTS hit that led to a series of compounds with low nanomolar affinity for PDE4B and high selectivity over the PDE4D subtype.  相似文献   

9.
Cyclooxygenase (COX-2) inhibitors were developed with the hope that they will cause fewer gastrointestinal adverse effects. Ability of selective as well as nonselective COX inhibitors to alter ischemia-reperfusion induced damage of gastric mucosa and hapten-induced colitis in rats has been compared. Celecoxib (10, 20 and 40 mg/kg(-l)) was significantly more potent at aggravating ischemia-reperfusion injury as compared to nimesulide. Similarly, celecoxib was found to maximally potentiate TNBS-induced colitis, followed by nimesulide and indomethacin. Celecoxib at its highest dose produced maximum deep histological injury. This paradoxic ulcer and colitis aggravating effect of selective COX-2 inhibitors may be explained by suppression of protective prostaglandins generated as a consequence of COX-2 induction in inflammatory states.  相似文献   

10.
A group of 2,3-diaryl-1,3-thiazolidine-4-ones, possessing a methylsulfonyl pharmacophore, were synthesized and their biological activities were evaluated for cyclooxygenase-2 (COX-2) inhibitory activity.  相似文献   

11.
A series of 2,2-dimethyl-5-[4-(methylsulfonyl)phenyl]-4-phenyl-3(2H)furanones was prepared and evaluated for their ability to inhibit cyclo-oxygenase-2 (COX-2).  相似文献   

12.
A number of naphthofuranones were synthesized and tested for COX-1 and COX-2 inhibition. Few of them were identified as selective COX-2 inhibitors. Structure-activity relationship studies within the series are discussed.  相似文献   

13.
A new group of 1, 3-benthiazinan-4-ones, possessing a methyl sulfonyl pharmacophore, were synthesized and their biological activities were evaluated for cyclooxygenase-2 (COX-2) inhibitory activity. In vitro COX-1/COX-2 inhibition studies identified 3-(p-fluoropheny)-2-(4-methylsulfonylphenyl)-1,3-benzthiazinan-4-one (7b) as a potent (IC50 = 0.05 μM) and selective (selectivity index = 259) COX-2 inhibitor.  相似文献   

14.
3H-1,2-Dithiole-3-thiones substituted with a 3,5-di-tert-butyl-4-hydroxyphenyl (DTBHP) or a 3,5-di-tert-butyl-4-methoxyphenyl group at the C5 position were prepared and their ability to inhibit the cyclooxygenase isoenzymes, COX-1 and COX-2 was evaluated. Both compounds were potent inhibitors of COX-2 (relative to rofecoxib), and while the phenol was a weak inhibitor of COX-1, the methyl ether gave no measurable inhibition. Docking studies of the two compounds into the COX-1 and -2 active sites showed that the methyl ether could only fit in the COX-2 active site whereas the phenol could be docked into both COX-1 and -2. This study reports a new mode for inhibitor binding to COX-1 and -2 and a novel structural scaffold for the development of COX-2 selective inhibitors.  相似文献   

15.
A series of 3-aryl-4-hydroxycoumarin derivatives was synthesized with the aim to find out the structural features for the MAO inhibitory activity and selectivity. Methoxy and/or chloro substituents were introduced in the 3-phenyl ring, whereas the position 6 in the coumarin moiety was not substituted or substituted with a methyl group or a chloro atom due to their different electronic, steric and/or lipophilic properties. Most of the synthesized compounds presented MAO-B inhibitory activity. The presence of methoxy and chloro groups, respectively in the para and meta positions of the 3-phenyl ring, have an important influence on the inhibitory activity. Moreover, the presence of a chloro atom in the six position of the moiety (compound 7) improved the inhibitor activity as well as its selectivity against MAO-B compared with iproniazide, used as reference compound. Docking experiments were carried out to understand which are the most energetically preferred orientations adopted by compounds 5, 6 and 7 inside the MAO-B binding pocket.  相似文献   

16.
Indole- and indoline-type basic COX-1-selective competitive inhibitors, 5-amino-1-(3,5-dimethylbenzoyl)-1H-indole (1) and 5-amino-1-(3,5-dimethylphenyl)-2,3-dihydro-1H-indole (2), were found to possess anti-angiogenic activity estimated as a tube formation-inhibition using human umbilical vein endothelial cells (HUVECs).  相似文献   

17.
Racemosol (1) and 10-O-demethylracemosol (2), natural products from Bauhinia malabarica Roxb., exhibit potent in vitro anti-inflammatory activities against cyclooxygenase-1 and -2 (COX-1 and -2) enzymes. To investigate the structure-activity relationship (SAR) of these molecules, we prepared and fully characterized 17 derivatives by functionalizing one, two, or all three OH group(s) of 2 (Scheme). Both the size and polarity of the substituents as well as the substitution pattern in compounds 3a-q were found to be critical for anti-inflammatory activity. The orientation of the drugs and their mode of binding were studied by molecular docking based on the known 3D structure of the complex between COX-2 and the drug SC-558. Whereas the monoacetoxy derivative 3h exhibited an equally potent inhibitory activity towards both COX-1 and -2 (Table 1), its diacetoxy congener 3i was slightly more selective toward COX-2. In vivo anti-inflammatory tests showed that 3i and 2 are slightly more active than the reference compound phenylbutazone (Table 2).  相似文献   

18.
Pyridazinones as selective cyclooxygenase-2 inhibitors   总被引:4,自引:0,他引:4  
Pyridazinone was found to be an excellent core template for selective COX-2 inhibitors. Two potent, selective and orally active COX-2 inhibitors, which were highly efficacious in rat paw edema and rat pyresis models, have been obtained.  相似文献   

19.
Nonsteroidal anti-inflammatory drugs (NSAIDs) exert their pharmacological activities by inhibiting cyclooxygenase (COX)-1 and COX-2. Previous studies have shown that esters and amides of non-selective inhibitors such as indomethacin are selective against COX-2, which is the therapeutically relevant isoform. Structure-activity analysis indicates that substituted phenyl rings are tolerated as ester components. In the present study, the introduction of inorganic ortho- and meta-carbaborane moieties was explored with the aim to create COX-2 inhibitors and more importantly to investigate the validity of using these boron clusters as drug entities. Interestingly, only the ortho-carbaborane ester was active whereas the meta isomer was not. A similar lack of inhibitory potency was observed when an adamantyl substituent or alkylene spacers at the carbaborane were introduced in the ester functionality.  相似文献   

20.
A group of celecoxib analogs having a SO(2)NH(2) (9a-f), or SO(2)Me (12a-f), COX-2 pharmacophore at the para-position of the N-1 phenyl ring in conjunction with a C-5 phenyl ring having a variety of substituents (4-, 3-, 2-OAc; 4-Me,2-OAc, 4-Me,3-OAc, 4-F,2-OAc) was synthesized for evaluation as cyclooxygenase (COX) inhibitors of the COX-1/COX-2 isozymes. Within this group of compounds, 1-(4-aminosulfonylphenyl)-3-trifluoromethyl-5-(2-acetoxy-4-fluorophenyl)pyrazole (9f) emerged as the most potent (COX-1 IC(50)=0.7 μM; COX-2 IC(50)=0.015 μM) and selective (COX-2 selectivity index=47) inhibitor agent that exhibited good anti-inflammatory activity (ED(50)=42.3mg/kg) which was lower than the reference drug celecoxib (ED(50)=10.8 mg/kg), but greater than ibuprofen (ED(50)=67.4 mg/kg) and aspirin (ED(50)=128.7 mg/kg). Molecular modeling studies for 9f showed that the SO(2)NH(2) group assumes a position within the secondary pocket of the COX-2 active site wherein the SO(2)NH(2) oxygen atom is hydrogen bonded to the H90 residue (2.90?), the SO(2)NH(2) nitrogen atom forms a hydrogen bond with L352 (N?O=2.80?), and the acetyl group is positioned in the vicinity of the S530 residue where the acetyl oxygen atom undergoes hydrogen bonding to L531 (2.99?).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号