首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatic peroxisomes have been isolated on isopycnic sucrose gradients from white mice [HA(ICR)] and lean and obese (C57BL/6J) mice. Nearly all of the catalase activity was in the peroxisomal fraction. The activity for β-oxidation of palmitoyl-CoA was about threefold higher per milligram of protein in the isolated peroxisomal fraction or per gram of liver from the obese mouse compared to its lean littermates. Glycerol-3-phosphate dehydrogenase activity also was higher in the peroxisomes and cytoplasm of the obese mouse. The matrix enzymes of the organelles, catalase and urate oxidase of the peroxisome and glutamate dehydrogenase of the mitochondria, had similar activities per gram of liver from either lean or obese mice. Membrane components, NADPH: cytochrome c reductase of the microsomes and β-hydroxybutyrate dehydrogenase of the mitochondria, had lower activities in the obese mouse in inverse proportion to the larger size of the liver.  相似文献   

2.
Peroxisomal enzyme activities in the guinea-pig harderian gland, which has a unique lipid composition, were studied. Activities of catalase, acyl-CoA oxidase and the cyanide-insensitive acyl-CoA beta-oxidation system in this tissue were comparable with those in rat liver. The activities of dihydroxyacetone phosphate acyltransferase (DHAPAT, EC 2.3.1.42) and alkyl-DHAP synthase (EC 2.5.1.26) were appreciable, and the distributions of both activities were consistent with that of sedimentable catalase activity. Glycerol-3-phosphate acyltransferase (GPAT, EC 2.3.1.15), which is localized in both microsomes (microsomal fractions) and mitochondria in the rat liver, was a peroxisomal enzyme in the harderian gland, though the activity was only about one-tenth of the DHAPAT activity. These enzymes had different pH profiles and substrate specificity. The existence of high activities of enzymes of the acyl-DHAP pathway in peroxisomes suggests the physiological significance of peroxisomes in the biosynthesis of glycerol ether phospholipid and 1-alkyl-2,3-diacylglycerol in the guinea-pig harderian gland.  相似文献   

3.
Peroxisomes and mitochondria from brown adipose tissue of the rat were separated by differential pelleting and isopycnic gradient centrifugation. Both fractions oxidized palmitoyl-CoA with comparable specific activities. Unlike the mitochondrial beta-oxidation the peroxisomal activity was not influenced by carbon monoxide. Peroxisomal beta-oxidation together with carnitine acetyl-transferase, which is also located in peroxisomes, might be involved in chemical thermogenesis by delivering acetyl groups to the mitochondria.  相似文献   

4.
Subcellular distribution of pentose-phosphate cycle enzymes in rat liver was investigated, using differential and isopycnic centrifugation. The activities of the NADP+-dependent dehydrogenases of the pentose-phosphate pathway (glucose-6-phosphate dehydrogenase and phosphogluconate dehydrogenase) were detected in the purified peroxisomal fraction as well as in the cytosol. Both dehydrogenases were localized in the peroxisomal matrix. Chronic administration of the hypolipidemic drug clofibrate (ethyl-alpha-p-chlorophenoxyisobutyrate) caused a 1.5-2.5-fold increase in the amount of glucose-6-phosphate and phosphogluconate dehydrogenases in the purified peroxisomes. Clofibrate decreased the phosphogluconate dehydrogenase, but did not alter glucose-6-phosphate dehydrogenase activity in the cytosolic fraction. The results obtained indicate that the enzymes of the non-oxidative segment of the pentose cycle (transketolase, transaldolase, triosephosphate isomerase and glucose-phosphate isomerase) are present only in a soluble form in the cytosol, but not in the peroxisomes or other particles, and that ionogenic interaction of the enzymes with the mitochondrial and other membranes takes place during homogenization of the tissue in 0.25 M sucrose. Similar to catalase, glucose-6-phosphate dehydrogenase and phosphogluconate dehydrogenase are present in the intact peroxisomes in a latent form. The enzymes have Km values for their substrates in the millimolar range (0.2 mM for glucose-6-phosphate and 0.10-0.12 mM for 6-phosphogluconate). NADP+, but not NAD+, serves as a coenzyme for both enzymes. Glucose-6-phosphate dehydrogenase was inhibited by palmitoyl-CoA, and to a lesser extent by NADPH. Peroxisomal glucose-6-phosphate and phosphogluconate dehydrogenases have molecular mass of 280 kDa and 96 kDa, respectively. The putative functional role of pentose-phosphate cycle dehydrogenases in rat liver peroxisomes is discussed.  相似文献   

5.
The effects of riboflavin deficiency on hepatic peroxisomal and mitochondrial palmitoyl-CoA oxidation were examined in weanling Wistar-strain male rats. The specific activities of peroxisomal catalase and palmitoyl-CoA-dependent NAD+ reduction were not affected by up to 10 weeks of riboflavin deficiency. In contrast, the specific activity of mitochondrial carnitine-dependent palmitoyl-CoA oxidation was depressed by 75% at 10 weeks of deficiency. The amount of peroxisomal protein per g of liver was not affected by riboflavin deficiency, whereas, expressed per liver, both riboflavin-deficient and pair-fed controls showed decreased peroxisomal protein compared with controls fed ad libitum. Hepatic mitochondria, but not peroxisomes, were sensitive to riboflavin deficiency.  相似文献   

6.
Highly purified peroxisomes were obtained from the liver of untreated rats, and rates of peroxisomal beta-oxidation were measured using fatty acyl-CoAs differing in chain length and degree of unsaturation. A 20–24-fold purification of peroxisomes, indicated by the specific activities of the marker enzymes catalase and urate oxidase, respectively, was obtained from crude liver homogenate using differential centrifugation techniques followed by a 30% Nycodenz gradient separation. The use of a 30% Nycodenz gradient in the final step of purification was extremely effective (e.g. 5.5-fold reduction) in removing lysosomal contamination. The rate of peroxisomal beta-oxidation with lauroyl-CoA (C12:0) as substrate was the highest of all fatty acyl-CoAs tested. Butyryl-CoA (C4:0) was not oxidized by purified peroxisomes. In general, as chain length of the fatty acyl-CoAs increased above 12 carbons, the rates of beta-oxidation decreased.  相似文献   

7.
Hepatic peroxisomes and mitochondria from 20-day-old chick embryo were separated by sucrose density gradient centrifugation and the characteristics of carnitine acyltransferases in these organelles were studied. The carnitine acyltransferase activities in peroxisomes were increased markedly by the treatment of chick embryo with clofibrate, while those in mitochondria did not change. In the liver of clofibrate-treated chick embryo, approximately 50% of total liver carnitine palmitoyltransferase (CPT) activity was present in the peroxisomal fraction. Peroxisomal CPT activity was easily solubilized, in contrast with mitochondrial CPT. The solubilized protein solutions from isolated peroxisomes and mitochondria were separately chromatographed on a column of Blue Sepharose CL-6B after the gel filtration on Sephadex G-25. Peroxisomal CPT was completely bound to a Blue Sepharose CL-6B column and was eluted below 0.25 M KCl, whereas mitochondrial CPT was not retained on the column. The substrate specificity profile of peroxisomal CPT with long-chain acyl-CoAs (C8 to C18) was similar to that of mitochondrial CPT, and the apparent Km value of peroxisomal CPT for palmitoyl-CoA was 5.2 microM, being similar to that of mitochondrial CPT. It is concluded that carnitine long-chain acyltransferase, which is different from mitochondrial CPT and is induced by clofibrate treatment, is present in peroxisomes of chick embryo liver.  相似文献   

8.
The activities of peroxisomal and mitochondrial beta-oxidation and carnitine acyltransferases changed during the process of development from embryo to adult chicken, and the highest activities of peroxisomal beta-oxidation, palmitoyl-CoA oxidase, and carnitine acetyltransferase were found at the hatching stage of the embryo. The profiles of these alterations were in agreement with those of the contents of triglycerides and free fatty acids in the liver. The highest activities of mitochondrial beta-oxidation and palmitoyl-CoA dehydrogenase were observed at the earlier stages of the embryo; then the activities decreased gradually from embryo to adult chicken. The ratio of activities of carnitine acetyltransferase in peroxisomes and mitochondria (peroxisomes/mitochondria) increased from 0.54 to 0.82 during the development from embryo to adult chicken. The ratio of activities of carnitine palmitoyltransferase decreased from 0.82 to 0.25 during the development. The affinity of fatty acyl-CoA dehydrogenase toward the medium-chain acyl-CoAs (C6 and C8) was high in the embryo and decreased with development, whereas the substrate specificity of fatty acyl-CoA oxidase did not change. The substrate specificity of mitochondrial carnitine acyltransferases did not change with development. The affinity of peroxisomal carnitine acyltransferases toward the long-chain acyl-CoAs (C10 to C16) was high in the embryo, but low in adult chicken.  相似文献   

9.
The presence of peroxisomes and peroxisomal enzyme activities were investigated in the oleaginous yeast Apiotrichum curvatum ATCC 20509 (formerly Candida curvata D.) Catalase, a marker enzyme for peroxisomes, was measured in cell-free extracts prepared by sonication. The nature of the carbon and nitrogen sources in the growth medium greatly affected catalase activity. Cells grown on corn oil had high specific activity of catalase, but those grown on glucose, sucrose, or maltose had low specific activity. High specific activity of catalase was measured in cultures grown on media that supported poor growth (with soluble starch as carbon source or with methylamine, urea, or asparagine as nitrogen source). Peroxisomes from cells grown on corn oil were separated from other subcellular fractions in a discontinuous sucrose gradient. Major peaks of activity of fatty acid beta-oxidation and of two key enzymes in the glyoxylate cycle were found in fractions containing peroxisomes, but not in fractions corresponding to the mitochondria. Peroxisomal beta-oxidation showed equivalent activity with palmitoyl CoA or n-octanoyl CoA as substrate. Mitochondria did not seem to contain NAD-linked glutamate dehydrogenase. Peroxisomes with a homogeneous matrix and core surrounded by a single-layer membrane were observed with an electron microscope in cells grown on corn oil, but not in those grown on glucose. Staining with 3,3'-diaminobenzidine revealed that catalase activity was located in peroxisomes. Peroxisomes in this oleaginous yeast play important roles in lipid metabolism.  相似文献   

10.
The in vivo oxidation of perfused [14C]-labeled fatty acids has been shown to decrease dramatically in hypoxic hearts. This study addresses the influence of ischemia and reperfusion on the enzymic activities of beta-oxidation of fatty acids in mitochondria and of peroxisomal origin. The rate of beta-oxidation of fatty acids in the isolated mitochondria from myocardium of swine fed control diet declined about 20% by the ischemic insult induced by hypothermic cardioplegic arrest. Upon reperfusion, the rate of mitochondrial beta-oxidation returned to a normal level. In clofibrate-fed animals, the rate of mitochondrial beta-oxidation did not vary significantly between control, ischemic, and perfused tissues. Furthermore, neither in control nor in clofibrate-fed animals did the rates of peroxisomal beta-oxidation of fatty acids vary significantly in the ischemic or reperfused tissues as compared to that of preischemic controls. These results suggest that ischemia does not contribute to any loss of enzymic activity in beta-oxidation of fatty acid cycles either in mitochondria or peroxisomes. Furthermore, the feeding of 0.5% (w/w) clofibrate to pigs increased the rate of mitochondrial beta-oxidation of fatty acids only by 50% while that of peroxisomes increased threefold. A similar threefold increase in catalase activity was also produced by clofibrate feeding. These results suggest that the heart plays a role in the hypolipidemic action of clofibrate.  相似文献   

11.
One of the many functions of liver peroxisomes is the beta-oxidation of long-chain fatty acids. It is essential for the continuation of peroxisomal beta-oxidation that a redox shuttle system exist across the peroxisomal membrane to reoxidize NADH. We propose that this redox shuttle system consists of a substrate cycle between lactate and pyruvate. Here we present evidence that purified peroxisomal membranes contain both monocarboxylate transporter 1 (MCT 1) and MCT 2 and that along with peroxisomal lactate dehydrogenase (pLDH) form a Peroxisomal Lactate Shuttle. Peroxisomal beta-oxidation was greatly stimulated by the addition of pyruvate and this increase was partially inhibited by the addition of the MCT blocker alpha-cyano-4-hydroxycinnamate (CINN). We also found that peroxisomes generated lactate in the presence of pyruvate. Together these data provide compelling that the Peroxisome Lactate Shuttle helps maintain organelle redox and the proper functioning of peroxisomal beta-oxidation.  相似文献   

12.
The presence of acyl-CoA synthetase (EC 6.2.1.3) in peroxisomes and the subcellular distribution of beta-oxidation enzymes in human liver were investigated by using a single-step fractionation method of whole liver homogenates in metrizamide continuous density gradients and a novel procedure of computer analysis of results. Peroxisomes were found to contain 16% of the liver palmitoyl-CoA synthetase activity, and 21% and 60% of the enzyme activity was localized in mitochondria and microsomal fractions respectively. Fatty acyl-CoA oxidase was localized exclusively in peroxisomes, confirming previous results. Human liver peroxisomes were found to contribute 13%, 17% and 11% of the liver activities of crotonase, beta-hydroxyacyl-CoA dehydrogenase and thiolase respectively. The absolute activities found in peroxisomes for the enzymes investigated suggest that in human liver fatty acyl-CoA oxidase is the rate-limiting enzyme of the peroxisomal beta-oxidation pathway, when palmitic acid is the substrate.  相似文献   

13.
The acetyl-CoA-dependent elongation of medium-chain acyl-CoA in the presence of pyridine nucleotide was studied in rat liver. The activity was increased by the administration of peroxisome proliferators, clofibrate and di-(2-ethylhexyl)phthalate, and the change was more remarkable in peroxisomes than in mitochondria. Addition of 0.01% Triton X-100 to the incubation mixture caused an increase in the mitochondrial activity, whereas the peroxisomal activity did not increase significantly. The pH optimum for the peroxisomal activity was in the range of pH 6.5-7.0 and that for the mitochondrial activity was pH 7.5-8.0. The specificities of primer chain length in both organelles were almost the same, and octanoyl-CoA was the preferred substrate. Peroxisomal activity was completely inhibited by the addition of 1 mM N-ethylmaleimide or 1 mM p-hydroxymercuribenzoic acid, while the activity did not change on the addition of 1 mM KCN or an antibody to acyl-CoA oxidase, the first enzyme of the peroxisomal beta-oxidation system. The activity of enoyl-CoA reductase, which catalyzes the last step of the elongation system, was also detected in peroxisomes, although the main activity was localized in microsomes. When the liver peroxisomal fraction of clofibrate-treated rats was incubated with a mixture of octanoyl-CoA, acetyl-CoA, NADH, NADPH, and Triton X-100 in a buffer system, dodecanoyl-CoA was detected as the main product by radio-gas chromatography. On the other hand, the elongation activity was decreased greatly by the addition of NAD+ into the mixture. These results indicate that (i) peroxisomes have activity to elongate medium chain acyl-CoA; (ii) the peroxisomal elongation system may consist of the reverse reaction of the beta-oxidation system except for the last step, which is catalyzed by enoyl-CoA reductase; and (iii) the peroxisomal elongation system is less active than the beta-oxidation system under physiological conditions.  相似文献   

14.
Until recently, beta-oxidation was believed to be exclusively located in the peroxisomes of all higher plants. Whilst this is true for germinating oilseeds undergoing gluconeogenesis, evidence demonstrating mitochondrial beta-oxidation in other plant systems has refuted this central dogma of plant lipid metabolism. This report describes a comparative study of the dual mitochondrial and peroxisomal beta-oxidation capacities of plant organs. Oxidation of [1-(14)C] palmitate was measured in the cotyledons, plumules and radicles of Pisum sativum L., which is a starchy seed, over a 14 day period from the commencement of imbibition. Respiratory chain inhibitors were used for differentiating between mitochondrial and peroxisomal beta-oxidation. Peroxisomal beta-oxidation gave a steady, baseline rate and, in the early stages of seedling development, accounted for 70-100% of the beta-oxidation observed. Mitochondrial beta-oxidation gave peaks of activity at days 7 and 10-11, accounting for up to 82% of the total beta-oxidation activity at these times. These peaks coincide with key stages of seedling development and were not observed when normal development was disrupted by growth in the dark. Peroxisomal beta-oxidation was unaffected by etiolation. Since mitochondrial beta-oxidation was overt only during times of intense biosynthetic activity it might be switched on or off during seedling development. In contrast, peroxisomes maintained a continuous, low beta-oxidation activity that could be essential in removing harmful free fatty acids, e.g. those produced by protein and lipid turnover.  相似文献   

15.
Fatty acid oxidation defects can be acutely fatal, leading to the collection of tissues which are frozen for future analysis. Since peroxisomes can also oxidize long-chain fatty acids, differentiation of the contributions from the peroxisome as opposed to the mitochondria is important. We studied the effects of freezing and storage of rat livers on peroxisomal and mitochondrial beta-oxidation as measured by cyanide sensitivity of the oxidation of [1-14C]oleoyl-CoA to 14CO2 and acid-soluble labeled products. In addition, we examined the effects of freezing and storage on the rate-limiting enzyme for peroxisomal beta-oxidation, acyl-CoA oxidase, by the H2O2 generation method. Marked reduction in the oxidation of [1-14C]oleoyl-CoA was found for both peroxisomal and mitochondrial systems upon freezing at -18 or -70 degrees C for 2 days which declined further on storage at these temperatures for 12 weeks. Loss of activity after freezing was greater for the mitochondrial than the peroxisomal beta-oxidation system. By contrast, acyl-CoA oxidase activity was resistant to these changes, maintaining prefrozen activities despite storage for 12 weeks. The contribution of the peroxisomal system to beta-oxidation was 32% of the total rate of oxidation of [1-14C]oleoyl-CoA in the rat liver. These findings indicate that the contributions of the peroxisomal system to total fatty acid oxidation may be considerable, that freezing of the liver results in drastic reduction in enzyme activities of both peroxisomal as well as mitochondrial beta-oxidation, but that the rate-limiting enzyme of the peroxisomal system, acyl-CoA oxidase, retains full activity despite freezing and storage.  相似文献   

16.
Male albino rats (Sprague Dawley) were fed for 2-6 weeks on a diet containing 0.75% clofibrate. Liver cell fractions obtained from these animals were assayed for peroxisomal enzymes. In the cell homogenate the catalase activity was doubled, whereas the activity of urate oxidase was found to be only slightly depressed. The activity of carnitine acetyltransferase increased several times. In liver peroxisomes purified by isopycnic gradient centrifugation the specific activity of urate oxidase decreased appreciably showing that peroxisomes formed under the proliferative influence of clofibrate are not only modified with respect to their morphological characteristics but also to their enzymic equipment. This is also obvious from the changes in peroxisomal carnitine acetyltransferase activity which was enhanced by clofibrate to more than the fivefold amount. In purified mitochondria this enzyme was even more active: clofibrate advances both, the peroxisomal and the mitochondrial moiety of carnitine acetyltransferase. Morphological and cytochemical studies showed an increase in the number of microbodies and as compared to the controls microbodies were lying in groups more frequently. Small particles located closely adjacent to "normal" sized peroxisomes were found particularly after short feeding periods. While the number of coreless microbodies increased studies gave no clear evidence for an increase in marked shape irregularities of the peroxisomes.  相似文献   

17.
Significance of catalase in peroxisomal fatty acyl-CoA beta-oxidation   总被引:1,自引:0,他引:1  
Catalase activity was inhibited by aminotriazole administration to rats in order to evaluate the influence of catalase on the peroxisomal fatty acyl-CoA beta-oxidation system. 2 h after the administration of aminotriazole, peroxisomes were prepared from rat liver, and the activities of catalase, the beta-oxidation system and individual enzymes of beta-oxidation (fatty acyl-CoA oxidase, crotonase, beta-hydroxybutyryl-CoA dehydrogenase and thiolase) were determined. Catalase activity was decreased to about 2% of the control. Among the individual enzymes of the beta-oxidation system, thiolase activity was decreased to 67%, but the activities of fatty acyl-CoA oxidase, crotonase and beta-hydroxybutyryl-CoA dehydrogenase were almost unchanged. The activity of the peroxisomal beta-oxidation system was assayed by measuring palmitoyl-CoA-dependent NADH formation, and the activity of the purified peroxisome preparation was found to be almost unaffected by the administration of aminotriazole. The activity of the system in the aminotriazole-treated preparation was, however, significantly decreased to 55% by addition of 0.1 mM H2O2 to the incubation mixture. Hydrogen peroxide (0.1 mM) reduced the thiolase activity of the aminotriazole-treated peroxisomes to approx. 40%, but did not affect the other activities of the system. Thiolase activity of the control preparation was decreased to 70% by addition of hydrogen peroxide (0.1 mM). The half-life of 0.1 mM H2O2 added to the thiolase assay mixture was 2.8 min in the case of aminotriazole-treated peroxisomes, and 4 s in control peroxisomes. The ultraviolet spectrum of acetoacetyl-CoA (substrate of thiolase) was clearly changed by addition of 0.1 mM H2O2 to the thiolase assay mixture without the enzyme preparation; the absorption bands at around 233 nm (possibly due to the thioester bond of acetoacetyl-CoA) and at around 303 nm (due to formation of the enolate ion) were both significantly decreased. These results suggest that H2O2 accumulated in peroxisomes after aminotriazole treatment may modify both thiolase and its substrate, and consequently suppress the fatty acyl-CoA beta-oxidation. Therefore, catalase may protect thiolase and its substrate, 3-ketoacyl-CoA, by removing H2O2, which is abundantly produced during peroxisomal enzyme reactions.  相似文献   

18.
The effect of chronic administration of a hypolipaemic agent--clofibrate--on the subcellular distribution of liver enzymes in male rats was studied. Clofibrate produced an increase in the number of peroxisomes and also enhanced the activity of aconitase and histidine: glyoxylate aminotransferase (HGA) in liver homogenate. Differential centrifugation of homogenate revealed an elevation of the relative amounts of catalase, HGA and isocitrate dehydrogenase in the soluble cell fraction in clofibrate pretreated animals. Clofibrate induced peroxisomal HGA but failed to alter the amounts of catalase, urate oxidase and isocitrate dehydrogenase in the particles. In both the experimental and control groups the activity of aconitase, malate dehydrogenase (NAD+), creatine phosphokinase and glutathione reductase was observed in mitochondrial fractions and was not detected in purified peroxisomes.  相似文献   

19.
Interactions between the omega- and beta-oxidations of fatty acids   总被引:1,自引:0,他引:1  
Long-chain monocarboxylic, omega-hydroxymonocarboxylic and dicarboxylic acids were activated approximately at the same rate by rat liver homogenates into their CoA esters (2-3 U/g liver). These acyl-CoA were substrates for rat liver peroxisomal beta-oxidation. The distribution of the peroxisomal oxidation of these substrates was also studied in various tissues. Rat liver mitochondria were capable of oxidizing long-chain monocarboxyl- and omega-hydroxymonocarboxylyl-CoAs but not dicarboxylyl-CoAs. When the mitochondrial preparations were incubated in coupling conditions, the addition of either free decanoic acid or free 10-hydroxydecanoic acid resulted in an increase of the oxygen uptake conversely to the addition of decanedioic acid. The comparative study of the chain-length substrate specificity of peroxisomal fatty acyl-CoA oxidase and mitochondrial fatty acyl-CoA dehydrogenase activities revealed that, actually, both types of organelles, peroxisomes and mitochondria, contain "oxido-reductases" active on long-chain monocarboxylyl-CoAs, omega-hydroxymonocarboxylyl-CoAs and dicarboxylyl-CoAs.  相似文献   

20.
Role of ALDP (ABCD1) and mitochondria in X-linked adrenoleukodystrophy   总被引:12,自引:0,他引:12       下载免费PDF全文
Peroxisomal disorders have been associated with malfunction of peroxisomal metabolic pathways, but the pathogenesis of these disorders is largely unknown. X-linked adrenoleukodystrophy (X-ALD) is associated with elevated levels of very-long-chain fatty acids (VLCFA; C(>22:0)) that have been attributed to reduced peroxisomal VLCFA beta-oxidation activity. Previously, our laboratory and others have reported elevated VLCFA levels and reduced peroxisomal VLCFA beta-oxidation in human and mouse X-ALD fibroblasts. In this study, we found normal levels of peroxisomal VLCFA beta-oxidation in tissues from ALD mice with elevated VLCFA levels. Treatment of ALD mice with pharmacological agents resulted in decreased VLCFA levels without a change in VLCFA beta-oxidation activity. These data indicate that ALDP does not determine the rate of VLCFA beta-oxidation and that VLCFA levels are not determined by the rate of VLCFA beta-oxidation. The rate of peroxisomal VLCFA beta-oxidation in human and mouse fibroblasts in vitro is affected by the rate of mitochondrial long-chain fatty acid beta-oxidation. We hypothesize that ALDP facilitates the interaction between peroxisomes and mitochondria, resulting, when ALDP is deficient in X-ALD, in increased VLCFA accumulation despite normal peroxisomal VLCFA beta-oxidation in ALD mouse tissues. In support of this hypothesis, mitochondrial structural abnormalities were observed in adrenal cortical cells of ALD mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号