首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
F. Viard  P. Bremond  R. Labbo  F. Justy  B. Delay    P. Jarne 《Genetics》1996,142(4):1237-1247
Hermaphrodite tropical freshwater snails provide a good opportunity to study the effects of mating system and genetic drift on population genetic structure because they are self-fertile and they occupy transient patchily distributed habitats (ponds). Up to now the lack of detectable allozyme polymorphism prevented any intrapopulation studies. In this paper, we examine the consequences of selfing and bottlenecks on genetic polymorphism using microsatellite markers in 14 natural populations (under a hierarchical sampling design) of the hermaphrodite freshwater snail Bulinus truncatus. These population genetics data allowed us to discuss the currently available mutation models for microsatellite sequences. Microsatellite markers revealed an unexpectedly high levels of genetic variation with <=41 alleles for one locus and gene diversity of 0.20-0.75 among populations. The values of any estimator of F(is) indicate high selfing rates in all populations. Linkage disequilibria observed at all loci for some populations may also indicate high levels of inbreeding. The large extent of genetic differentiation measured by F(st), R(st) or by a test for homogeneity between genic distributions is explained by both selfing and bottlenecks. Despite a limited gene flow, migration events could be detected when comparing different populations within ponds.  相似文献   

2.
Abstract The respective role of factors acting on population functioning can be inferred from a variety of approaches, including population genetics and demography. We here investigated the role of four of these factors (mating systems, population size, bottlenecks and migration) in the hermaphroditic freshwater snail Physa acuta. Twenty-four populations were sampled either around Montpellier (local scale), or at the scale of France (global scale). At local scale, eight populations were sampled twice, before and after summer drying out. The genetic structure of these populations was studied using microsatellite loci. Populations were classified according to openness (ponds vs. rivers) and water regime (permanent vs. temporary) allowing predictions on genetic patterns (e.g. diversity within populations and differentiation). At local scale, progeny-arrays analysis of the selfing rate was conducted, and size distributions of individuals were followed over two years. Results with regard to the four factors mentioned above were: (i) Estimates of population selfing rates derived from inbreeding coefficients were only slightly higher than those from progeny-arrays. (ii) More variation was detected in rivers than in ponds, but no influence of water regime was detected. One reason might be that permanent populations are not going less often through low densities than those from temporary habitats at the time scale studied. (iii) There was limited evidence for genetic bottlenecks which is compatible with the fact that even marked reduction in water availability was not necessarily associated with demographic bottlenecks. More generally, bottlenecks reducing genetic variation probably occur at population foundation. (iv) Lower genetic differentiation was detected among rivers than among ponds which might be related to limitations on gene flow. Demographic and temporal genetic data further indicates that flooding in rivers is unlikely to induce marked gene flow explaining the strong genetic differentiation at short geographical scale in such habitats. Finally, the demographic data suggest that some populations are transitory and subject to recurrent recolonization, a pattern that was also detected through genetic data.  相似文献   

3.
Temporal evolution of genetic variability may have far-reaching consequences for a diverse array of evolutionary processes. Within the polders of the Bay of Mont-Saint-Michel (France), populations of the land snail Helix aspersa are characterized by a metapopulation structure with occasional extinction processes resulting from farming practices. A temporal survey of genetic structure in H . aspersa was carried out using variability at four microsatellite loci, in ten populations sampled two years apart. Levels of within-population genetic variation, as measured by allelic richness, H e or F is , did not change over time and similar levels of population differentiation were demonstrated for both sampling years. The extent of genetic differentiation between temporal samples of the same population established (i) a stable structure for six populations, and (ii) substantial genetic changes for four populations. Using classical F -statistics and a maximum likelihood method, estimates of the effective population size ( N e) illustrated a mixture of stable populations with high N e, and unstable populations characterized by very small N e estimates (of 5–11 individuals). Owing to human disturbances, intermittent gene flow and genetic drift are likely to be the predominant evolutionary processes shaping the observed genetic structure. However, the practice of multiple matings and sperm storage is likely to provide a reservoir of variability, minimizing the eroding genetic effects of population size reduction and increasing the effective population size.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 89–102.  相似文献   

4.
The distribution of neutral genetic variability within and among sets of populations results from the combined actions of genetic drift, migration, extinction and recolonization processes, mutation, and the mating system. We here analyzed these factors in 38 populations of the hermaphroditic snail Bulinus truncatus. The sampling area covered a large part of the species range. The variability was analyzed using four polymorphic microsatellite loci. A very large number of alleles (up to 55) was found at the level of the whole study. Observed heterozygote deficiencies within populations are consistent with very high selfing rates, generally above 0.80, in all populations. These should depress the variability within populations, because of low effective size, genetic hitchhiking, and background selection, whatever the model of mutation assumed. However, that some populations exhibit much more variability than others suggests that historical demographic processes (e.g., population size variation, bottlenecks, or founding events) may play a significant role. A hierarchical analysis of the distribution of the variability across populations indicates a strong pattern of isolation by distance, whatever the geographical scale considered. Our analysis also illustrates how the mutation rate may affect population differentiation, as different mutation rates result in different levels of homoplasy at microsatellite loci. The effects of both genetic drift and gene flow vary with the temporal and spatial scales considered in B. truncatus populations.  相似文献   

5.
Conservation of species should be based on knowledge of effective population sizes and understanding of how breeding tactics and selection of recruitment habitats lead to genetic structuring. In the stream‐spawning and genetically diverse brown trout, spawning and rearing areas may be restricted source habitats. Spatio–temporal genetic variability patterns were studied in brown trout occupying three lakes characterized by restricted stream habitat but high recruitment levels. This suggested non‐typical lake‐spawning, potentially representing additional spatio–temporal genetic variation in continuous habitats. Three years of sampling documented presence of young‐of‐the‐year cohorts in littoral lake areas with groundwater inflow, confirming lake‐spawning trout in all three lakes. Nine microsatellite markers assayed across 901 young‐of‐the‐year individuals indicated overall substantial genetic differentiation in space and time. Nested gene diversity analyses revealed highly significant (≤P = 0.002) differentiation on all hierarchical levels, represented by regional lakes (FLT = 0.281), stream vs. lake habitat within regional lakes (FHL = 0.045), sample site within habitats (FSH = 0.010), and cohorts within sample sites (FCS = 0.016). Genetic structuring was, however, different among lakes. It was more pronounced in a natural lake, which exhibited temporally stable structuring both between two lake‐spawning populations and between lake‐ and stream spawners. Hence, it is demonstrated that lake‐spawning brown trout form genetically distinct populations and may significantly contribute to genetic diversity. In another lake, differentiation was substantial between stream‐ and lake‐spawning populations but not within habitat. In the third lake, there was less apparent spatial or temporal genetic structuring. Calculation of effective population sizes suggested small spawning populations in general, both within streams and lakes, and indicates that the presence of lake‐spawning populations tended to reduce genetic drift in the total (meta‐) population of the lake.  相似文献   

6.
The majority of plant species and many animals are hermaphrodites, with individuals expressing both female and male function. Although hermaphrodites can potentially reproduce by self‐fertilization, they have a high prevalence of outcrossing. The genetic advantages of outcrossing are described by two hypotheses: avoidance of inbreeding depression because selfing leads to immediate expression of recessive deleterious mutations, and release from drift load because self‐fertilization leads to long‐term accumulation of deleterious mutations due to genetic drift and, eventually, to extinction. I tested both hypotheses by experimentally crossing Arabidopsis lyrata plants (self‐pollinated, cross‐pollinated within the population, or cross‐pollinated between populations) and measuring offspring performance over 3 years. There were 18 source populations, each of which was either predominantly outcrossing, mixed mating, or predominantly selfing. Contrary to predictions, outcrossing populations had low inbreeding depression, which equaled that of selfing populations, challenging the central role of inbreeding depression in mating system shifts. However, plants from selfing populations showed the greatest increase in fitness when crossed with plants from other populations, reflecting higher drift load. The results support the hypothesis that extinction by mutational meltdown is why selfing hermaphroditic taxa are rare, despite their frequent appearance over evolutionary time.  相似文献   

7.
Abstract Self-compatible hermaphroditic organisms that mix self-fertilization and outcrossing are of great interest for investigating the evolution of mating systems. We investigate the evolution of selfing in Lymnaea truncatula , a self-compatible hermaphroditic freshwater snail. We first analyze the consequences of selfing in terms of genetic variability within and among populations and then investigate how these consequences along with the species ecology (harshness of the habitat and parasitism) might govern the evolution of selfing. Snails from 13 localities (classified as temporary or permanent depending on their water availability) were sampled in western Switzerland and genotyped for seven microsatellite loci. FIS (estimated on adults) and progeny array analyses (on hatchlings) provided similar selfing rate estimates of 80%. Populations presented a low polymorphism and were highly differentiated (FST= 0.58). Although the reproductive assurance hypothesis would predict higher selfing rate in temporary populations, no difference in selfing level was observed between temporary and permanent populations. However, allelic richness and gene diversity declined in temporary habitats, presumably reflecting drift. Infection levels varied but were not simply related to either estimated population selfing rate or to differences in heterozygosity. These findings and the similar selfing rates estimated for hatchlings and adults suggest that within-population inbreeding depression is low in L. truncatula.  相似文献   

8.
? The mating system, dispersal and census size are predicted to determine the magnitude of genetic drift, but little is known about their relative importance in nature. ? We estimated the contributions of several population-level features to genetic drift in 18 populations of Arabidopsis lyrata. The factors were outcrossing rate, within-population spatial genetic structure, census size and substrate type. The expected heterozygosity (H(E)) at 10 microsatellite loci was taken to reflect the effective population size (N(e)) and the strength of genetic drift. ? The mating system explained most of the variation in H(E) (60%), followed by substrate (10%), genetic structure (9%) and census size (6%). The most outcrossing population had a +0.32 higher predicted H(E) than the most selfing population; the estimated N(e) of selfing populations was less than half that of outcrossing populations. Rocky outcrops supported populations with a +0.14 higher H(E) than did sandy substrates. The most structured population had a +0.24 higher H(E) than the least structured population, and the largest population had a +0.18 higher H(E) than the smallest population. ? This study illustrates the importance of outcrossing, genetic structure and the physical environment--together with census size--in maintaining H(E), and suggests that multiple population-level characteristics influence N(e) and the action of genetic drift.  相似文献   

9.
In the present study the population genetic structure of the terrestrial snail Pomatias elegans was related to habitat structure on a microspatial scale. The genetic variability of 1607 individuals from 51 sampling sites in five different populations in Provence, France, was studied with an allozyme marker using population genetic methods, Mantel tests and spatial autocorrelation techniques were applied to different connectivity networks accounting for the structural features of the landscape. It is suggested that the population structure is, to a large extent, a function of the habitat quality, quantified as population density, and of the spatial arrangement of the habitat in the landscape and not of the geographical distance per se . In fragmented habitats, random genetic drift was the prevailing force for sampling sites separated by a few hundred meters.  © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 76 , 565–575.  相似文献   

10.
Temporal variation in allele frequencies, whether caused by deterministic or stochastic forces, can inform us about interesting demographic and evolutionary phenomena occurring in wild populations. In spite of the continued surge of interest in the genetics of three-spined stickleback (Gasterosteus aculeatus) populations, little attention has been paid towards the temporal stability of allele frequency distributions, and whether there are consistent differences in effective size (Ne) of local populations. We investigated temporal stability of genetic variability and differentiation in 15 microsatellite loci within and among eight collection sites of varying habitat type, surveyed twice over a six-year time period. In addition, Nes were estimated with the expectation that they would be lowest in isolated ponds, intermediate in larger lakes and largest in open marine sites. In spite of the marked differences in genetic variability and differentiation among the study sites, the temporal differences in allele frequencies, as well as measures of genetic diversity and differentiation, were negligible. Accordingly, the Ne estimates were temporally stable, but tended to be lower in ponds than in lake or marine habitats. Hence, we conclude that allele frequencies in putatively neutral markers in three-spined sticklebacks seem to be temporally stable – at least over periods of few generations – across a wide range of habitat types differing markedly in levels of genetic variability, effective population size and gene flow.  相似文献   

11.
Inbreeding depression is a key factor affecting the persistence of natural populations, particularly when they are fragmented. In species with mixed mating systems, inbreeding depression can be estimated at the population level by regressing the average progeny fitness by the selfing rate of their mothers. We applied this method using simulated populations to investigate how population genetic parameters can affect the detection power of inbreeding depression. We simulated individual selfing rates and genetic loads from which we computed fitness values. The regression method yielded high statistical power, inbreeding depression being detected as significant (5?% level) in 92?% of the simulations. High individual variation in selfing rate and high mean genetic load led to better detection of inbreeding depression while high among-individual variation in genetic load made it more difficult to detect inbreeding depression. For a constant sampling effort, increasing the number of progenies while decreasing the number of individuals per progeny enhanced the detection power of inbreeding depression. We discuss the implication of among-mother variability of genetic load and selfing rate on inbreeding depression studies.  相似文献   

12.
One of the main advantages of self-fertilization is to provide reproductive assurance when pollen or mates are scarce. In plants, partial or facultative selfing limits the risk of pollination failure. In preferentially outcrossing species, this may result in mixed-mating. In hermaphroditic animals, recent studies suggest that mixed mating might be much rarer than in plants. However more studies are required to substantiate this claim, especially focusing on species whose lifestyle entails a high potential benefit of reproductive assurance via selfing. We studied a hermaphroditic snail, Drepanotrema depressissimum, which inhabits very unstable and fragmented freshwater habitats. Individuals often have to recolonize newly refilled ponds after long droughts, a situation of low population density and hence low mate availability in which selfing could be an advantage. We estimated selfing rates in natural populations from Guadeloupe (Lesser Antilles), and used laboratory experiments to characterize the reproductive behaviour and success of individuals with or without mates. We detected no sign of selfing in natural populations. Even when given no other option, isolated individuals were extremely reluctant to self. They produced either no or very small clutches, and in the latter case initiated egg-laying later than non-isolated individuals. Self-fertilized clutches suffered near-total (98%) inbreeding depression at the juvenile stage. The example of D. depressissimum therefore shows that a species can overcome periods of mate shortage and habitat instability without the potential to rely on facultative selfing. We hypothesize that metapopulation persistence in this landscape is probably related to a form of dormancy (aestivation in dry ground) rather than to recolonization by rare immigrants and reproductive assurance.  相似文献   

13.
The reproductive assurance hypothesis emphasizes that self-fertilization should evolve in species with reduced dispersal capability, low population size or experiencing recurrent bottlenecks. Our work investigates the ecological components of the habitats colonized by the snail, Galba truncatula, that may influence the evolution of selfing. Galba truncatula is a preferential selfer inhabiting freshwater habitats, which vary with respect to the degree of permanence. We considered with a population genetic approach the spatial and the temporal degree of isolation of populations of G. truncatula. We showed that patches at distances of only a few meters are highly structured. The effective population sizes appear quite low, in the order of 10 individuals or less. This study indicates that individuals of the species G. truncatula are likely to be alone in a site and have a low probability of finding a partner from a nearby site to reproduce. These results emphasize the advantage of selfing in this species.  相似文献   

14.
The variance of sample heterozygosity, averaged over several loci, is studied in a variety of situations. The variance depends on the sampling implicit in the mating system as well as on that explicit in the loci scored and individuals sampled. There are also effects of allelic distributions over loci and of linkage or linkage disequilibrium between pairs of loci. Results are obtained for populations in drift and mutation balance, for infinite populations undergoing mixed self and random mating, and for finite monoecious populations with or without selfing. For unlinked loci in drift/mutation balance, variances appear to be lessened more by increasing the number of loci scored than by increasing the number of individuals sampled. For infinite populations under the mixed self and random mating system, however, the reverse is true. Methods for estimating the variance of sample heterozygosity are discussed, with attention being paid to unbalanced data where not all loci are scored in all individuals.  相似文献   

15.
Plants have three basic means of reproduction, by outcrossing, by selfing, and asexually. In most plant populations, at least two and often all three of these options are everpresent, so that individuals adopt mixed mating strategies at evolutionarily stable strategy (ESS) threshholds. Because mating systems are genetically controlled and affect genotype structure, they are liable to feedback. Productive habitats with a large standing crop are more likely to favour outcrossing, while unproductive habitats may favour asexuality or selfing, so that mating systems may change through seral development, even within the same species. Outcrossing tends to break up linkage disequilibria, but may also favour the creation of adaptive linkage groups. Mechanisms whereby male sexual selection, small population size and selfing can influence the genetic structure of populations are examined.  相似文献   

16.
1. Aquatic invertebrates display a wide array of alternative reproductive modes from apomixis to hermaphroditism and cyclical parthenogenesis. These have important effects on genetic diversity and population structure. Populations of the 'living fossil' Triops cancriformis display a range of sex ratios, and various reproductive modes are thought to underlie this variation. Using sex ratio information and histological analyses European populations have been inferred to be gonochoric (with separate males and females), selfing hermaphroditic and androdioecious, a rare reproductive mode in which selfing hermaphrodites coexist with variable proportions of males. In addition, some populations have been described as meiotic parthenogens.
2. Here we use population genetic analysis using microsatellite loci in populations with a range of sex ratios including a gonochoric population, and marker segregation patterns in heterozygote individuals reared in isolation, to clarify the reproductive mode in this species.
3. Our data show that populations in general have very low levels of genetic diversity. Non-gonochoric populations show lower genetic diversity, more heterozygote deficiencies, higher inbreeding coefficients and stronger linkage disequilibria than the gonochoric population. The maintenance of some heterozygosity in populations is consistent with some male influence in T. cancriformis populations, as would be expected from an androdioecious reproductive system. Results of marker segregation in eggs produced in isolation from non-gonochoric populations indicate that meiosis occurs and are consistent with two reproductive modes: selfing hermaphroditism and a type of ameiotic parthenogenesis.
4. Overall, our data indicate that androdioecy and selfing hermaphroditism are the most likely reproductive modes of non-gonochoric European Triops populations. Triops populations are strongly structured, suggesting high genetic drift and low levels of gene flow.  相似文献   

17.
We present here a spatial and temporal population genetic survey of a common freshwater snail, also a predominantly selfing species, Lymnaea truncatula. The rate of genetic diversity loss was quantified by estimating the effective size (Ne) of the snail populations, using two different methods. A temporal survey allowed estimation of a variance effective size of the populations, and a spatial survey allowed the estimation of an inbreeding effective size, from two-locus identity disequilibria estimates. Both methods were consistent and provided low Ne values. Drift due to (i) high amounts of selfing and (ii) fluctuations in population sizes because of temporary habitats, and also selection coupled to genome-wide linkage disequilibria, could explain such reductions in Ne. The loss of genetic diversity appears to be counterbalanced only very partially by low apparent rates of gene flow.  相似文献   

18.
Comparisons of neutral marker and quantitative trait divergence can provide important insights into the relative roles of natural selection and neutral genetic drift in population differentiation. We investigated phenotypic and genetic differentiation among Fennoscandian threespine stickleback (Gasterosteus aculeatus) populations, and found that the highest degree of differentiation occurred between sea and freshwater habitats. Within habitats, morphological divergence was highest among the different freshwater populations. Pairwise phenotypic and neutral genetic distances among populations were positively correlated, suggesting that genetic drift may have contributed to the morphological differentiation among habitats. On the other hand, the degree of phenotypic differentiation (PST) clearly surpassed the neutral expectation set by FST, suggesting a predominant role for natural selection over genetic drift as an explanation for the observed differentiation. However, separate PST/FST comparisons by habitats revealed that body shape divergence between lake and marine populations, and even among marine populations, can be strongly influenced by natural selection. On the other hand, genetic drift can play an important role in the differentiation among lake populations.  相似文献   

19.
Although intraspecific variability is now widely recognized as affecting evolutionary and ecological processes, our knowledge on the importance of intraspecific variability within invasive species is still limited. This is despite the fact that understanding the linkage between within‐population morphological divergences and the use of different trophic or spatial resources (i.e., resource polymorphism) can help to better predict their ecological impacts on recipient ecosystems. Here, we quantified the extent of resource polymorphism within populations of a worldwide invasive crayfish species, Procambarus clarkii, in 16 lake populations by comparing their trophic (estimated using stable isotope analyses) and morphological characteristics between individuals from the littoral and pelagic habitats. Our results first demonstrated that crayfish occured in both littoral and pelagic habitats of seven lakes and that the use of pelagic habitat was associated with increased abundance of littoral crayfish. We then found morphological (i.e., body and chelae shapes) and trophic divergence (i.e., reliance on littoral carbon) among individuals from littoral and pelagic habitats, highlighting the existence of resource polymorphism in invasive populations. There was no genetic differentiation between individuals from the two habitats, implying that this resource polymorphism was stable (i.e., high gene flow between individuals). Finally, we demonstrated that a divergent adaptive process was responsible for the morphological divergence in body and chela shapes between habitats while difference in littoral reliance neutrally evolved under genetic drift. These findings demonstrated that invasive P. clarkii can display strong within‐population phenotypic variability in recent populations, and this could lead to contrasting ecological impacts between littoral and pelagic individuals.  相似文献   

20.
Mosquitofish (Gambusia affinis) were collected from 17 reservoirs on three islands in Hawaii, USA. Genetic and life history traits for adult females from these populations were used to evaluate hypotheses concerning short-term evolutionary divergence of populations recently established from a common ancestral source. The effects of founder events and drift on genetic variability and population differentiation were also examined. Significant differences in life history characteristics, allele frequencies, and multi-locus heterozygosities (H) were found among fish populations collected from different reservoirs and between reservoirs classified as stable or fluctuating on the basis of temporal fluctuation in water level. Females from stable reservoirs exhibited greater standard length (35.1 vs 32.8 mm), lower fecundity (11.9 vs 15.2 embryos), lower reproductive allocation (18.2% vs 22.8%), but larger mean embryo size (1.95 vs 1.67 mg) than females from fluctuating reservoirs. Consistency in means among replicates of each reservoir class and concordance in direction and magnitude of differences reported here and results of sampling conducted from these same locations 10 years previously (Stearns, 1983a) suggest that ecological factors intrinsic to these two environments are important in determing population life history traits. Females from stable reservoirs exhibited lower heterozygosity than females from fluctuating reservoirs (0.134 vs 0.158, respectively). Levels and direction od differences in heterozygosity, the high proportion of polymorphic loci and lack of fixation of alternative alleles argue against a purely stochastic explanation for genetic and life history variation among reservoir populations. Levels of genetic variability and interpopulation differentiation were similar to those observed in mainland populations of this species. A high proportion of the genetic diversity was apportioned between populations and within populations due to differences between juveniles and adults. Significant genotypic differences between adult and juvenile age classes suggest that the genetic divergence of local populations may occur over short periods of time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号