首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The double-stranded RNA binding domain (dsRBD) is an approximately 65 amino acid motif that is found in a variety of proteins that interact with double-stranded (ds) RNA, such as Escherichia coli RNase III and the dsRNA-dependent kinase, PKR. Drosophila staufen protein contains five copies of this motif, and the third of these binds dsRNA in vitro. Using multinuclear/multidimensional NMR methods, we have determined that staufen dsRBD3 forms a compact protein domain with an alpha-beta-beta-beta-alpha structure in which the two alpha-helices lie on one face of a three-stranded anti-parallel beta-sheet. This structure is very similar to that of the N-terminal domain of a prokaryotic ribosomal protein S5. Furthermore, the consensus derived from all known S5p family sequences shares several conserved residues with the dsRBD consensus sequence, indicating that the two domains share a common evolutionary origin. Using in vitro mutagenesis, we have identified several surface residues which are important for the RNA binding of the dsRBD, and these all lie on the same side of the domain. Two residues that are essential for RNA binding, F32 and K50, are also conserved in the S5 protein family, suggesting that the two domains interact with RNA in a similar way.  相似文献   

2.
We have determined the crystal structure of hypothetical protein TTHB192 from Thermus thermophilus HB8 at 1.9 A resolution. This protein is a member of the Escherichia coli ygcH sequence family, which contains approximately 15 sequence homologs of bacterial origin. These homologs have a high isoelectric point. The crystal structure reveals that TTHB192 consists of two independently folded domains, and that each domain exhibits a ferredoxin-like fold with a four-stranded antiparallel beta-sheet packed on one side by alpha-helices. These two tandem domains face each other to generate a beta-sheet platform. TTHB192 displays overall structural similarity to Sex-lethal protein and poly(A)-binding protein fragments. These proteins have RNA binding activity which is supported by a beta-sheet platform formed by two tandem repeats of an RNA recognition motif domain with signature sequence motifs on the beta-sheet surface. Although TTHB192 does not have the same signature sequence motif as the RNA recognition motif domain, the presence of an evolutionarily conserved basic patch on the beta-sheet platform could be functionally relevant for nucleic acid-binding. This report shows that TTHB192 and its sequence homologs adopt an RNA recognition motif-like domain and provides the first testable functional hypothesis for this protein family.  相似文献   

3.
Structure of the dsRNA binding domain of E. coli RNase III.   总被引:12,自引:4,他引:8       下载免费PDF全文
  相似文献   

4.
eIF1 is a universally conserved translation factor that is necessary for scanning and involved in initiation site selection. We have determined the solution structure of human eIF1 with an N-terminal His tag using NMR spectroscopy. Residues 29-113 of the native sequence form a tightly packed domain with two alpha-helices on one side of a five-stranded parallel and antiparallel beta-sheet. The fold is new but similar to that of several ribosomal proteins and RNA-binding domains. A likely binding site is indicated by yeast mutations and conserved residues located together on the surface. No interaction with recombinant eIF5 or the initiation site RNA GCCACAAUGGCA was detected by NMR, but GST pull-down experiments show that eIF1 binds specifically to the p110 subunit of eIF3. This interaction explains how eIF1 is recruited to the 40S ribosomal subunit.  相似文献   

5.
6.
Ribonuclease HIII (Bst-RNase HIII) from the moderate thermophile Bacillus stearothermophilus is a type 2 RNase H but shows poor amino acid sequence identity with another type 2 RNase H, RNase HII. It is composed of 310 amino acid residues and acts as a monomer. Bst-RNase HIII has a large N-terminal extension with unknown function and a unique active-site motif (DEDE), both of which are characteristics common to RNases HIII. To understand the role of these N-terminal extension and active-site residues, the crystal structure of Bst-RNase HIII was determined in both metal-free and metal-bound forms at 2.1-2.6 angstroms resolutions. According to these structures, Bst-RNase HIII consists of the N-terminal domain and C-terminal RNase H domain. The structures of the N and C-terminal domains were similar to those of TATA-box binding proteins and archaeal RNases HII, respectively. The steric configurations of the four conserved active-site residues were very similar to those of other type 1 and type 2 RNases H. Single Mn and Mg ions were coordinated with Asp97, Glu98, and Asp202, which correspond to Asp10, Glu48, and Asp70 of Escherichia coli RNase HI, respectively. The mutational studies indicated that the replacement of either one of these residues with Ala resulted in a great reduction of the enzymatic activity. Overproduction, purification, and characterization of the Bst-RNase HIII derivatives with N and/or C-terminal truncations indicated that the N-terminal domain and C-terminal helix are involved in substrate binding, but the former contributes to substrate binding more greatly than the latter.  相似文献   

7.
P W Howe  K Nagai  D Neuhaus    G Varani 《The EMBO journal》1994,13(16):3873-3881
The RNP domain is a very common motif found in hundreds of proteins, including many protein components of the RNA processing machinery. The 70-90 amino acid domain contains two highly conserved stretches of 6-8 amino acids (RNP-1 and RNP-2) in the central strands of a four-stranded antiparallel beta-sheet, packed against two alpha-helices by a conserved hydrophobic core. Using multidimensional heteronuclear NMR, we have mapped intermolecular contacts between the human U1A protein 102 amino acid N-terminal RNP domain and a 31-mer oligonucleotide derived from stem-loop II of U1 snRNA. Chemical shift changes induced on the protein by the RNA define the surface of the beta-sheet as the recognition interface. The reverse face of the protein, with the two alpha-helices, remains exposed to the solvent in the presence of the RNA, and is potentially available for protein-protein contacts in spliceosome assembly or splice site selection. Protein-RNA contacts occur at the single-stranded apical loop of the hairpin, but also in the major groove of the helical stem at neighbouring U.G and U.U non-Watson-Crick base pairs. Examination of a proposed model for the complex in the light of the present results reveals several features of RNA recognition by RNP proteins. The quality of the spectra for this complex of 22 kDa demonstrates the feasibility of NMR investigation of RNA-protein complexes.  相似文献   

8.
9.
Sporulation in Bacillus subtilis begins with an asymmetric cell division giving rise to smaller forespore and larger mother cell compartments. Different programs of gene expression are subsequently directed by compartment-specific RNA polymerase sigma-factors. In the final stages, spore coat proteins are synthesized in the mother cell under the control of RNA polymerase containing sigma(K), (Esigma(K)). sigma(K) is synthesized as an inactive zymogen, pro-sigma(K), which is activated by proteolytic cleavage. Processing of pro-sigma(K) is performed by SpoIVFB, a metalloprotease that resides in a complex with SpoIVFA and bypass of forespore (Bof)A in the outer forespore membrane. Ensuring coordination of events taking place in the two compartments, pro-sigma(K) processing in the mother cell is delayed until appropriate signals are received from the forespore. Cell-cell signaling is mediated by SpoIVB and BofC, which are expressed in the forespore and secreted to the intercompartmental space where they regulate pro-sigma(K) processing by mechanisms that are not yet fully understood. Here we present the three-dimensional structure of BofC determined by solution state NMR. BofC is a monomer made up of two domains. The N-terminal domain, containing a four-stranded beta-sheet onto one face of which an alpha-helix is packed, closely resembles the third immunoglobulin-binding domain of protein G from Streptococcus. The C-terminal domain contains a three-stranded beta-sheet and three alpha-helices in a novel domain topology. The sequence connecting the domains contains a conserved DISP motif to which mutations that affect BofC activity map. Possible roles for BofC in the sigma(K) checkpoint are discussed in the light of sequence and structure comparisons.  相似文献   

10.
The conserved protein Nip7 is involved in ribosome biogenesis, being required for proper 27S pre-rRNA processing and 60S ribosome subunit assembly in Saccharomyces cerevisiae. Yeast Nip7p interacts with nucleolar proteins and with the exosome subunit Rrp43p, but its molecular function remains to be determined. Solution of the Pyrococcus abyssi Nip7 (PaNip7) crystal structure revealed a monomeric protein composed by two alpha-beta domains. The N-terminal domain is formed by a five-stranded antiparallel beta-sheet surrounded by three alpha-helices and a 310 helix while the C-terminal, a mixed beta-sheet domain composed by strands beta8 to beta12, one alpha-helix, and a 310 helix, corresponds to the conserved PUA domain (after Pseudo-Uridine synthases and Archaeosine-specific transglycosylases). By combining structural analyses and RNA interaction assays, we assessed the ability of both yeast and archaeal Nip7 orthologues to interact with RNA. Structural alignment of the PaNip7 PUA domain with the RNA-interacting surface of the ArcTGT (archaeosine tRNA-guanine transglycosylase) PUA domain indicated that in the archaeal PUA domain positively charged residues (R151, R152, K155, and K158) are involved in RNA interaction. However, equivalent positions are occupied by mostly hydrophobic residues (A/G160, I161, F164, and A167) in eukaryotic Nip7 orthologues. Both proteins can bind specifically to polyuridine, and RNA interaction requires specific residues of the PUA domain as determined by site-directed mutagenesis. This work provides experimental verification that the PUA domain mediates Nip7 interaction with RNA and reveals that the preference for interaction with polyuridine sequences is conserved in Archaea and eukaryotic Nip7 proteins.  相似文献   

11.
12.
Xu J  Peng W  Sun Y  Wang X  Xu Y  Li X  Gao G  Rao Z 《Nucleic acids research》2012,40(14):6957-6965
MCP-1-induced protein 1 (MCPIP1) plays an important role in the downregulation of the LPS-induced immune response by acting as an RNase targeting IL-6 and IL-12b mRNAs. A conserved domain located in the N-terminal part of MCPIP1 is thought to be responsible for its RNase activity, but its catalytic mechanism is not well understood due to the lack of an atomic resolution structure. We determined the 3D crystal structure of this MCPIP1 N-terminal conserved RNase domain at a resolution of 2.0 Å. The overall structure of MCPIP1 N-terminal conserved domain shares high structural homology with PilT N-terminal domain. We show that the RNase catalytic center is composed of several acidic residues, verifying their importance by site-specific mutagenesis. A positively charged arm close to the catalytic center may act as an RNA substrate-binding site, since exchange of critical positively charged residues on this arm with alanine partially abolish the RNase activity of MCPIP1 in vivo. Our structure of the MCPIP1 N-terminal conserved domain reveals the details of the catalytic center and provides a greater understanding of the RNA degradation mechanism.  相似文献   

13.
The T4 translational repressor RegA protein folds into two structural domains, as revealed by the crystal structure (Kang, C.-H. , Chan, R., Berger, I., Lockshin, C., Green, L., Gold, L., and Rich, A. (1995) Science 268, 1170-1173). Domain I of the RegA protein contains a four-stranded beta-sheet and two alpha-helices. Domain II contains a four-stranded beta-sheet and an unusual 3/10 helix. Since beta-sheet residues play a role in a number of protein-RNA interactions, one or both of the beta-sheet regions in RegA protein may be involved in RNA binding. To test this possibility, mutagenesis of residues on both beta-sheets was performed, and the effects on the RNA binding affinities of RegA protein were measured. Additional sites for mutagenesis were selected from molecular modeling of RegA protein. The RNA binding affinities of three purified mutant RegA proteins were evaluated by fluorescence quenching equilibrium binding assays. The activities of the remainder of the mutant proteins were evaluated by quantitative RNA gel mobility shift assays using lysed cell supernatants. The results of this mutagenesis study ruled out the participation of beta-sheet residues. Instead, the RNA binding site was found to be a surface pocket formed by residues on two loops and an alpha-helix. Thus, RegA protein appears to use a unique structural motif in binding RNA, which may be related to its unusual RNA recognition properties.  相似文献   

14.
15.
Tadokoro T  Chon H  Koga Y  Takano K  Kanaya S 《The FEBS journal》2007,274(14):3715-3727
The gene encoding a bacterial type 1 RNase H, termed RBD-RNase HI, was cloned from the psychrotrophic bacterium Shewanella sp. SIB1, overproduced in Escherichia coli, and the recombinant protein was purified and biochemically characterized. SIB1 RBD-RNase HI consists of 262 amino acid residues and shows amino acid sequence identities of 26% to SIB1 RNase HI, 17% to E. coli RNase HI, and 32% to human RNase H1. SIB1 RBD-RNase HI has a double-stranded RNA binding domain (RBD) at the N-terminus, which is commonly present at the N-termini of eukaryotic type 1 RNases H. Gel mobility shift assay indicated that this domain binds to an RNA/DNA hybrid in an isolated form, suggesting that this domain is involved in substrate binding. SIB1 RBD-RNase HI exhibited the enzymatic activity both in vitro and in vivo. Its optimum pH and metal ion requirement were similar to those of SIB1 RNase HI, E. coli RNase HI, and human RNase H1. The specific activity of SIB1 RBD-RNase HI was comparable to that of E. coli RNase HI and was much higher than those of SIB1 RNase HI and human RNase H1. SIB1 RBD-RNase HI showed poor cleavage-site specificity for oligomeric substrates. SIB1 RBD-RNase HI was less stable than E. coli RNase HI but was as stable as human RNase H1. Database searches indicate that several bacteria and archaea contain an RBD-RNase HI. This is the first report on the biochemical characterization of RBD-RNase HI.  相似文献   

16.
The R3H domain is a conserved sequence motif, identified in over 100 proteins, that is thought to be involved in polynucleotide-binding, including DNA, RNA and single-stranded DNA. In this work the 3D structure of the R3H domain from human Smubp-2 was determined by NMR spectroscopy. It is the first 3D structure determination of an R3H domain. The fold presents a small motif, consisting of a three-stranded antiparallel beta-sheet and two alpha-helices, which is related to the structures of the YhhP protein and the C-terminal domain of the translational initiation factor IF3. The similarities are non-trivial, as the amino acid identities are below 10%. Three conserved basic residues cluster on the same face of the R3H domain and could play a role in nucleic acid recognition. An extended hydrophobic area at a different site of the molecular surface could act as a protein-binding site. A strong correlation between conservation of hydrophobic amino acids and side-chain solvent protection indicates that the structure of the Smubp-2 R3H domain is representative of R3H domains in general.  相似文献   

17.
18.
19.
Yeast Rnt1 is a member of the double-stranded RNA (dsRNA)-specific RNase III family identified by conserved dsRNA binding (dsRBD) and nuclease domains. Comparative sequence analyses have revealed an additional N-terminal domain unique to the eukaryotic homologues of RNase III. The deletion of this domain from Rnt1 slowed growth and led to mild accumulation of unprocessed 25S pre-rRNA. In vitro, deletion of the N-terminal domain reduced the rate of RNA cleavage under physiological salt concentration. Size exclusion chromatography and cross-linking assays indicated that the N-terminal domain and the dsRBD self-interact to stabilize the Rnt1 homodimer. In addition, an interaction between the N-terminal domain and the dsRBD was identified by a two-hybrid assay. The results suggest that the eukaryotic N-terminal domain of Rnt1 ensures efficient dsRNA cleavage by mediating the assembly of optimum Rnt1-RNA ribonucleoprotein complex.  相似文献   

20.
DEAD box RNA helicases use the energy of ATP hydrolysis to unwind double-stranded RNA regions or to disrupt RNA/protein complexes. A minimal RNA helicase comprises nine conserved motifs distributed over two RecA-like domains. The N-terminal domain contains all motifs involved in nucleotide binding, namely the Q-motif, the DEAD box, and the P-loop, as well as the SAT motif, which has been implicated in the coordination of ATP hydrolysis and RNA unwinding. We present here the crystal structure of the N-terminal domain of the Thermus thermophilus RNA helicase Hera in complex with adenosine monophosphate (AMP). Upon binding of AMP the P-loop adopts a partially collapsed or half-open conformation that is still connected to the DEAD box motif, and the DEAD box in turn is linked to the SAT motif via hydrogen bonds. This network of interactions communicates changes in the P-loop conformation to distant parts of the helicase. The affinity of AMP is comparable to that of ADP and ATP, substantiating that the binding energy from additional phosphate moieties is directly converted into conformational changes of the entire helicase. Importantly, the N-terminal Hera domain forms a dimer in the crystal similar to that seen in another thermophilic prokaryote. It is possible that this mode of dimerization represents the prototypic architecture in RNA helicases of thermophilic origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号