首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We analyse the evolution of the assortment of encounters through active choice of companions among individuals that interact cooperatively in a situation of mutual benefit. Using a simple mathematical model, we show that mutual benefit can favour the evolution of a preference to interact with individuals that are similar to themselves with respect to an arbitrary tag even when both the preference and the tag depend on two independent and unlinked genes. Two necessary requisites to obtain this result are: (i) a small population or a large subdivided metapulation and (ii) an asymmetry between partners in such a way that one of them (donor) proposes the cooperation and elects the partner, whereas the other (receiver) never rejects the offer. We also show that mutual benefit can be the starting point for the evolution of altruistic behaviours as long as there are preferential interactions. This requires that the tag used in the election of partners is the altruistic or selfish behaviour itself.  相似文献   

2.
The evolution of altruism often requires genetic similarity among interactors. For structured populations in which a social trait affects all group members, this entails positive assortment, meaning that cooperators and noncooperators tend to be segregated into different groups. Several authors have claimed that mechanisms other than common descent can produce positive assortment, but this claim has not been generally accepted. Here, we describe one such mechanism. The process of "environmental feedback" requires only that the cooperative trait affects the quality of the local environment and that individuals are more likely to leave low-quality than high-quality environments. We illustrate this dynamic using an agent-based spatial model of feeding restraint. Depending on parameter settings, results included both positive assortment (required for the evolution of altruism) and negative assortment (required for the evolution of spite). The mechanism of environmental feedback appears to be a general one that could play a role in the evolution of many forms of cooperation.  相似文献   

3.
The ubiquity of cooperation has motivated a major research program over the last 50 years to discover ever more minimal conditions for the evolution of altruism. One important line of work is based on favoritism toward those who appear to be close relatives. Another important line is based on continuing interactions, whether between individuals (e.g., reciprocity) or between lines of descent in a viscous population. Here, we use an agent-based model to demonstrate a new mechanism that combines both lines of work to show when and how favoritism toward apparently similar others can evolve in the first place. The mechanism is the joint operation of viscosity and of tags (heritable, observable, and initially arbitrary characteristics), which serve as weak and potentially deceptive indicators of relatedness. Although tags are insufficient to support cooperation alone, we show that this joint mechanism vastly increases the range of environments in which contingent altruism can evolve in viscous populations. Even though our model is quite simple, the subtle dynamics underlying our results are not tractable using formal analytic tools (such as analysis of evolutionarily stable strategies), but are amenable to agent-based simulation.  相似文献   

4.
It seems obvious that as the benefits of cooperation increase, the share of cooperators in the population should also increase. It is well known that positive assortment between cooperative types, for instance in spatially structured populations, provide better conditions for the evolution of cooperation than complete mixing. This study demonstrates that, assuming positive assortment, under most conditions higher cooperation benefits also increase the share of cooperators. On the other hand, under a specified range of payoff values, when at least two payoff parameters are modified, the reverse is true. The conditions for this paradox are determined for two-person social dilemmas: the Prisoner's Dilemma, the Hawks and Doves game, and the Stag Hunt game, assuming global selection and positive assortment.  相似文献   

5.
We investigate the joint evolution of public goods cooperation and dispersal in a metapopulation model with small local populations. Altruistic cooperation can evolve due to assortment and kin selection, and dispersal can evolve because of demographic stochasticity, catastrophes and kin selection. Metapopulation structures resulting in assortment have been shown to make selection for cooperation possible. But how does dispersal affect cooperation and vice versa, when both are allowed to evolve as continuous traits? We found four qualitatively different evolutionary outcomes. (1) Monomorphic evolution to full defection with positive dispersal. (2) Monomorphic evolution to an evolutionarily stable state with positive cooperation and dispersal. In this case, parameter changes selecting for increased cooperation typically also select for increased dispersal. (3) Evolutionary branching can result in the evolutionarily stable coexistence of defectors and cooperators. Although defectors could be expected to disperse more than cooperators, here we show that the opposite case is also possible: Defectors tend to disperse less than cooperators when the total amount of cooperation in the dimorphic population is low enough. (4) Selection for too low cooperation can cause the extinction of the evolving population. For moderate catastrophe rates dispersal needs to be initially very frequent for evolutionary suicide to occur. Although selection for less dispersal in principle could prevent such evolutionary suicide, in most cases this rescuing effect is not sufficient, because selection in the cooperation trait is typically much stronger. If the catastrophe rate is large enough, a part of the boundary of viability can be evolutionarily attracting with respect to both strategy components, in which case evolutionary suicide is expected from all initial conditions.  相似文献   

6.
Assortative interaction among altruistic individuals is a necessary condition for the evolution of cooperation. The requirement for assortment holds regardless of whether a meta-population is subdivided into distinct and isolated subgroups or has ephemeral boundaries with a high migration rate. The assumption, however, is rarely tested directly. In this paper, we develop a method to test for assortment of prosociality in network-structured data. The method is applied to a friendship network collected from 238 Korean students attending the same high school. A mixing matrix was used to explore the presence of assortative friendship among more prosocial individuals. An exponential random graph model of network structure that accounts for additional observed relational propensities (higher-than-expected number of people nominating no friends) and sampling constraints (upper bound on friendship nominations) found that individual prosociality predicted friendship propensity, and that individuals with higher prosocial scores had a higher probability of befriending other more prosocial individuals. The results reveal that a considerable level of assortment of prosociality characterizes this population.  相似文献   

7.
Contingent movement and cooperation evolve under generalized reciprocity   总被引:2,自引:0,他引:2  
How cooperation and altruism among non-relatives can persist in the face of cheating remains a key puzzle in evolutionary biology. Although mechanisms such as direct and indirect reciprocity and limited movement have been put forward to explain such cooperation, they cannot explain cooperation among unfamiliar, highly mobile individuals. Here we show that cooperation may be evolutionarily stable if decisions taken to cooperate and to change group membership are both dependent on anonymous social experience (generalized reciprocity). We find that a win-stay, lose-shift rule (where shifting is either moving away from the group or changing tactics within the group after receiving defection) evolves in evolutionary simulations when group leaving is moderately costly (i.e. the current payoff to being alone is low, but still higher than that in a mutually defecting group, and new groups are rarely encountered). This leads to the establishment of widespread cooperation in the population. If the costs of group leaving are reduced, a similar group-leaving rule evolves in association with cooperation in pairs and exploitation of larger anonymous groups. We emphasize that mechanisms of assortment within populations are often behavioural decisions and should not be considered independently of the evolution of cooperation.  相似文献   

8.
The evolutionary stability of cooperative traits, that are beneficial to other individuals but costly to their carrier, is considered possible only through the establishment of a sufficient degree of assortment between cooperators. Chimeric microbial populations, characterized by simple interactions between unrelated individuals, restrain the applicability of standard mechanisms generating such assortment, in particular when cells disperse between successive reproductive events such as happens in Dicyostelids and Myxobacteria. In this paper, we address the evolutionary dynamics of a costly trait that enhances attachment to others as well as group cohesion. By modeling cells as self-propelled particles moving on a plane according to local interaction forces and undergoing cycles of aggregation, reproduction and dispersal, we show that blind differential adhesion provides a basis for assortment in the process of group formation. When reproductive performance depends on the social context of players, evolution by natural selection can lead to the success of the social trait, and to the concomitant emergence of sizeable groups. We point out the conditions on the microscopic properties of motion and interaction that make such evolutionary outcome possible, stressing that the advent of sociality by differential adhesion is restricted to specific ecological contexts. Moreover, we show that the aggregation process naturally implies the existence of non-aggregated particles, and highlight their crucial evolutionary role despite being largely neglected in theoretical models for the evolution of sociality.  相似文献   

9.
The evolution of cooperation often depends upon population structure, yet nearly all models of cooperation implicitly assume that this structure remains static. This is a simplifying assumption, because most organisms possess genetic traits that affect their population structure to some degree. These traits, such as a group size preference, affect the relatedness of interacting individuals and hence the opportunity for kin or group selection. We argue that models that do not explicitly consider their evolution cannot provide a satisfactory account of the origin of cooperation, because they cannot explain how the prerequisite population structures arise. Here, we consider the concurrent evolution of genetic traits that affect population structure, with those that affect social behavior. We show that not only does population structure drive social evolution, as in previous models, but that the opportunity for cooperation can in turn drive the creation of population structures that support it. This occurs through the generation of linkage disequilibrium between socio-behavioral and population-structuring traits, such that direct kin selection on social behavior creates indirect selection pressure on population structure. We illustrate our argument with a model of the concurrent evolution of group size preference and social behavior.  相似文献   

10.
Recent theoretical models have demonstrated that phenotypic traits can support the non-random assortment of cooperators in a population, thereby permitting the evolution of cooperation. In these “tag-based models”, cooperators modulate cooperation according to an observable and hard-to-fake trait displayed by potential interaction partners. Socially acquired vocalizations in general, and speech accent among humans in particular, are frequently proposed as hard to fake and hard to hide traits that display sufficient cross-populational variability to reliably guide such social assortment in fission–fusion societies. Adults’ sensitivity to accent variation in social evaluation and decisions about cooperation is well-established in sociolinguistic research. The evolutionary and developmental origins of these biases are largely unknown, however. Here, we investigate the influence of speech accent on 5–10-year-old children's developing social and cooperative preferences across four Brazilian Amazonian towns. Two sites have a single dominant accent, and two sites have multiple co-existing accent varieties. We found that children's friendship and resource allocation preferences were guided by accent only in sites characterized by accent heterogeneity. Results further suggest that this may be due to a more sensitively tuned ear for accent variation. The demonstrated local-accent preference did not hold in the face of personal cost. Results suggest that mechanisms guiding tag-based assortment are likely tuned according to locally relevant tag-variation.  相似文献   

11.
Analysis of some nonrandom mating models   总被引:2,自引:0,他引:2  
In this paper a few asymmetric models are presented taking account of the effects of assortative mating on an autosomal trait controlled by a single locus possibly with multiple alleles. The models are developed by specifying the intensities for preference mating for various phenotypes. The analysis is confined to the case in which preference is exercised by the individuals of one sex only. It is assumed that males possess unlimited fertility.The dynamics of the population and its equilibrium distribution are discussed. The gene frequency usually changes with time and equilibrium distribution in most cases depends only on the assortment parameters. Expressions are obtained giving the additive and dominance components of variance, and covariances for relatives for populations in equilibrium for some of the models.  相似文献   

12.
Anthropological evidence from diverse societies suggests that prestige-based leadership may provide a foundation for cooperation in many contexts. Here, inspired by such ethnographic observations and building on a foundation of existing research on the evolution of prestige, we develop a set of formal models to explore when an evolved prestige psychology might drive the cultural evolution of n-person cooperation, and how such a cultural evolutionary process might create novel selection pressures for genes that make prestigious individuals more prosocial. Our results reveal (i) how prestige can foster the cultural emergence of cooperation by generating correlated behavioural phenotypes, both between leaders and followers, and among followers; (ii) why, in the wake of cultural evolution, natural selection favours genes that make prestigious leaders more prosocial, but only when groups are relatively small; and (iii), why the effectiveness of status differences in generating cooperation in large groups depends on cultural transmission (and not primarily on deference or coercion). Our theoretical framework, and the specific predictions made by these models, sketch out an interdisciplinary research programme that cross-cuts anthropology, biology, psychology and economics. Some of our predictions find support from laboratory work in behavioural economics and are consistent with several real-world patterns.  相似文献   

13.
Indirect reciprocity, one of the many mechanisms proposed to explain the evolution of cooperation, is the idea that altruistic actions can be rewarded by third parties. Upstream or generalized reciprocity is one type of indirect reciprocity in which individuals help someone if they have been helped by somebody else in the past. Although empirically found to be at work in humans, the evolution of upstream reciprocity is difficult to explain from a theoretical point of view. A recent model of upstream reciprocity, first proposed by Nowak and Roch (2007) and further analyzed by Iwagami and Masuda (2010), shows that while upstream reciprocity alone does not lead to the evolution of cooperation, it can act in tandem with mechanisms such as network reciprocity and increase the total level of cooperativity in the population. We argue, however, that Nowak and Roch's model systematically leads to non-uniform interaction rates, where more cooperative individuals take part in more games than less cooperative ones. As a result, the critical benefit-to-cost ratios derived under this model in previous studies are not invariant with respect to the addition of participation costs. We show that accounting for these costs can hinder and even suppress the evolution of upstream reciprocity, both for populations with non-random encounters and graph-structured populations.  相似文献   

14.
Reciprocity is often invoked to explain cooperation. Reciprocity is cognitively demanding, and both direct and indirect reciprocity require that individuals store information about the propensity of their partners to cooperate. By contrast, generalized reciprocity, wherein individuals help on the condition that they received help previously, only relies on whether an individual received help in a previous encounter. Such anonymous information makes generalized reciprocity hard to evolve in a well‐mixed population, as the strategy will lose out to pure defectors. Here we analyze a model for the evolution of generalized reciprocity, incorporating assortment of encounters, to investigate the conditions under which it will evolve. We show that, in a well‐mixed population, generalized reciprocity cannot evolve. However, incorporating assortment of encounters can favor the evolution of generalized reciprocity in which indiscriminate cooperation and defection are both unstable. We show that generalized reciprocity can evolve under both the prisoner's dilemma and the snowdrift game.  相似文献   

15.
Genes and culture represent two streams of inheritance that for millions of years have flowed down the generations and interacted. Genetic propensities, expressed throughout development, influence what cultural organisms learn. Culturally transmitted information, expressed in behaviour and artefacts, spreads through populations, modifying selection acting back on populations. Drawing on three case studies, I will illustrate how this gene-culture coevolution has played a critical role in human evolution. These studies explore (i) the evolution of handedness, (ii) sexual selection with a culturally transmitted mating preference, and (iii) cultural niche construction and human evolution. These analyses shed light on how genes and culture shape each other, and on the significance of feedback mechanisms between biological and cultural processes.  相似文献   

16.
The Prisoner's Dilemma (PD) constitutes a widely used metaphor to investigate problems related to the evolution of cooperation. Whenever evolution takes place in well-mixed populations engaged in single rounds of the PD, cooperators cannot resist invasion by defectors, a feature, which is somewhat alleviated whenever populations are spatially distributed. In both cases the populations are characterized by a homogeneous pattern of connectivity, in which every individual is equivalent, sharing the same number of neighbours. Recently, compelling evidence has been accumulated on the strong heterogeneous nature of the network of contacts between individuals in populations. Here we describe the networks of contacts in terms of graphs and show that heterogeneity provides a new mechanism for cooperation to survive. Specifically, we show that cooperators are capable of exploring the heterogeneity of the population structure to become evolutionary competitive. As a result, cooperation becomes the dominating trait in scale-free networks of contacts in which the few highly connected individuals are directly inter-connected, in this way contributing to self-sustain cooperation.  相似文献   

17.
The evolution of cooperation is an enduring conundrum in biology and the social sciences. Two social dilemmas, the prisoner's dilemma and the snowdrift game have emerged as the most promising mathematical metaphors to study cooperation. Spatial structure with limited local interactions has long been identified as a potent promoter of cooperation in the prisoner's dilemma but in the spatial snowdrift game, space may actually enhance or inhibit cooperation. Here we investigate and link the microscopic interaction between individuals to the characteristics of the emerging macroscopic patterns generated by the spatial invasion process of cooperators in a world of defectors. In our simulations, individuals are located on a square lattice with Moore neighborhood and update their strategies by probabilistically imitating the strategies of better performing neighbors. Under sufficiently benign conditions, cooperators can survive in both games. After rapid local equilibration, cooperators expand quadratically until global saturation is reached. Under favorable conditions, cooperators expand as a large contiguous cluster in both games with minor differences concerning the shape of embedded defectors. Under less favorable conditions, however, distinct differences arise. In the prisoner's dilemma, cooperators break up into isolated, compact clusters. The compact clustering reduces exploitation and leads to positive assortment, such that cooperators interact more frequently with other cooperators than with defectors. In contrast, in the snowdrift game, cooperators form small, dendritic clusters, which results in negative assortment and cooperators interact more frequently with defectors than with other cooperators. In order to characterize and quantify the emerging spatial patterns, we introduce a measure for the cluster shape and demonstrate that the macroscopic patterns can be used to determine the characteristics of the underlying microscopic interactions.  相似文献   

18.
Cooperation can be maintained if cooperative behaviours are preferentially directed towards other cooperative individuals. Tag‐based cooperation (greenbeards) – where cooperation benefits individuals with the same tag as the actor – is one way to achieve this. Tag‐based cooperation can be exploited by individuals who maintain the specific tag but do not cooperate, and selection to escape this exploitation can result in the evolution of tag diversity. We tested key predictions crucial for the evolution of cheat‐mediated tag diversity using the production of iron‐scavenging pyoverdine by the opportunistic pathogen, Pseduomonas aeruginosa as a model system. Using two strains that produce different pyoverdine types and their respective cheats, we show that cheats outcompete their homologous pyoverdine producer, but are outcompeted by the heterologous producer in well‐mixed environments. As a consequence, co‐inoculating two types of pyoverdine producer and one type of pyoverdine cheat resulted in the pyoverdine type whose cheat was not present having a large fitness advantage. Theory suggests that in such interactions, cheats can maintain tag diversity in spatially structured environments, but that tag‐based cooperation will be lost in well‐mixed populations, regardless of tag diversity. We saw that when all pyoverdine producers and cheats were co‐inoculated in well‐mixed environments, both types of pyoverdine producers were outcompeted, whereas spatial structure (agar plates and compost microcosms), rather than maintaining diversity, resulted in the domination of one pyoverdine producer. These results suggest cheats may play a more limited role in the evolution of pyoverdine diversity than predicted.  相似文献   

19.
Theoretical studies have shown that cooperation tends to evolve when interacting individuals have positively correlated phenotypes. In the present article, we explore the situation where this correlation results from information exchange between social partners, and behavioral flexibility. We consider the game 'continuous iterated prisoner's dilemma'. The level of cooperation expressed by individuals in this game, together with their ability to respond to one another, both evolve as two aspects of their behavioral strategy. The conditions for a strategy to be evolutionarily stable in this game are degenerate, and earlier works were thus unable to find a single ESS. However, a detailed invasion analysis, together with the study of evolution in finite populations, reveals that natural selection favors strategies whereby individuals respond to their opponent's actions in a perfectly mirrored (i.e., correlated) fashion. As a corollary, the overall payoff of social interactions (i.e., the amount of cooperation) is maximized because couples of correlated partners effectively become the units of selection.  相似文献   

20.
We present a simple framework that highlights the most fundamental requirement for the evolution of altruism: assortment between individuals carrying the cooperative genotype and the helping behaviours of others with which these individuals interact. We partition the fitness effects on individuals into those due to self and those due to the 'interaction environment', and show that it is the latter that is most fundamental to understanding the evolution of altruism. We illustrate that while kinship or genetic similarity among those interacting may generate a favourable structure of interaction environments, it is not a fundamental requirement for the evolution of altruism, and even suicidal aid can theoretically evolve without help ever being exchanged among genetically similar individuals. Using our simple framework, we also clarify a common confusion made in the literature between alternative fitness accounting methods (which may equally apply to the same biological circumstances) and unique causal mechanisms for creating the assortment necessary for altruism to be favoured by natural selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号