首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Inbreeding depression should evolve with selfing rate when frequent inbreeding results in exposure of and selection against deleterious alleles. The selfing rate may be modified by plant traits such as flower size, or by population characteristics such as census size that can affect the probability of biparental inbreeding. Here we quantify inbreeding depression (δ) among different population sizes of Collinsia parviflora, a wildflower with interpopulation variation in flower size, by comparing fitness components and multiplicative fitness of experimentally produced selfed and outcrossed offspring. Selfed offspring had reduced multiplicative fitness compared to outcrossed offspring, but inbreeding depression was low in all combinations of population size and flower size (δ ≤ 0.05) except in large populations of large-flowered plants (δ = 0.45). The decrement to multiplicative fitness with inbreeding was not affected by population size nested within flower size, but differed between small- and large-flowered plants: small-flowered populations had lower overall inbreeding depression (δ = 0.04) compared to large-flowered populations (δ = 0.25). The difference in load with flower size suggests that either selection has removed deleterious recessive alleles or these alleles have become fixed in small-flowered, potentially more selfing populations, but that purging has not occurred to the same extent in presumably outcrossing large-flowered populations.  相似文献   

2.
Why do populations remain genetically variable despite strong continuous natural selection? Mutation reconstitutes variation eliminated by selection and genetic drift, but theoretical and experimental studies each suggest that mutation‐selection balance insufficient to explain extant genetic variation in most complex traits. The alternative hypothesis of balancing selection, wherein selection maintains genetic variation, is an aggregate of multiple mechanisms (spatial and temporal heterogeneity in selection, frequency‐dependent selection, antagonistic pleiotropy, etc.). Most of these mechanisms have been demonstrated for Mendelian traits, but there is little comparable data for loci affecting quantitative characters. Here, we report a 3‐year field study of selection on intrapopulation quantitative trait loci (QTL) of flower size, a highly polygenic trait in Mimulus guttatus. The QTL exhibit antagonistic pleiotropy: alleles that increase flower size, reduce viability, but increase fecundity. The magnitude and direction of selection fluctuates yearly and on a spatial scale of metres. This study provides direct evidence of balancing selection mechanisms on QTL of an ecologically relevant trait.  相似文献   

3.
Kelly JK 《Genetica》2008,132(2):187-198
The rare-alleles model of quantitative variation posits that a common allele (the ‘wild-type’) and one or more rare alleles segregate at each locus affecting a quantitative trait; a scenario predicted by several distinct evolutionary hypotheses. Single locus arguments suggest that artificial selection should substantially increase the genetic variance (Vg) if the rare-alleles model is accurate. This paper tests the ‘ΔVg prediction’ using a large artificial selection experiment on flower size of Mimulus guttatus. Vg for flower size does evolve, increasing with selection for larger flower while decreasing in the other direction. These data are consistent with a model in which flower size variation is caused by rare, partially dominant alleles. However, this explanation becomes increasingly tenuous when considered with other data (correlated responses to selection and the effects of inbreeding). A combination of modern (marker-based mapping) and classical (biometric) techniques will likely to be required to determine the distribution of allele frequencies at loci influencing quantitative traits.  相似文献   

4.
Unconditionally deleterious mutations could be an important source of variation in quantitative traits. Deleterious mutations should be rare (segregating at low frequency in the population) and at least partially recessive. In this paper, I suggest that the contribution of rare, partially recessive alleles to quantitative trait variation can be assessed by comparing the relative magnitudes of two genetic variance components: the covariance of additive and homozygous dominance effects (Cad) and the additive genetic variance (Va). If genetic variation is due to rare recessives, then the ratio of Cad to Va should be equal to or greater than 1. In contrast, Cad/Va should be close to zero or even negative if variation is caused by alleles at intermediate frequencies. The ratio of Cad to Va can be estimated from phenotypic comparisons between inbred and outbred relatives, but such estimates are likely to be highly imprecise. Selection experiments provide an alternative estimator for Cad/Va, one with favourable statistical properties. When combined with other biometrical analyses, the ratio test can provide an incisive test of the deleterious mutation model.  相似文献   

5.
Li WH 《Genetics》1978,90(2):349-382
Formulae are developed for the distribution of allele frequencies (the frequency spectrum), the mean number of alleles in a sample, and the mean and variance of heterozygosity under mutation pressure and under either genic or recessive selection. Numerical computations are carried out by using these formulae and Watterson's (1977) formula for the distribution of allele frequencies under overdominant selection. The following properties are observed: (1) The effect of selection on the distribution of allele frequencies is slight when 4Ns 相似文献   

6.
Life span differs between the sexes in many species. Three hypotheses to explain this interesting pattern have been proposed, involving different drivers: sexual selection, asymmetrical inheritance of cytoplasmic genomes, and hemizygosity of the X(Z) chromosome (the unguarded X hypothesis). Of these, the unguarded X has received the least experimental attention. This hypothesis suggests that the heterogametic sex suffers a shortened life span because recessive deleterious alleles on its single X(Z) chromosome are expressed unconditionally. In Drosophila melanogaster, the X chromosome is unusually large (~20% of the genome), providing a powerful model for evaluating theories involving the X. Here, we test the unguarded X hypothesis by forcing D. melanogaster females from a laboratory population to express recessive X‐linked alleles to the same degree as males, using females exclusively made homozygous for the X chromosome. We find no evidence for reduced life span or egg‐to‐adult viability due to X homozygozity. In contrast, males and females homozygous for an autosome both suffer similar, significant reductions in those traits. The logic of the unguarded X hypothesis is indisputable, but our results suggest that the degree to which recessive deleterious X‐linked alleles depress performance in the heterogametic sex appears too small to explain general sex differences in life span.  相似文献   

7.
In an inbred population, selection may reduce the frequency of deleterious recessive alleles through a process known as purging. Empirical studies suggest, however, that the efficacy of purging in natural populations is highly variable. This variation may be due, in part, to variation in the expression of inbreeding depression available for selection to act on. This experiment investigates the roles of life stage and early‐life environment in determining the expression of inbreeding depression in Agrostemma githago. Four population‐level crosses (‘self’, ‘within’, ‘near’ and ‘far’) were conducted on 20 maternal plants from a focal population. Siblings were planted into one of three early environmental treatments with varying stress levels. Within the focal population, evidence for purging of deleterious recessive alleles, as well as for variation in the expression of inbreeding depression across the life cycle was examined. In addition, the effect of early environment on the expression of inbreeding depression and the interaction with cross‐type was measured. We find that deleterious recessive alleles have not been effectively purged from our focal population, the expression of inbreeding depression decreases over the course of the life cycle, and a stressful early environment reduces the variance in inbreeding depression expressed later in life, but does not consistently influence the relative fitness of inbred versus outcrossed individuals.  相似文献   

8.
The bimodal distribution of fitness effects of new mutations and standing genetic variation, due to early‐acting strongly deleterious recessive mutations and late‐acting mildly deleterious mutations, is analyzed using the Kondrashov model for lethals (K), with either the infinitesimal model for selfing (IMS) or the Gaussian allele model (GAM) for quantitative genetic variance under stabilizing selection. In the combined models (KIMS and KGAM) high genomic mutation rates to lethals and weak stabilizing selection on many characters create strong interactions between early and late inbreeding depression, by changing the distribution of lineages selfed consecutively for different numbers of generations. Alternative stable equilibria can exist at intermediate selfing rates for a given set of parameters. Evolution of quantitative genetic variance under multivariate stabilizing selection can strongly influence the purging of nearly recessive lethals, and sometimes vice versa. If the selfing rate at the purging threshold for quantitative genetic variance in IMS or GAM alone exceeds that for nearly recessive lethals in K alone, then in KIMS and KGAM stabilizing selection causes selective interference with purging of lethals, increasing the mean number of lethals compared to K; otherwise, stabilizing selection causes selective facilitation in purging of lethals, decreasing the mean number of lethals.  相似文献   

9.
Despite the directional selection acting on life‐history traits, substantial amounts of standing variation for these traits have frequently been found. This variation may result from balancing selection (e.g., through genetic trade‐offs) or from mutation‐selection balance. These mechanisms affect allele frequencies in different ways: Under balancing selection alleles are maintained at intermediate frequencies, whereas under mutation‐selection balance variation is generated by deleterious mutations and removed by directional selection, which leads to asymmetry in the distribution of allele frequencies. To investigate the importance of these two mechanisms in maintaining heritable variation in oviposition rate of the two‐spotted spider mite, we analyzed the response to artificial selection. In three replicate experiments, we selected for higher and lower oviposition rate, compared to control lines. A response to selection only occurred in the downward direction. Selection for lower oviposition rate did not lead to an increase in any other component of fitness, but led to a decline in female juvenile survival. The results suggest standing variation for oviposition rate in this population consists largely of deleterious alleles, as in a mutation‐selection balance. Consequently, the standing variation for this trait does not appear to be indicative of its adaptive potential.  相似文献   

10.
The importance of genetic drift in shaping patterns of adaptive genetic variation in nature is poorly known. Genetic drift should drive partially recessive deleterious mutations to high frequency, and inter‐population crosses may therefore exhibit heterosis (increased fitness relative to intra‐population crosses). Low genetic diversity and greater genetic distance between populations should increase the magnitude of heterosis. Moreover, drift and selection should remove strongly deleterious recessive alleles from individual populations, resulting in reduced inbreeding depression. To estimate heterosis, we crossed 90 independent line pairs of Arabidopsis thaliana from 15 pairs of natural populations sampled across Fennoscandia and crossed an additional 41 line pairs from a subset of four of these populations to estimate inbreeding depression. We measured lifetime fitness of crosses relative to parents in a large outdoor common garden (8,448 plants in total) in central Sweden. To examine the effects of genetic diversity and genetic distance on heterosis, we genotyped parental lines for 869 SNPs. Overall, genetic variation within populations was low (median expected heterozygosity = 0.02), and genetic differentiation was high (median FST = 0.82). Crosses between 10 of 15 population pairs exhibited significant heterosis, with magnitudes of heterosis as high as 117%. We found no significant inbreeding depression, suggesting that the observed heterosis is due to fixation of mildly deleterious alleles within populations. Widespread and substantial heterosis indicates an important role for drift in shaping genetic variation, but there was no significant relationship between fitness of crosses relative to parents and genetic diversity or genetic distance between populations.  相似文献   

11.
Denis Roze 《Genetics》2015,201(2):745-757
A classical prediction from single-locus models is that inbreeding increases the efficiency of selection against partially recessive deleterious alleles (purging), thereby decreasing the mutation load and level of inbreeding depression. However, previous multilocus simulation studies found that increasing the rate of self-fertilization of individuals may not lead to purging and argued that selective interference among loci causes this effect. In this article, I derive simple analytical approximations for the mutation load and inbreeding depression, taking into account the effects of interference between pairs of loci. I consider two classical scenarios of nonrandomly mating populations: a single population undergoing partial selfing and a subdivided population with limited dispersal. In the first case, correlations in homozygosity between loci tend to reduce mean fitness and increase inbreeding depression. These effects are stronger when deleterious alleles are more recessive, but only weakly depend on the strength of selection against deleterious alleles and on recombination rates. In subdivided populations, interference increases inbreeding depression within demes, but decreases heterosis between demes. Comparisons with multilocus, individual-based simulations show that these analytical approximations are accurate as long as the effects of interference stay moderate, but fail for high deleterious mutation rates and low dominance coefficients of deleterious alleles.  相似文献   

12.
The extent to which quantitative trait variability is caused by rare alleles maintained by mutation, versus intermediate-frequency alleles maintained by balancing selection, is an unsolved problem of evolutionary genetics. We describe the results of an experiment to examine the effects of selection on the mean and extent of inbreeding depression for early female fecundity in Drosophila melanogaster. Theory predicts that rare, partially recessive deleterious alleles should cause a much larger change in the effect of inbreeding than in the mean of the outbred population, with the change in inbreeding effect having an opposite sign to the change in mean. The present experiment fails to support this prediction, suggesting that intermediate-frequency alleles contribute substantially to genetic variation in early fecundity.  相似文献   

13.
Willis JH 《Genetics》1999,153(4):1885-1898
The goal of this study is to provide information on the genetics of inbreeding depression in a primarily outcrossing population of Mimulus guttatus. Previous studies of this population indicate that there is tremendous inbreeding depression for nearly every fitness component and that almost all of this inbreeding depression is due to mildly deleterious alleles rather than recessive lethals or steriles. In this article I assayed the homozygous and heterozygous fitnesses of 184 highly inbred lines extracted from a natural population. Natural selection during the five generations of selfing involved in line formation essentially eliminated major deleterious alleles but was ineffective in purging alleles with minor fitness effects and did not appreciably diminish overall levels of inbreeding depression. Estimates of the average degree of dominance of these mildly deleterious alleles, obtained from the regression of heterozygous fitness on the sum of parental homozygous fitness, indicate that the detrimental alleles are partially recessive for most fitness traits, with h approximately 0.15 for cumulative measures of fitness. The inbreeding load, B, for total fitness is approximately 1.0 in this experiment. These results are consistent with the hypothesis that spontaneous mildly deleterious mutations occur at a rate >0.1 mutation per genome per generation.  相似文献   

14.
Chromosomes that determine sex are predicted to evolve differently than autosomes: a lack of recombination on one of the two sex chromosomes is predicted to allow an accumulation of deleterious alleles that eventually leads to reduced functionality and potential physical degradation of the nonrecombining chromosome. Because these changes should occur at an elevated evolutionary rate, it is difficult to find appropriate species in which to test these evolutionary predictions. The unique genetic sex‐determining mechanism of the crustacean Eulimnadia texana prevents major chromosome degeneration because of expression of both ‘proto‐sex’ (i.e. early stage of development) chromosomes in homozygous form (ZZ and WW). Herein, we exploit this unique genetic system to examine the predicted accumulation of deleterious alleles by comparing both homogametic sexual types to their heterogametic counterpart. We report differences in crossing over in a sex‐linked region in the ZW hermaphrodites (~ 3%) relative to the ZZ males (~ 21%), indicative of cross‐over suppression in the ZW hermaphrodites. Additionally, we report that both ZZ and WW genotypes have reduced fitness relative to ZW hermaphrodites, which is consistent with the prediction of harboured recessive mutations embedded on both the Z and the W chromosomes. These results suggest that the proto‐sex chromosomes in E. texana accumulate recessive deleterious alleles. We hypothesize that recessive deleterious alleles of large effect cannot accumulate because of expression in both ZZ and WW individuals, keeping both chromosomes from losing significant function.  相似文献   

15.
This article analyzes how partial selfing in a large source population influences its ability to colonize a new habitat via the introduction of a few founder individuals. Founders experience inbreeding depression due to partially recessive deleterious alleles as well as maladaptation to the new environment due to selection on a large number of additive loci. I first introduce a simplified version of the inbreeding history model to characterize mutation‐selection balance in a large, partially selfing source population under selection involving multiple nonidentical loci. I then use individual‐based simulations to study the eco‐evolutionary dynamics of founders establishing in the new habitat under a model of hard selection. The study explores how selfing rate shapes establishment probabilities of founders via effects on both inbreeding depression and adaptability to the new environment, and also distinguishes the effects of selfing on the initial fitness of founders from its effects on the long‐term adaptive response of the populations they found. A high rate of (but not complete) selfing is found to aid establishment over a wide range of parameters, even in the absence of mate limitation. The sensitivity of the results to assumptions about the nature of polygenic selection is discussed.  相似文献   

16.
In populations with males and females, sexual selection may often represent a major component of overall selection. Sexual selection could act to eliminate deleterious alleles in concert with other forms of selection, thereby improving the fitness of sexual populations. Alternatively, the divergent reproductive strategies of the sexes could promote the maintenance of sexually antagonistic variation, causing sexual populations to be less fit. The net impact of sexual selection on fitness is not well understood, due in part to limited data on the sex‐specific effects of spontaneous mutations on total fitness. Using a set of mutation accumulation lines of Drosophila melanogaster, we found that mutations were deleterious in both sexes and had larger effects on fitness in males than in females. This pattern is expected to reduce the mutation load of sexual females and promote the maintenance of sexual reproduction.  相似文献   

17.
Spatial variation in pollinator‐mediated selection (Δβpoll) is a major driver of floral diversification, but we lack a quantitative understanding of its link to pollen limitation (PL) and net selection on floral traits. For 2–5 years, we quantified Δβpoll on floral traits in two populations each of two orchid species differing in PL. In both species, spatiotemporal variation in Δβpoll explained much of the variation in net selection. Selection was consistently stronger and the proportion that was pollinator‐mediated was higher in the severely pollen‐limited deceptive species than in the rewarding species. Within species, variation in PL could not explain variation in Δβpoll for any trait, indicating that factors influencing the functional relationship between trait variation and pollination success govern a major part of the observed variation in Δβpoll. Separating the effects of variation in mean interaction intensity and in the functional significance of traits will be necessary to understand spatiotemporal variation in selection exerted by the biotic environment.  相似文献   

18.
Theoretical explanations of empirically observed standing genetic variation, mutation, and selection suggest that many alleles must jointly affect fitness and metric traits. However, there are few direct demonstrations of the nature and extent of these pleiotropic associations. We implemented a mutation accumulation (MA) divergence experimental design in Drosophila serrata to segregate genetic variants for fitness and metric traits. By exploiting naturally occurring MA line extinctions as a measure of line‐level total fitness, manipulating sexual selection, and measuring productivity we were able to demonstrate genetic covariance between fitness and standard metric traits, wing size, and shape. Larger size was associated with lower total fitness and male sexual fitness, but higher productivity. Multivariate wing shape traits, capturing major axes of wing shape variation among MA lines, evolved only in the absence of sexual selection, and to the greatest extent in lines that went extinct, indicating that mutations contributing wing shape variation also typically had deleterious effects on both total fitness and male sexual fitness. This pleiotropic covariance of metric traits with fitness will drive their evolution, and generate the appearance of selection on the metric traits even in the absence of a direct contribution to fitness.  相似文献   

19.
A multilocus stochastic model is developed to simulate the dynamics of mutational load in small populations of various sizes. Old mutations sampled from a large ancestral population at mutation-selection balance and new mutations arising each generation are considered jointly, using biologically plausible lethal and deleterious mutation parameters. The results show that inbreeding depression and the number of lethal equivalents due to partially recessive mutations can be partly purged from the population by inbreeding, and that this purging mainly involves lethals or detrimentals of large effect. However, fitness decreases continuously with inbreeding, due to increased fixation and homozygosity of mildly deleterious mutants, resulting in extinctions of very small populations with low reproductive rates. No optimum inbreeding rate or population size exists for purging with respect to fitness (viability) changes, but there is an optimum inbreeding rate at a given final level of inbreeding for reducing inbreeding depression or the number of lethal equivalents. The interaction between selection against partially recessive mutations and genetic drift in small populations also influences the rate of decay of neutral variation. Weak selection against mutants relative to genetic drift results in apparent overdominance and thus an increase in effective size (Ne) at neutral loci, and strong selection relative to drift leads to a decrease in Ne due to the increased variance in family size. The simulation results and their implications are discussed in the context of biological conservation and tests for purging.  相似文献   

20.
It has been hypothesized that natural selection reduces the “genetic load” of deleterious alleles from populations that inbreed during bottlenecks, thereby ameliorating impacts of future inbreeding. We tested the efficiency with which natural selection purges deleterious alleles from three subspecies of Peromyscus polionotus during 10 generations of laboratory inbreeding by monitoring pairing success, litter size, viability, and growth in 3604 litters produced from 3058 pairs. In P. p. subgriseus, there was no reduction across generations in inbreeding depression in any of the fitness components. Strongly deleterious recessive alleles may have been removed previously during episodes of local inbreeding in the wild, and the residual genetic load in this population was not further reduced by selection in the lab. In P. p. rhoadsi, four of seven fitness components did show a reduction of the genetic load with continued inbreeding. The average reduction in the genetic load was as expected if inbreeding depression in this population is caused by highly deleterious recessive alleles that are efficiently removed by selection. For P. p. leucocephalus a population that experiences periodic bottlenecks in the wild, the effect of further inbreeding in the laboratory was to exacerbate rather than reduce the genetic load. Recessive deleterious alleles may have been removed from this population during repeated bottlenecks in the wild; the population may be close to a threshold level of heterozygosity below which fitness declines rapidly. Thus, the effects of selection on inbreeding depression varied substantially among populations, perhaps due to different histories of inbreeding and selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号