首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ecological Restoration and Global Climate Change   总被引:15,自引:0,他引:15  
There is an increasing consensus that global climate change occurs and that potential changes in climate are likely to have important regional consequences for biota and ecosystems. Ecological restoration, including (re)afforestation and rehabilitation of degraded land, is included in the array of potential human responses to climate change. However, the implications of climate change for the broader practice of ecological restoration must be considered. In particular, the usefulness of historical ecosystem conditions as targets and references must be set against the likelihood that restoring these historic ecosystems is unlikely to be easy, or even possible, in the changed biophysical conditions of the future. We suggest that more consideration and debate needs to be directed at the implications of climate change for restoration practice.  相似文献   

2.
We retrace the development of tropical phenology research, compare temperate phenology study to that in the tropics and highlight the advances currently being made in this flourishing discipline. The synthesis draws attention to how fundamentally different tropical phenology data can be to temperate data. Tropical plants lack a phase of winter dormancy and may grow and reproduce continually. Seasonal patterns in environmental parameters, such as rainfall, irradiance or temperature, do not necessarily coincide temporally, as they do in temperate climes. We review recent research on the drivers of phenophase cycles in individual trees, species and communities and highlight how significant innovations in biometric tools and approaches are being driven by the need to deal with circular data, the complexity of defining tropical seasons and the myriad growth and reproductive strategies used by tropical plants. We discuss how important the use of leaf phenology (or remotely‐sensed proxies of leaf phenophases) has become in tracking biome responses to climate change at the continental level and how important the phenophase of forests can be in determining local weather conditions. We also highlight how powerful analyses of plant responses are hampered at many tropical sites by a lack of contextual data on local environmental conditions. We conclude by arguing that there is a clear global benefit in increasing long term tropical phenology data collection and improving empirical collection of local climate measures, contemporary to the phenology data. Directing more resources to research in this sector will be widely beneficial.  相似文献   

3.
随着气候变化影响广度与深度的增加,生态系统脆弱性、适应性与突变理论逐渐被广泛应用到生态学研究领域中,探讨和评估各类生态系统对气候变化的敏感性、脆弱性和适应性,可谋求更好的方式来应对气候变化对区域生态系统带来的深远影响,服务于国家生态系统可持续管理及生态安全建设.虽然相关研究已获取许多进展,区分了气候敏感区和某些生态系统...  相似文献   

4.
陆地生态系统服务与生物多样性研究进展   总被引:4,自引:0,他引:4  
范玉龙  胡楠  丁圣彦  梁国付  卢训令 《生态学报》2016,36(15):4583-4593
在生物多样性迅速消失的压力下,人类面临生态系统服务质量严重下降的威胁。为了使生态系统的重要功能更直观的展现在人们面前,许多学者把生态系统服务对人类的惠益进行整理分类,最有影响力的是千年生态系统评估(MA,Millennium Ecosystem Assessment)把生态系统服务分为供给、调节、文化和支持服务四类,服务的核心是生态系统的产品、过程和格局。生态系统服务的识别与分类是生态系统功能的对象化过程,也是以人类需求来审视生态系统的过程。生态系统通过结构-过程-功能这一途径来实现生态系统服务,各种服务的直接动力来源于自然界生物地球化学循环,生物多样性通过生态系统属性和过程来影响生态系统服务形成和维持。生物多样性越高,生态系统功能性状的范围越广,生态系统服务质量就越高、越稳定。全球变化中的土地利用和土地覆盖变化是生物多样性快速下降的主要原因,也是目前影响生态系统服务最广泛、最剧烈的驱动力,而这正是人类活动造成的,人类需求和生态系统有限的服务能力之间在不同尺度表现出严重冲突。要提高生态系统服务质量,要在不同区域进行重点不同的布局,尽可能的扩大生态系统规模和提高生态系统功能,核心是提高生物多样性水平。  相似文献   

5.
陕北农民对退耕还林的意愿评价   总被引:10,自引:0,他引:10  
为了解生态修复政策对陕北地区社会经济的影响,2007年通过参与性农户调查方法,研究退耕还林项目对陕北居民生计的影响以及由于生态项目实施引起的农民态度的变化.结果表明:农民接受退耕还林补偿政策,但只有极少数人乐意植树(8.9%)、种草(2.2%). 尽管19.1%的农户表示他们的生计受到了项目的负面影响,63.8%的农户表示支持退耕还林项目,但是高达37.2%的农户表示项目结束后会再次垦荒种粮.由此可见,退耕还林项目恢复的植被在项目结束后有可能被重新开垦为农田,该项目获得的环境成果面临被再次破坏的风险.因此,给予合理的补偿来减少农民经济损失、通过技术进步提高单位土地面积产出、通过技术培训使农村剩余劳动力转移出来是环境修复项目成功的重要保证.  相似文献   

6.
Climate change has far‐reaching impacts on ecosystems. Recent attempts to quantify such impacts focus on measuring exposure to climate change but largely ignore ecosystem resistance and resilience, which may also affect the vulnerability outcomes. In this study, the relative vulnerability of global terrestrial ecosystems to short‐term climate variability was assessed by simultaneously integrating exposure, sensitivity, and resilience at a high spatial resolution (0.05°). The results show that vulnerable areas are currently distributed primarily in plains. Responses to climate change vary among ecosystems and deserts and xeric shrublands are the most vulnerable biomes. Global vulnerability patterns are determined largely by exposure, while ecosystem sensitivity and resilience may exacerbate or alleviate external climate pressures at local scales; there is a highly significant negative correlation between exposure and sensitivity. Globally, 61.31% of the terrestrial vegetated area is capable of mitigating climate change impacts and those areas are concentrated in polar regions, boreal forests, tropical rainforests, and intact forests. Under current sensitivity and resilience conditions, vulnerable areas are projected to develop in high Northern Hemisphere latitudes in the future. The results suggest that integrating all three aspects of vulnerability (exposure, sensitivity, and resilience) may offer more comprehensive and spatially explicit adaptation strategies to reduce the impacts of climate change on terrestrial ecosystems.  相似文献   

7.
马赫  石龙宇  付晓 《生态学报》2019,39(10):3507-3516
运用遥感影像与地理信息系统技术结合,采用生态系统信息分类提取方法和景观指数方法对1990年至2015年泸沽湖风景区生态系统构成与格局变化进行分析,并进一步探析引起各类生态系统变化的驱动力因素,为泸沽湖风景区进一步生态与环境规划提供科学和理论依据。25年间,泸沽湖风景区内主要生态系统类型可分为农田、森林、草地、水域和人居环境等五类生态系统,1990年至2005年,主要表现为农田、森林、草地3个生态系统之间相互转化;2005年至2015年,主要表现为森林、草地、水域生态系统整体流向农田、人居环境系统。总体上泸沽湖景观破碎化与复杂程度呈下降趋势,连通性和整体性逐渐增强,但各生态系统类型之间比例差异增大。农田生态系统变化的主要驱动力是政策导向;森林与草地生态系统变化的主要驱动力是退耕还林还草工程与人类活动;水域生态系统变化主要驱动因素是湿地造林与人类活动入侵;人居环境系统变化的主要驱动因素为人类用地需求的增涨。针对泸沽湖生态系统变化存在的问题提出了相应的规划建议。  相似文献   

8.
Forest ecosystems and their associated natural, cultural and economic values are highly vulnerable to climate driven changes in fire regimes. A detailed knowledge of forest ecosystem responses to altered fire regimes is a necessary underpinning to inform options for adaptive responses under climate change, as well as for providing a basis for understanding how patterns of distribution of vegetation communities that comprise montane forest ecosystems may change in the future. Unplanned consequential adaptation of both natural and human systems, i.e. autonomous adaptation, will occur without planned intervention, with potentially negative impacts on ecosystem services. The persistence of forest stands under changing fire regimes and the maintenance of the ecosystem services that they provide pivot upon underlying response traits, such as the ability to resprout, that determine the degree to which composition, structure and function are likely to change. The integration of ecosystem dynamics into conceptual models and their use in exploring adaptation pathways provides options for policy makers and managers to move from autonomous to planned adaptation responses. Understanding where autonomous adaptation provides a benefit and where it proves potentially undesirable is essential to inform adaptation choices. Plausible scenarios of ecological change can be developed to improve an understanding of the nature and timing of interventions and their consequences, well before natural and human systems autonomously adapt in ways that may be detrimental to the long‐term provision of ecosystem services. We explore the utility of this approach using examples from temperate montane forest ecosystems of southeastern Australia.  相似文献   

9.
An underlying premise of ecological restoration is that it focuses on the recovery of degraded systems. While this is an apparently straightforward aim, there is in fact considerable variation in how the term “degraded” is defined, used and assessed. In addition, there is a notable subjective component to decisions regarding what is degraded and what isn't, and this often relates to the values and goals being considered. There is likely to be little argument over highly degraded systems where damage and loss of valued characteristics are evident. But where system change is less stark and the changes have mixed benefits and disbenefits, the decision on whether the system is degraded and hence in need of restoration becomes more difficult. As systems continue to change in the face of ongoing climate, land use and other environmental changes, decisions become more difficult regarding which systems are degraded and which are merely different from what was there before. Difference does not necessarily equate to degradation. Effective use of scarce management resources relies on an improved ability to openly debate and resolve such issues.  相似文献   

10.
Most anthropogenic activities impacted on water quality and quantity, and further impacted on ecosystem services (ESs) in watershed are related to land use and climate changes those may cause losses of ecosystem functions. Effective information regarding ESs and their optimal priority conservation planning responded to land use and climate changes provide useful support for diverse stakeholders in ESs planning, management and policies. This study integrated the approach of spatially explicit ESs (water yield, inorganic nutrient, organic nutrient and sediment retentions) by using hydrology and material flow model (Soil and Water Assessment Tools, SWAT model) into systematic conservation of hydrological ESs according to land use and climate changes in Teshio watershed located in the north of Hokkaido, Japan. We investigated the spatial patterns and the hotspots of ESs changes to determine the spatial pattern of changes in systematic conservation optimal area of ES protection in terms of ESs protection targets. Under the land use and climate change scenarios, the forest land use significantly affected on the water yield, sediment, organic-Nitrogen (N) and organic-Phosphorous (P) retentions. The agricultural land (paddy and farmland fields) impacted on the inorganic-N and inorganic-P retentions. We applied the systematic conservation model (MARXAN model) to optimize the area for management of hydrological ESs satisfied the protection targets (30% and 50% of potential maximum ESs values among all scenarios) in all and individual ecosystem services, respectively. The simulated results indicated that the areas of spatial optimal ESs protection for all hydrological ESs were totally different from those for individual ESs. For bundles of ESs, the optimal priority conservation areas concentrated in southwest, north, and southeast of this watershed, which are related to land use, topography and climate driving factors. These places could guarantee ESs sustainability from both environmental protection and agricultural development standpoints. The priority conservation area turned more compact under climate change because the increased precipitation and temperature increased ESs amount. For individual ESs, the optimal priority conservation areas of water yield, sediment retention and organic nutrient retention were traded off against those of inorganic nutrient retention (lower Jaccard's indexes and negative correlations of selection times). Especially, the negative correlation of selection times increased as the conservation target increased from 30% to 50%. The proposed approach provided useful information for assessing the responses of ESs and systematic conservation optimal planning to the land use and climate changes. The systematic conservation optimal areas of hydrological ESs provided an effective trade-off tool between environmental protection (sediment and organic nutrient retentions) and economic development (water yield and inorganic nutrient retention).  相似文献   

11.
Large‐scale biomass plantations (BPs) are a common factor in climate mitigation scenarios as they promise double benefits: extracting carbon from the atmosphere and providing a renewable energy source. However, their terrestrial carbon dioxide removal (tCDR) potentials depend on important factors such as land availability, efficiency of capturing biomass‐derived carbon and the timing of operation. Land availability is restricted by the demands of future food production depending on yield increases and population growth, by requirements for nature conservation and, with respect to climate mitigation, avoiding unfavourable albedo changes. We integrate these factors in one spatially explicit biogeochemical simulation framework to explore the tCDR opportunity space on land available after these constraints are taken into account, starting either in 2020 or 2050, and lasting until 2100. We find that assumed future needs for nature protection and food production strongly limit tCDR potentials. BPs on abandoned crop and pasture areas (~1,300 Mha in scenarios of either 8.0 billion people and yield gap reductions of 25% until 2020 or 9.5 billion people and yield gap reductions of 50% until 2050) could, theoretically, sequester ~100 GtC in land carbon stocks and biomass harvest by 2100. However, this potential would be ~80% lower if only cropland was available or ~50% lower if albedo decreases were considered as a factor restricting land availability. Converting instead natural forest, shrubland or grassland into BPs could result in much larger tCDR potentials ? but at high environmental costs (e.g. biodiversity loss). The most promising avenue for effective tCDR seems to be improvement of efficient carbon utilization pathways, changes in dietary trends or the restoration of marginal lands for the implementation of tCDR.  相似文献   

12.
近40年东北地区陆栖脊椎动物种群数量及其生境变化评估   总被引:1,自引:0,他引:1  
生物多样性是生态平衡维持和生态过程与功能实现的基础,东北地区是我国乃至全球生物多样性最为丰富的地区之一。为研究和探讨东北地区陆栖脊椎动物种群数量与生境变化之间的关系,利用物种调查数据和生境遥感观测数据,以地球生命力指数、生态系统面积和破碎度等指示性指标,综合评估了近40年东北地区陆栖脊椎动物种群数量及其生境变化。结果表明:1970—2010年,东北地区陆栖脊椎动物种群数量下降了近70.1%,森林脊椎动物种群数量减少了近80.9%,草原和荒漠生态系统脊椎动物种群数量增加了近180.9%。1980—2010年,湿地物种种群数量减少了近75.7%。1980—2015年期间,农业和城镇建设用地增幅分别达到25.2%和32.3%,不断挤占和蚕食着自然生态空间,致使自然生境面积不断减少,减幅约为8.0%。自然生境景观破碎化程度总体呈现加重趋势,尤其是森林生境,破碎化指数增加约42.7%。但是,2005年之后,自然生境景观破碎化程度加重趋势趋缓,与2005年之后脊椎动物种群数量减少幅度减缓趋势一致。森林砍伐、人口增长、城镇化、交通建设等造成的自然生态系统破碎度增加和栖息地质量下降对大型兽类影响比较显著。  相似文献   

13.
寒区生态系统中多年冻土研究进展   总被引:4,自引:0,他引:4  
近地表面的多年冻土是陆地生态系统重要的组成部分,其研究是生态、水文和工程建设研究者关心的重要议题。气候是多年冻土重要的影响因子,国内外研究中,与气候变化相结合的多年冻土研究是当前研究的重要方面;同时,多年冻土的水文学、生态学意义研究也在广泛开展。我国的多年冻土研究一直与寒区经济建设和开发紧密联系,在冻土分布、类型、温度、冻土退化及冻土区开发利用等方面取得了丰硕的成果。未来还应注重高分辨率冻土分布制图、融深变化的研究,并建立长期的多年冻土变化监测机制,以便更好地研究气候变化下,陆地生态系统对全球变化的响应与反馈。  相似文献   

14.
冯兆  彭建  吴健生 《生态学报》2020,40(8):2545-2554
明晰生态系统服务的演变特征,有助于针对性的提出区域生态系统服务提升决策,对于维持和改善人类福祉、促进城市可持续发展具有重要意义。以深圳市为例,选取11种生态系统服务,以街道为基本空间单元,对生态系统服务结构特征进行分类,进而探究生态系统服务的长时序演变轨迹。结果表明,深圳市生态系统服务簇有6种类型,分别为水文调节主导型、文化支持潜力型、服务枯竭型、水文调节控制型、水源消耗型、生态保育型;1980—2015年深圳市大部分地区的生态系统服务簇结构稳定,变化明显的地区大多毗邻香港;生态系统服务簇的时空演变轨迹类型有8种,以持续型轨迹为主;生态系统服务簇的时空演变轨迹与城市扩张具有一定的一致性,表明城市扩张对生态系统结构和功能影响的主导性。  相似文献   

15.
Modelling carbon balances of coastal arctic tundra under changing climate   总被引:1,自引:0,他引:1  
Rising air temperatures are believed to be hastening heterotrophic respiration (Rh) in arctic tundra ecosystems, which could lead to substantial losses of soil carbon (C). In order to improve confidence in predicting the likelihood of such loss, the comprehensive ecosystem model ecosys was first tested with carbon dioxide (CO2) fluxes measured over a tundra soil in a growth chamber under various temperatures and soil‐water contents (θ). The model was then tested with CO2 and energy fluxes measured over a coastal arctic tundra near Barrow, Alaska, under a range of weather conditions during 1998–1999. A rise in growth chamber temperature from 7 to 15 °C caused large, but commensurate, rises in respiration and CO2 fixation, and so no significant effect on net CO2 exchange was modelled or measured. An increase in growth chamber θ from field capacity to saturation caused substantial reductions in respiration but not in CO2 fixation, and so an increase in net CO2 exchange was modelled and measured. Long daylengths over the coastal tundra at Barrow caused an almost continuous C sink to be modelled and measured during most of July (2–4 g C m?2 d?1), but shortening daylengths and declining air temperatures caused a C source to be modelled and measured by early September (~1 g C m?2 d?1). At an annual time scale, the coastal tundra was modelled to be a small C sink (4 g C m?2 y?1) during 1998 when average air temperatures were 4 °C above normal, and a larger C sink (16 g C m?2 y?1) during 1999 when air temperatures were close to long‐term normals. During 100 years under rising atmospheric CO2 concentration (Ca), air temperature and precipitation driven by the IS92a emissions scenario, modelled Rh rose commensurately with net primary productivity (NPP) under both current and elevated rates of atmospheric nitrogen (N) deposition, so that changes in soil C remained small. However, methane (CH4) emissions were predicted to rise substantially in coastal tundra with IS92a‐driven climate change (from ~20 to ~40 g C m?2 y?1), causing a substantial increase in the emission of CO2 equivalents. If the rate of temperature increase hypothesized in the IS92a emissions scenario had been raised by 50%, substantial losses of soil C (~1 kg C m?2) would have been modelled after 100 years, including additional emissions of CH4.  相似文献   

16.
植物功能性状、功能多样性与生态系统功能: 进展与展望   总被引:1,自引:0,他引:1  
植物功能性状与生态系统功能是生态学研究的一个重要领域和热点问题。开展植物功能性状与生态系统功能的研究不仅有助于人类更好地应对全球变化情景下生物多样性丧失的生态学后果,而且能为生态恢复实践提供理论基础。近二十年来,该领域的研究迅速发展,并取得了一系列的重要研究成果,增强了人们对植物功能性状-生态系统功能关系的认识和理解。本文首先明确了植物功能性状的概念, 评述了近年来植物功能性状-生态系统功能关系领域的重要研究结果, 尤其是植物功能性状多样性-生态系统功能关系研究现状; 提出了未来植物功能性状与生态系统功能关系研究中应加强植物地上和地下性状之间关系及其与生态系统功能、植物功能性状与生态系统多功能性、不同时空尺度上植物功能性状与生态系统功能, 以及全球变化和消费者的影响等方面。  相似文献   

17.
《植物生态学报》1958,44(5):553
全球草地占据30%左右的陆地面积, 在全球气候变化、碳氮及养分循环、保持水土、调节畜牧业生产等方面具有重要的作用。目前草地的主要利用方式之一就是放牧, 不同的牲畜种类、放牧强度、年限、历史和制度等, 会影响草地植物群落、生物多样性及土壤微生物, 进而影响草地生态系统结构、功能和过程。该文围绕放牧对草地生态系统结构、功能和过程的影响, 1)回顾了20世纪50年代到现在各个历史阶段放牧对草地生态系统影响的研究; 2)利用文献计量分析的方法, 剖析了放牧对草地影响研究的热点内容、重要区域和关键词等; 3)阐明了放牧对草地植物生长、群落特征、碳氮及养分循环、生产力及土壤质量等的各方面影响的研究进展及国内相关研究的优势及存在的主要问题和不足; 4)基于上述分析, 从草地放牧精准管理、经典假说验证、放牧和全球变化研究相结合等方面, 提出未来研究的前沿方向和优先领域。该文在系统总结放牧对草地生态系统影响的研究进展、研究优势及存在问题的基础上, 提出未来的研究应与全球变化相结合, 为我国的草地放牧生态学研究、适应性管理和可持续利用等提供科学基础。  相似文献   

18.
19.
Quantification of annual carbon sequestration is very important in order to assess the function of forest ecosystems in combatting global climate change and the ecosystem responses to those changes. Annual cycling and budget of carbon in a forested basin was investigated to quantify the carbon sequestration of a cool-temperate deciduous forest ecosystem in the Horonai stream basin, Tomakomai Experimental Forest, northern Japan. Net ecosystem exchange, soil respiration, biomass increment, litterfall, soil-solution chemistry, and stream export were observed in the basin from 1999–2001 as a part of IGBP-TEMA project. We found that 258 g C m–2 year–1 was sequestered annually as net ecosystem exchange (NEE) in the forested basin. Discharge of carbon to the stream was 4 g C m–2 year–1 (about 2% of NEE) and consisted mainly of dissolved inorganic carbon (DIC). About 43% of net ecosystem productivity (NEP) was retained in the vegetation, while about 57% of NEP was sequestered in soil, suggesting that the movement of sequestered carbon from aboveground to belowground vegetation was an important process for net carbon accumulation in soil. The derived organic carbon from aboveground vegetation that moved to the soil mainly accumulated in the solid phase of the soil, with the result that the export of dissolved organic carbon to the stream was smaller than that of dissolved inorganic carbon. Our results indicated that the aboveground and belowground interaction of carbon fluxes was an important process for determining the rate and retention time of the carbon sequestration in a cool-temperate deciduous forest ecosystem in the southwestern part of Hokkaido, northern Japan.  相似文献   

20.
徐霞  成亚薇  江红蕾  李霞  刘颖慧 《生态学报》2017,37(12):4289-4298
在全球风速呈下降趋势的大背景下,研究风速变化对生态系统的影响具有重要意义,尤其是其重要组成部分——草原生态系统。近年来大量学者开始研究风速变化对草原生态系统的影响,主要集中在以下几个方面并得出相关的结论,(1)风速变化会影响植物的生长速率和叶片形态,适当的风速能够促进植物生长发育、提高植被初级生产力,而强风或持续大风不仅会对植物产生破坏作用,还会影响其生长发育;(2)风会最先带走地表细小颗粒,从而导致土壤质地变粗、水分下降、营养成分重新分配;(3)风引起地表边界层和大气边界层物质和能量的转移和交换,热量和水汽的交换导致地表微气候发生变化,如风速降低会导致地表温度升高;(4)风力作用使得土壤水分亏缺、营养成分变化,导致草原生态系统结构变化、草地覆盖度降低、物种生活型复杂化、耐旱植物增加;(5)大气稳定性、CO2交换速率和碳排放都会随着风速的增加而增加,碳吸收则相反,碳通量也因此发生变化。综上,风速降低对于草原生态系统的影响复杂且利弊相当,未来的发展趋势会更加侧重于以下几个方面的发展:研究对象的多样化、加强控制实验的定量化研究、综合多要素的相互作用机理研究、整体结构和功能性的研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号