首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The water relations responses to salt of several important citrus rootstocks such as Swingle citrumelo, sour orange, and Milam lemon have not been studied in detail before. Studies were set up to compare growth and root hydraulic properties of these rootstocks to other citrus rootstocks by exposing them to NaCl and polyethylene glycol (PEG) stresses. Seedlings of 7 citrus rootstocks were irrigated for 5 months with nutrient solutions containing NaCl or PEG that had been adjusted to osmotic potentials of -0.10, -0.20 or -0.35 MPa. The 7 rootstocks studied were sour orange (Citrus aurantium), Cleopatra mandarin (Citrus reticulata Blanco), Swingle citrumelo (C. paradisi x P. trifoliata), Carrizo citrange (C. sinensis x P. trifoliata), rough lemon (Citrus jambhiri Lush), Milam lemon (C. jambhiri hybrid), and trifoliate orange (Poncirus trifoliata [L.] Raf.). In both shoot and root growth, Cleopatra mandarin and sour orange were the least sensitive to salt, Milam and trifoliate orange were the most sensitive, and rough lemon, Swingle, and Carrizo were intermediate in sensitivity. Even though the roots were exposed to solutions of equal osmotic potentials, plant growth and root conductivity were reduced more by the PEG treatments than the corresponding NaCl treatments. At -0.10 and -0.20 MPa, shoot and root dry weights were reduced 16 to 55% by NaCl and 24 to 68% by PEG. Shoot root ratio was lowered at the higher concentrations, particularly by PEG. There was a major decrease in root conductivity caused by NaCl at -0.10 MPa (19 to 30% in sour orange and Cleopatra mandarin and 78 to 85% in trifoliate orange and Milam). Conductivity decreased more at -0.20 and -0.35 MPa, but not proportionally as much as at -0.10 MPa. Root weight per unit length increased at the higher salt levels, particularly in trifoliate orange. Water flow rate through root systems followed the same trend as root conductivity; salt affected sour orange and Cleopatra mandarin the least and trifoliate orange and Milam the most. However, reductions in fibrous root length by salt treatment differed. Root lengths of Swingle and Carrizo were least affected by salt while sour orange. Milam, and rough lemon were the most affected. Hence, even though sour orange and Cleopatra mandarin were more tolerant than the other rootstocks in terms of water flow rate or root conductivity, these 2 rootstocks showed a proportionally greater decrease in root length than Carrizo, Swingle, or trifoliate orange.  相似文献   

2.

Background and Aims

Previous studies indicate that the size-controlling capacity of peach rootstocks is associated with reductions of scion water potential during mid-day that are caused by the reduced hydraulic conductance of the rootstock. Thus, shoot growth appears to be reduced by decreases in stem water potential. The aim of this study was to investigate the mechanism of reduced hydraulic conductance in size-controlling peach rootstocks.

Methods

Anatomical measurements (diameter and frequency) of xylem vessels were determined in shoots, trunks and roots of three contrasting peach rootstocks grown as trees, each with different size-controlling characteristics: ‘Nemaguard’ (vigorous), ‘P30-135’ (intermediate vigour) and ‘K146-43’ (substantially dwarfing). Based on anatomical measurements, the theoretical axial xylem conductance of each tissue type and rootstock genotype was calculated via the Poiseuille–Hagen law.

Key Results

Larger vessel dimensions were found in the vigorous rootstock (‘Nemaguard’) than in the most dwarfing one (‘K146-43’) whereas vessels of ‘P30-135’ had intermediate dimensions. The density of vessels per xylem area in ‘Nemaguard’ was also less than in ‘P30-135’and ‘K146-43’. These characteristics resulted in different estimated hydraulic conductance among rootstocks: ‘Nemaguard’ had higher theoretical values followed by ‘P30-135’ and ‘K146-43’.

Conclusions

These data indicate that phenotypic differences in xylem anatomical characteristics of rootstock genotypes appear to influence hydraulic conductance capacity directly, and therefore may be the main determinant of dwarfing in these peach rootstocks.Key words: Prunus, rootstock, vessel diameter, hydraulic conductance, dwarfing, xylem anatomy, Poiseuille–Hagen  相似文献   

3.
Overexpression of genes that respond to drought stress is a seemingly attractive approach for improving drought resistance in crops. However, the consequences for both water-use efficiency and productivity must be considered if agronomic utility is sought. Here, we characterize two tomato (Solanum lycopersicum) lines (sp12 and sp5) that overexpress a gene encoding 9-cis-epoxycarotenoid dioxygenase, the enzyme that catalyzes a key rate-limiting step in abscisic acid (ABA) biosynthesis. Both lines contained more ABA than the wild type, with sp5 accumulating more than sp12. Both had higher transpiration efficiency because of their lower stomatal conductance, as demonstrated by increases in delta(13)C and delta(18)O, and also by gravimetric and gas-exchange methods. They also had greater root hydraulic conductivity. Under well-watered glasshouse conditions, mature sp5 plants were found to have a shoot biomass equal to the wild type despite their lower assimilation rate per unit leaf area. These plants also had longer petioles, larger leaf area, increased specific leaf area, and reduced leaf epinasty. When exposed to root-zone water deficits, line sp12 showed an increase in xylem ABA concentration and a reduction in stomatal conductance to the same final levels as the wild type, but from a different basal level. Indeed, the main difference between the high ABA plants and the wild type was their performance under well-watered conditions: the former conserved soil water by limiting maximum stomatal conductance per unit leaf area, but also, at least in the case of sp5, developed a canopy more suited to light interception, maximizing assimilation per plant, possibly due to improved turgor or suppression of epinasty.  相似文献   

4.
Removal of four out of five roots did not lower transpiration and stomatal conductivity of wheat (Triticum durum Desf.) seedlings. Water content of mature expanded leaf lamina remained constant at control levels. The results suggest that the only remaining root was capable to supply the shoot with water. This was evidenced by an increase in hydraulic conductivity of the root system following partial root excision measured at low subatmospheric pressures induced by vacuum. In the absence of a hydrostatic gradient, water flow from reduced root system was initially not higher than from an intact system, but increased subsequently. ABA content was increased in roots 1 h after partial root excision, which might contribute to the increase in hydraulic conductivity.  相似文献   

5.
玉米根系水流导度差异及其与解剖结构的关系   总被引:3,自引:0,他引:3  
在人工气候室水培条件下,从单根水平研究了不同水分条件下玉米根系水流导度的基因型差异及解剖结构之间的关系.结果表明,抗旱性的杂交种户单四号具有水流导度上的杂种优势现象,不抗旱的父本803根系水流导度最低,3个品种根系水流导度大小为F1代户单四号>母本天四>父本803;水分胁迫普遍降低了根系直径、导管直径和皮层厚度.同时,玉米品种根系的解剖结构和根系水流导度有关,正常水分条件下,根系导管直径与3个玉米品种的根系水流导度呈正相关,胁迫条件下则呈负相关.无论是在胁迫还是正常水分条件下,根系皮层厚度占根系直径的比例与根系水流导度都呈负相关,说明根系皮层是根系吸收水分的主要阻力部位.  相似文献   

6.
The effects of three concentrations of sodium chloride (NaCl) on seven citrus rootstocks were studied under greenhouse conditions. Leaf and root mineral concentrations and seedling growth were measured. Sodium chloride was added to the nutrient solution to achieve final osmotic potentials of –0.10, –0.20, and –0.35 MPa. Increasing the concentration of NaCl in the nutrition solution reduced growth proportionally and altered leaf and root mineral concentrations of all rootstocks. Significant differences in leaf and root mineral concentration among rootstocks were also found under stressed and non-stressed conditions. Salinity caused the greatest growth reduction in Milam lemon and trifoliate orange and the least reduction in sour orange and Cleopatra mandarin. No specific nutrient deficiency was the sole factor reducing growth and causing injury to citrus rootstocks. Sodium chloride sensitivity of citrus rootstocks in terms of leaf burn symptoms and growth reduction could be attributed more to Cl than to Na. Sodium and Cl concentrations were greater in the leaves than in the roots, particularly at the medium and high salinity levels. Root Cl was not useful for assessing injury because no differences were found in root Cl concentrations among rootstocks. Increasing salinity level did not affect the level of N and Ca in the roots but did reduce N and Ca levels in the leaves. No relationship in mineral concentration or accumulation seemed to exist between citrus leaves and roots. At the –0.10 MPa salinity level, sour orange, rough lemon, and Milam were not able to exclude either Na or Cl from their leaves. Trifoliate orange and its two hybrids (Swingle citrumelo and Carrizo citrange) excluded Na at the lowest salt level used, but were unable to exclude Na at the higher salinity levels. Similarly, Cleopatra mandarin excluded Cl at the lowest salt level, but was not able to exclude Cl at higher salt concentrations. Hence, the ability of citrus rootstocks to exclude Na or Cl breaks down at higher salt concentrations.Florida Agricultural Experiment Station Journal Series No. R-02276.  相似文献   

7.
Root system hydraulic conductivity in species with contrasting root anatomy   总被引:17,自引:2,他引:15  
Previous research suggested that the hydraulic properties of root systems of intact plants could be described by two parameters: the hydraulic conductivity (Lpr) or the slope of the flow-density/water potential gradient relationship, and the offset or minimum water potential gradient required to induce flow. In this study Lpr and offset were correlated with anatomical features of the root radial path in plants with contrasting root anatomy. Two woody and three herbaceous species were examined which exhibit a range of root anatomical features: Asparagus densiflorus (Kunth) Jessop (asparagus), Dendrobium superbum Rchb. f. (dendrobium), Glycine max (L.) Merr. (soybean), Prunus persica (L.) Batsch. (peach), Citrus aurantium L. (sour orange). Lpr varied about 8-fold, and the offset varied about 6-fold among the five species. Lpr was inversely related to root diameter (r20.39) and cortex width (r20.55), suggesting that species with thinner roots or roots with a thin cortex had the highest Lpr. Further observations suggested that the cortex width was a stronger determinant of Lpr than root diameter. However, the offset was not correlated with root diameter, stele diameter or cortex width, but was >2-fold higher in species having an exodermis in the root radial path (sour orange, asparagus, and dendrobium) compared to those lacking an exodermis (peach and soybean). The data on root Lr obtained were similar to those given in the literature for both intact plants and excised roots which have been measured with different techniques. It is concluded that Lpr and offset, which describe the flow-water potential relationship for intact root systems, are related to differences in the root cortex; specifically, its thickness and the presence/absence of a suberized exodermis. Hence, these anatomical differences may, in part, cause the variability in root hydralic properties that exists among plant species.  相似文献   

8.
9.
Summary The relations between leaf conductance (gl) transpiration rate and root permeability to water (Rp) of three sunflower (Helianthus annuus L.) cultivars grown in a controlled environment cabinet are described.No differences in transpiration rates were found but it was shown that plants with low values of Rp have active stomatal closure with favourable consequences for water use efficiency under water limiting conditions.Rp was estimated by applying hydrostatic pressure on the root system. Values of Rp per unit root volume ranged from 0.34×10–5 to 16.75×10–5 (s MPa–1). There were significant inter-cultivar differences (P<0.05) in Rp and gl and an inverse correlation between Rp and the maximum values cf gl within cultivars.Pressure applied on the root system is proposed as a useful tool for the determination of differences in the root permeability to water amongst sunflower cultivars.  相似文献   

10.
Plant and Soil - Populus can tolerant high concentration Al stress. However, the mechanisms of Mg alleviation to Al toxicity in populus remain unknown. In the present study, adequate Mg was...  相似文献   

11.
Considerable uncertainty surrounds the impacts of anthropogenic climate change on the composition and structure of Amazon forests. Building upon results from two large‐scale ecosystem drought experiments in the eastern Brazilian Amazon that observed increases in mortality rates among some tree species but not others, in this study we investigate the physiological traits underpinning these differential demographic responses. Xylem pressure at 50% conductivity (xylem‐P50), leaf turgor loss point (TLP), cellular osmotic potential (πo), and cellular bulk modulus of elasticity (ε), all traits mechanistically linked to drought tolerance, were measured on upper canopy branches and leaves of mature trees from selected species growing at the two drought experiment sites. Each species was placed a priori into one of four plant functional type (PFT) categories: drought‐tolerant versus drought‐intolerant based on observed mortality rates, and subdivided into early‐ versus late‐successional based on wood density. We tested the hypotheses that the measured traits would be significantly different between the four PFTs and that they would be spatially conserved across the two experimental sites. Xylem‐P50, TLP, and πo, but not ε, occurred at significantly higher water potentials for the drought‐intolerant PFT compared to the drought‐tolerant PFT; however, there were no significant differences between the early‐ and late‐successional PFTs. These results suggest that these three traits are important for determining drought tolerance, and are largely independent of wood density—a trait commonly associated with successional status. Differences in these physiological traits that occurred between the drought‐tolerant and drought‐intolerant PFTs were conserved between the two research sites, even though they had different soil types and dry‐season lengths. This more detailed understanding of how xylem and leaf hydraulic traits vary between co‐occuring drought‐tolerant and drought‐intolerant tropical tree species promises to facilitate a much‐needed improvement in the representation of plant hydraulics within terrestrial ecosystem and biosphere models, which will enhance our ability to make robust predictions of how future changes in climate will affect tropical forests.  相似文献   

12.
The first objective of the present study was to quantify the effects of tree age and stem position on specific conductivity (ks), vulnerability to embolism and water storage capacity (capacitance) in trunks of young, mature and old‐growth ponderosa pine. The second objective was to determine relationships between hydraulic characteristics and radial and height growth rates to increase the understanding of possible tradeoffs. Within sapwood at all heights and in all ages of trees, outer sapwood had 25–60% higher ks than inner sapwood. The water potential at which embolism started (air entry point) was 1.3 MPa lower in inner sapwood than outer sapwood within the mature trees, but there was no difference in the other trees. There was no significant difference in capacitances between the tops of the old growth trees, the mature trees and the young trees. Taking all data together, the capacitances increased sharply with an increase in ks and an increase in vulnerability to embolism. The hydraulic characteristics of the three age classes were correlated with the height growth rate but not with the diameter growth rate. Within these age classes, high ks was associated with the slowest yearly increase in sapwood area and with a low percentage of latewood, whereas high vulnerability to embolism and high capacitance were more closely associated with high height growth rates.  相似文献   

13.
This study examined the linkage between xylem vulnerability, stomatal response to leaf water potential (ΨL), and loss of leaf turgor in eight species of seasonally dry tropical forest trees. In order to maximize the potential variation in these traits species that exhibit a range of leaf habits and phenologies were selected. It was found that in all species stomatal conductance was responsive to ΨL over a narrow range of water potentials, and that ΨL inducing 50% stomatal closure was correlated with both the ΨL inducing a 20% loss of xylem hydraulic conductivity and leaf water potential at turgor loss in all species. In contrast, there was no correlation between the water potential causing a 50% loss of conductivity in the stem xylem, and the water potential at stomatal closure (ΨSC) amongst species. It was concluded that although both leaf and xylem characters are correlated with the response of stomata to ΨL, there is considerable flexibility in this linkage. The range of responses is discussed in terms of the differing leaf‐loss strategies exhibited by these species.  相似文献   

14.
Fungi and bacteria were isolated from surface disinfected leaf tissues of several citrus rootstocks. The principal bacterial species isolated were Alcaligenes sp., Bacillus spp. (including B. cereus, B. lentus, B. megaterium, B. pumilus, and B. subtilis), Burkholderia cepacia, Curtobacterium flaccumfaciens, Enterobacter cloacae, Methylobacterium extorquens, and Pantoea agglomerans, with P. agglomerans and B. pumilus being the most frequently isolated species. The most abundant fungal species were Colletotrichum gloeosporioides, Guignardia citricarpa, and Cladosporium sp. Genetic variability between 36 endophytic bacterial isolates was analysed by the random amplified polymorphic DNA (RAPD) technique, which indicated that B. pumilus isolates were more diverse than P. agglomerans isolates, although genetic diversity was not related to the host plants. In vitro interaction studies between G. citricarpa isolates and the most frequently isolated endophytic bacteria showed that metabolites secreted by G. citricarpa have an inhibitory growth effect on some Bacillus species, and a stimulatory growth effect on P. agglomerans.  相似文献   

15.
The extent to which stomatal conductance (gs) was capable of responding to reduced hydraulic conductance (k)and preventing cavitation-inducing xylem pressures was evaluated in the small riparian tree, Betula occidentalis Hook. We decreased k by inducing xylem cavitation in shoots using an air-injection technique. From 1 to 18 d after shoot injection we measured midday transpiration rate (E), gs, and xylem pressure (Ψp-xylem) on individual leaves of the crown. We then harvested the shoot and made direct measurements of k from the trunk (2–3 cm diameter) to the distal tip of the petioles of the same leaves measured for E and gs. The k measurement was expressed per unit leaf area (kl, leaf-specific conductance). Leaves measured within 2 d of shoot injection showed reduced gs and E relative to non-injected controls, and both parameters were strongly correlated with kl At this time, there was no difference in leaf Ψp-xylem between injected shoots and controls, and leaf Ψp-xylem was not significantly different from the highest cavitation-inducing pressure (Ψp-cav) in the branch xylem (-1.43 ± 0.029 MPa, n=8). Leaves measured 7–18 d after shoots were injected exhibited a partial return of gs and E values to the control range. This was associated with a decrease in leaf Ψp-xylem below Ψp-cav and loss of foliage. The results suggest the stomata were incapable of long-term regulation of E below control values and that reversion to higher E caused dieback via cavitation.  相似文献   

16.
ABSTRACT

A previous study of 19 south-east Australian heath and forest species with a range of leaf textures showed that they varied considerably in leaf biomechanical properties. By using an index of sclerophylly derived from botanists' rankings (botanists' sclerophylly index, BSI) we determined that leaves considered by botanists to be sclerophyllous generally had both high strength and work to fracture (particularly in punching and tearing tests), both at the level of leaf and per unit leaf thickness. In the current study we have shown that leaves from the same species also varied considerably in leaf specific mass (46–251 g m-2), neutral detergent fibre concentration (20–59% on a dry weight basis) and in leaf anatomy. Multiple regression indicated a very strong correlation between BSI and the first two components of a principal components analysis (PCA) of leaf anatomy (R 2 = 0.91). In addition, there was strong correlation between the first component of a PCA of the mechanical properties (correlated with BSI) and the two axes derived from anatomical characteristics (R 2 = 0.66). The anatomical properties contributing most to the significant component axes were thickness of palisade mesophyll and upper cuticle (axis 1) and percentage fibre (neutral detergent fibre) and lower epidermis thickness (axis 2). However, whether these relationships are causal, or reflect correlations with characteristics not measured in this study, such as vascularization and sclerification, is not clear. At a finer scale, however, there is evidence that there are various ways to be sclerophyllous, both in terms of anatomical and mechanical properties. This is illustrated by comparison of two of the sclerophyllous species, Eucalyptus baxteri and Banksia marginata.  相似文献   

17.
6个耐旱树种木质部结构与栓塞脆弱性的关系   总被引:3,自引:0,他引:3       下载免费PDF全文
木质部栓塞脆弱性对干旱响应的研究已成为全球气候变化背景下的热点和重要内容。该文以6个耐旱树种刺槐(Robinia pseudoacacia)、沙棘(Hippophae rhamnoides)、榆树(Ulmus pumila)、元宝枫(Acer truncatum)、旱柳(Salix matsudana)、榛(Corylus heterophylla)为研究对象, 采用Cochard Cavitron离心机技术建立木质部栓塞脆弱曲线, 计算木质部栓塞脆弱性, 利用染色法、硅胶注射法等测定木质部导管直径、导管内径跨度、导管连接度、导管密度、导管长度和木质部密度, 探究木质部结构与栓塞脆弱性的关系, 区分6个耐旱树种木质部结构在抗栓塞性上的差异, 以期建立6个耐旱树种在木质部结构方面的抗栓塞性指标。结果表明: 6个耐旱树种木质部栓塞脆弱性大小为刺槐>榆树>沙棘>旱柳>元宝枫>榛, 其中, 刺槐、沙棘和榆树的栓塞脆弱曲线为“r”形, 而元宝枫、旱柳和榛的栓塞脆弱曲线为“s”形, 脆弱曲线为“r”形的树种与脆弱曲线为“s”形的树种栓塞脆弱性差异极显著(p < 0.01)。线性分析表明: 木质部结构影响各树种的栓塞脆弱性, 其中, 木质部密度影响最大(t = 0.702), 导管直径次之(t = 0.532), 导管长度影响最小(t = 0.010)。  相似文献   

18.
A method for measuring hydraulic conductivity and embolism in xylem   总被引:28,自引:3,他引:28  
Abstract Hydraulic conductivity of the xylem is computed as the quotient of mass flow rate and pressure gradient. Measurements on excised plant stems can be difficult to interpret because of time-dependent reductions in flow rate, and because of variable degrees of embolism. Using Acer saccharum Marsh. stems, we found that certain perfusing solutions including dilute fixatives (e.g. 0.05% formaldehyde) and acids with pH below 3 (e.g. 10 mol m?3 oxalic) prevent long-term decline in conductivity. Xylem embolism can be quantified by expressing the initial conductivity as a percentage of the maximum obtained after flow-impeding air emboli have been removed by repeated high-pressure (175 kPa) flushes. Correlation between microbial contamination and declining conductivity suggests that long-term (> 4h) declines are caused by microbial growth within the vessels. Unpredictable trends in short-term (< 4h) measurements may be caused by movements of air emboli in vessels and/or participate matter.  相似文献   

19.
Xylem maturation in elongating leaf blades of tall fescue ( Festuca arundinacea ) was studied using staining and microcasting. Three distinctive regions were identified in the blade: (1) a basal region, in which elongation was occurring and protoxylem (PX) vessels were functioning throughout; (2) a maturation region, in which elongation had stopped and narrow (NMX) and large (LMX) metaxylem vessels were beginning to function; (3) a distal, mature region in which most of the longitudinal water movements occurred in the LMX. The axial hydraulic conductivity ( K h) was measured in leaf sections from all these regions and compared with the theoretical axial hydraulic conductivity ( K t) computed from the diameter of individual inner vessels. K t was proportional to K h throughout the leaf, but K t was about three times K h. The changes in K h and K t along the leaf reflected the different stages of xylem maturation. In the basal 60 mm region, K h was about 0.30±0.07 mmol s−1 mm MPa−1. Beyond that region, K h rapidly increased with metaxylem element maturation to a maximum value of 5.0±0.3 mmol s−1 mm MPa−1, 105 mm from the leaf base. It then decreased to 3.5±0.2 mmol s−1 mm MPa−1 near the leaf tip. The basal expanding region was observed to restrict longitudinal water movement. There was a close relationship between the water deposition rate in the elongation zone and the sum of the perimeters of PX vessels. The implications of this longitudinal vasculature on the partitioning of water between growth and transpiration is discussed.  相似文献   

20.
BACKGROUND AND AIMS: Studies of the plasticity of functional root traits involved in resource acquisition have focused mainly on root length without considering such 'morphological components' as biomass allocation, specific root length, root fineness, and tissue density that affect root length. The plasticity of the above components in response to nitrate supply was studied in each root order of two co-generic citrus rootstocks, namely the fast-growing Citrus jambhiri 'Rough Lemon' (RL) and the slow-growing Citrus reshni 'Cleopatra Mandarin' (CM). METHODS: Morphological traits of individual root orders of CM and RL, grown at different nitrate levels (NO(3)-N at 0.1, 0.5, 1 and 10 mm) were examined by using an image-specific analysis system. KEY RESULTS: At high nitrate levels, the root length ratio, root mass ratio and, to a lesser degree, specific root length, root fineness and tissue density of tap and 1st-order laterals in both CM and RL were reduced. In 2nd-order laterals, however, the same treatment led to increased values of each morphological trait in CM but decreased values of the same traits in RL. At low nitrate supply, CM exhibited longer tap roots whereas RL developed longer 2nd-order laterals. These effects were due to root mass ratio and, to a lesser extent, specific root length. CONCLUSIONS: Biomass allocation was the main component of nitrate-induced changes in root length ratio. The 2nd-order laterals were more sensitive to nitrate availability than the tap root and 1st-order laterals. At low nitrate availability, RL displayed longer 2nd-order lateral roots and lower root plasticity than CM. This suggests a different root growth strategy among citrus rootstocks for adapting to nitrate availability: RL invests in 2nd-order laterals, the preferred zone for acquiring the nutrient, whereas CM responds with longer tap roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号