首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stomatal regulation is crucial for forest species performance and survival on drought‐prone sites. We investigated the regulation of root and shoot hydraulics in three Pinus radiata clones exposed to drought stress and its coordination with stomatal conductance (gs) and leaf water potential (Ψleaf). All clones experienced a substantial decrease in root‐specific root hydraulic conductance (Kroot‐r) in response to the water stress, but leaf‐specific shoot hydraulic conductance (Kshoot‐l) did not change in any of the clones. The reduction in Kroot‐r caused a decrease in leaf‐specific whole‐plant hydraulic conductance (Kplant‐l). Among clones, the larger the decrease in Kplant‐l, the more stomata closed in response to drought. Rewatering resulted in a quick recovery of Kroot‐r and gs. Our results demonstrated that the reduction in Kplant‐l, attributed to a down regulation of aquaporin activity in roots, was linked to the isohydric stomatal behaviour, resulting in a nearly constant Ψleaf as water stress started. We concluded that higher Kplant‐l is associated with water stress resistance by sustaining a less negative Ψleaf and delaying stomatal closure.  相似文献   

2.
Water deficit (WD) is a growing problem in agriculture. In citrus crops, genetically-determined rootstock characteristics are important factors influencing plant responses to WD. Aquaporins are involved in regulating the water supply to the plant by mediating water flow through the cell membranes. Recent studies support a direct role for aquaporins in plant water relations and demonstrate their involvement in WD tolerance. This study investigates the relationship between photosynthetic and water-balance parameters with aquaporin expression levels and hydraulic conductance of roots (Kr) in conditions of moderate WD in citrus rootstocks. The plant materials used were the rootstocks Poncirus trifoliata (L.) Raf. (PT), Cleopatra mandarin (Citrus reshni Hort ex Tan.) (CM) and 030115 (a hybrid of the two former rootstocks), all grafted with the citrus variety ??Valencia Late?? (C. sinensis (L.) Osb). Plants were irrigated with two differents irrigation doses (normal irrigation and moderate WD) during 70 days and leaf water potential (??s), net CO2 assimilation (ACO2), transpiration, stomatal conductance (gs) and substomatal CO2 concentration (Ci) were measured periodically under both irrigation conditions. Kr and PIP1 and PIP2 gene expression levels in fine roots of control plants and plants subjected to WD on day 43 of the experiment were determined. Under WD conditions, the hybrid 030115 drastically reduced aquaporin expression and Kr, accompanied by a loss of plant vigour but without reducing the net CO2 assimilation (ACO2). PT maintained the same aquaporin expression level and similar Kr under WD as under normal irrigation conditions, but suffered a sharp reduction in ACO2. CM, which has lower Kr and aquaporin expression than PT under both normal irrigation conditions and WD, responded better to water stress conditions than PT. Low aquaporin levels, or down-regulated aquaporin expression, accompanied by decreased plant vigour led to decreased plasma membrane permeability, thereby facilitating water retention in the cells under water stress conditions. This may induce water stress tolerance in citrus rootstocks.  相似文献   

3.
Ungrafted apple rootstocks were grown in sand cultures at constant root temperatures between 20°C to 40°C. Temperatures of 30°C and above reduced root and shoot growth. Serious damage to the leaves occurred at 35°C and above. The O2 consumption, CO2 evolution and respiratory quotient (RQ) of the roots showed maximum values at 35°C. Different rootstock cultivars varied greatly in their susceptibility to damage by supraoptimal root temperatures apparently due to anaerobic respiration. The more susceptible ones differed from resistant types in the larger amount of ethanol they accumulated in their roots at supraoptimal root temperature, and the more severe reduction in the malic acid content of the roots at such temperature. Acetaldehyde was also found in roots and leaves at supraoptimal root temperatures, whereas the organic acid content of the leaves tended to decrease. Supraoptimal root temperature also caused a reduction of cytokinins in both roots and leaves accompanied by a reduction in the leaf chlorophyll content. This could be prevented by the application of kinetin or benzyladenine to the leaves. In a short experiment a rise in root temperature up to 40°C caused an increase in transpiration and a decrease in the resistance of the leaves to the passage of water vapor, whereas in prolonged experiments transpiration reached a maximum and leaf resistance a minimum at 30°C. The leaf water potential increased also with increasing root temperature. Leaf temperature increased with increasing root temperature, irrespective of increasing or decreasing transpiration rates.  相似文献   

4.
It is well known that rootstocks can have an effect on the vegetative growth and development of the tree; however, there has been no clear explanation about the physiological mechanism involved in this phenomenon. Evidence indicates that the rootstock effects on tree vegetative growth may be related to hydraulic limitations of the rootstock. The objective of these experiments was to investigate the shoot growth, water potential, and gas exchange of peach trees on different rootstocks in response to manipulations of water relations of trees on rootstocks that differ in root hydraulic conductance. Tree water relations were manipulated by applying different amounts of pneumatic pressure on the root system and then relative shoot extension growth rate, tree transpiration rate, leaf water potential, leaf conductance, leaf transpiration, and net CO(2) exchange rate responses were measured. Root pressurization increased leaf water potential, relative shoot extension growth rate, leaf conductance, leaf transpiration, and net CO(2) exchange rates of trees on both vigorous and dwarfing rootstocks. There was a significant positive linear correlation between applied pneumatic pressure and tree transpiration rate and leaf water potential. Leaf conductance, transpiration rate, and net CO(2) exchange rate as well as relative shoot extension growth rates were also positively correlated with the applied pneumatic pressure on the root system. These relationships were consistent across both vigorous and size-controlling rootstocks, indicating that rootstock hydraulic limitation may be directly involved in the vegetative growth control of peach trees.  相似文献   

5.
Salinization of crop fields is a pressing matter for sustainable agriculture under desertification and is largely attributed to root absorptive functions of the major crops such as maize. The rates of water and ion absorption of intact root system of maize plants were measured under the salinized condition, and the salt absorptive function of maize roots was analyzed by applying different two kinetic models of root ion absorption (i.e. the concentration dependent model and the transpiration integrated model). The absorption rates for salinization ions (Na+, Cl?, Ca2+ and Mg2+) were found to depend on ion mass flow through roots driven by the transpiration, and therefore the transpiration integrated model represented more accurately rates of root ion absorption. The root absorption of salinization ions was characterized quantitatively by two model parameters of Qmax and KM involved in the transpiration integrated model, which are considered to relate to the potential absorbing power and the ion affinity of transport proteins on root cell membranes, respectively.  相似文献   

6.
The root respiration rate often shows an exponential or a linear relationship with temperature under laboratory conditions. However, under intact conditions in the field, the root respiration rates of some tree species decreased around midday despite an increment of the root temperature (Bekku et al. 2009). To clarify the cause of midday depression, we examined the relationships between the intact root respiration and parameters of leaf gas exchange through the simultaneous field measurement of the gas exchange in the leaf and root of Quercus crispula and Chamaecyparis obtusa, which are canopy trees. There were no significant relationships between the root respiration rates (R r) and the parameters of leaf gas exchange in the field. However, in C. obtusa, the relationships between R r and the transpiration rates (E) at 1 h before the measurement of R r were fitted by logarithmic function with a determination coefficient of 0.60–0.89. In the light-manipulation experiments using saplings, R r had significant positive correlations with E at 20 min before the measurement of R r, root temperature (T r), and the photosynthesis (P n) at 20 min before the measurement of R r. We examined which factor, P n or E, affects the root respiration rate through a manipulation experiment using a growth chamber regulating the ambient CO2 concentration and relative humidity independently under constant air temperature and photosynthetic photon flux density. As a result, the root respiration rates changed corresponding to E and not P n. These results suggest that the root respiration rate of trees changes significantly in the daytime and is affected by the leaf transpiration rate as well as the temperature.  相似文献   

7.
Effects of salinity (0, 50, 100 and 250 mM NaCl) on growth, root:shoot dry mass ratio, osmotic potential (ψx), electrolyte leakage and contents of Na+ and K+, polyamines and abscisic acid (ABA) were studied in the grape rootstocks Dogridge, 1613, St. George and Salt Creek. In control rootstocks, the root length was highest in Dogridge and contents of K+ and ABA in Salt Creek. Salinity treatments increased root Na+ and decreased K+ content and St. George exhibited highest Na+ content and Na+:K+ ratio. The root:shoot dry mass ratio in all rootstocks increased upto 100 mM NaCl. With increasing NaCl concentration, putrescine, spermine and spermidine contents showed consistent increase and putrescine increase was highest in St. George and spermidine and spermine in the Dogridge and Salt Creek. Under salinity, the ABA content increased in all the rootstocks but more in Salt Creek and Dogridge than in St. George.  相似文献   

8.

Key message

Deep root hydraulic conductance is upregulated during severe drought and is associated with upregulation in aquaporin activity.

Abstract

In 2011, Texas experienced the worst single-year drought in its recorded history and, based on tree-ring data, likely its worst in the past millennium. In the Edwards Plateau of Texas, rainfall was 58 % lower and the mean daily maximum temperatures were >5 °C higher than long-term means in June through September, resulting in extensive tree mortality. To better understand the balance of deep and shallow root functioning for water supply, we measured root hydraulic conductance (K R) in deep (~20 m) and shallow (5–10 cm) roots of Quercus fusiformis at four time points in the field in 2011. Deep roots of Q. fusiformis obtained water from a perennial underground (18–20 m) stream that was present even during the drought. As the drought progressed, deep root K R increased 2.6-fold from early season values and shallow root K R decreased by 50 % between April and September. Inhibitor studies revealed that aquaporin contribution to K R increased in deep roots and decreased in shallow roots as the drought progressed. Deep root aquaporin activity was upregulated during peak drought, likely driven by increased summer evaporative demand and the need to compensate for declining shallow root K R. A whole-tree hydraulic transport model predicted that trees with greater proportions of deep roots would have as much as five times greater transpiration during drought periods and could sustain transpiration during droughts without experiencing total hydraulic failure. Our results suggest that trees shift their dependence on deep roots versus shallow roots during drought periods, and that upregulation of aquaporin activity accounts for at least part of this increase.  相似文献   

9.
The effect of (2RS, 3RS)-1-(4-Chlorophenyl)-4, 4-dimethyl-2-(1H-1,2,4 triazol-1-yl) pentan-3-ol (PP333) on the growth and transpiration of normal and root pruned colt rootstocks was measured. PP333 reduced plant height, stem diameter increment, leaf number, area and weight and stem weight. Root pruning reduced root, leaf and stem weight, and plant height in control plants. PP333 reduced both total water use and transpiration per unit leaf area and increased stomatal resistance. In control plants root pruning also reduced total water use and increased stomatal resistance. 15 days after the beginning of the experiment half the plants in all treatments were allowed to dry out. The effects of drought, i.e. reduced transpiration, growth and leaf water potentials, were smaller in PP333 treated than in control plants.  相似文献   

10.
Unusual stomatal behaviour on partial root excision in wheat seedlings   总被引:6,自引:0,他引:6  
The excision of four out of five primary roots of wheat (Triticum durum Desf.) seedlings often leads to an enhanced rate of transpiration. Surprisingly this enhancement could be maintained for several hours after root excision and was particularly likely to occur at low irradiances or high atmospheric humidity. This long‐term enhancement could not be explained in terms of conventional hydropassive stomatal effects. Elevated rates of transpiration were associated with and possibly caused by increased cytokinin concentrations in shoots of plants with partially excised roots. The single root remaining after excision was able to maintain an adequate water uptake for the continued enhanced transpiration, after only a short transient reduction in leaf water content. The enhanced capacity for water uptake by the remaining root was confirmed by measuring the water flow from detached roots at negative hydrostatic pressure. Even without additional suction, flow from the reduced root system increased about 1.5 h after the start of treatment, suggesting an increase in membrane permeability for water. Although abscisic acid (ABA) concentrations in the roots increased after the root excision treatment, there was no evidence for any enhanced concentration in the xylem sap. The possible role that this accumulation of ABA in roots may have in the apparent increase in hydraulic conductivity after root excision is discussed.  相似文献   

11.
Radin JW 《Plant physiology》1990,94(3):855-857
Suboptimal N or P availability and cool temperatures all decrease apparent hydraulic conductance (L) of cotton (Gossypium hirsutum L.) roots. The interaction between nutrient status and root temperature was tested in seedlings grown in nutrient solutions. The depression of L (calculated as the ratio of transpiration rate to absolute value of leaf water potential [Ψw]) by nutrient stress depended strongly on root temperature, and was minimized at high temperatures. In fully nourished plants, L was high at all temperatures ≥20°C, but it decreased greatly as root temperature approached the chilling threshold of 15°C. Decreasing temperature lowered Ψw first, followed by transpiration rate. In N- or P-deficient plants, L approached the value for fully nourished plants at root temperatures ≥30°C, but it decreased almost linearly with temperature as roots were cooled. Nutrient effects on L were mediated only by differences in transpiration, and Ψw was unaffected. The responses of Ψw and transpiration to root cooling and nutrient stress imply that if a messenger is transmitted from cooled roots to stomata, the messenger is effective only in nutrient-stressed plants.  相似文献   

12.
BACKGROUND AND AIMS: Studies of the plasticity of functional root traits involved in resource acquisition have focused mainly on root length without considering such 'morphological components' as biomass allocation, specific root length, root fineness, and tissue density that affect root length. The plasticity of the above components in response to nitrate supply was studied in each root order of two co-generic citrus rootstocks, namely the fast-growing Citrus jambhiri 'Rough Lemon' (RL) and the slow-growing Citrus reshni 'Cleopatra Mandarin' (CM). METHODS: Morphological traits of individual root orders of CM and RL, grown at different nitrate levels (NO(3)-N at 0.1, 0.5, 1 and 10 mm) were examined by using an image-specific analysis system. KEY RESULTS: At high nitrate levels, the root length ratio, root mass ratio and, to a lesser degree, specific root length, root fineness and tissue density of tap and 1st-order laterals in both CM and RL were reduced. In 2nd-order laterals, however, the same treatment led to increased values of each morphological trait in CM but decreased values of the same traits in RL. At low nitrate supply, CM exhibited longer tap roots whereas RL developed longer 2nd-order laterals. These effects were due to root mass ratio and, to a lesser extent, specific root length. CONCLUSIONS: Biomass allocation was the main component of nitrate-induced changes in root length ratio. The 2nd-order laterals were more sensitive to nitrate availability than the tap root and 1st-order laterals. At low nitrate availability, RL displayed longer 2nd-order lateral roots and lower root plasticity than CM. This suggests a different root growth strategy among citrus rootstocks for adapting to nitrate availability: RL invests in 2nd-order laterals, the preferred zone for acquiring the nutrient, whereas CM responds with longer tap roots.  相似文献   

13.
李文娆  李小利  张岁岐  山仑 《生态学报》2011,31(5):1323-1333
利用聚乙二醇(PEG-6000)模拟水分亏缺条件(胁迫水势-0.2MPa,胁迫48h),研究了变水条件下紫花苜蓿(品种:阿尔冈金和陇东)和高粱(品种:抗四)根系水力学导度(Lpr)、根系活力、根叶相对含水量、水分利用效率等参数的动态变化,以期进一步明确植物水分吸收及散失过程调控的生理生态学基础。结果表明:水分亏缺限制了紫花苜蓿和高粱根系吸水,表现在Lpr的下降和根系活力的降低;继而调控了其地上部反应,引起气孔导度、光合速率、叶片相对含水量和蒸腾速率等的下降,但限制性的提高了其水分利用效率,尤其在胁迫初期。恢复到正常供水条件后,Lpr、根系活性、气孔导度等水分利用参数逐渐部分或完全恢复到了胁迫前水平,但恢复程度存在种间和品种间差异,并且根系吸水能力的恢复对于是植株地上部生长状态的恢复至关重要,尤其是水分恢复初期。紫花苜蓿根系中检测到水通道蛋白(AQPs)的存在,水分亏缺对紫花苜蓿Lpr的影响认为主要是通过影响AQPs的活性实现的。比较紫花苜蓿和高粱水分吸收与利用状况在变水条件下的动态变化,认为紫花苜蓿幼苗对干旱逆境的适应能力相对弱于高粱,品种间陇东适应能力更强。  相似文献   

14.
Increasing evidence suggests that nocturnal transpiration rate (TRN) is a non‐negligible contributor to global water cycles. Short‐term variation in nocturnal vapor pressure deficit (VPDN) has been suggested to be a key environmental variable influencing TRN. However, the long‐term effects of VPDN on plant growth and development remain unknown, despite recent evidence documenting long‐term effects of daytime VPD on plant anatomy, growth and productivity. Here we hypothesized that plant anatomical and functional traits influencing leaf and root hydraulics could be influenced by long‐term exposure to VPDN. A total of 23 leaf and root traits were examined on four wheat (Triticum aestivum) genotypes, which were subjected to two long‐term (30 day long) growth experiments where daytime VPD and daytime/nighttime temperature regimes were kept identical, with variation only stemming from VPDN, imposed at two levels (0.4 and 1.4 kPa). The VPDN treatment did not influence phenology, leaf areas, dry weights, number of tillers or their dry weights, consistently with a drought and temperature‐independent treatment. In contrast, vein densities, adaxial stomata densities, TRN and cuticular TR, were strongly increased following exposure to high VPDN. Simultaneously, whole‐root system xylem sap exudation and seminal root endodermis thickness were decreased, hypothetically indicating a change in root hydraulic properties. Overall these results suggest that plants ‘sense’ and adapt to variations in VPDN conditions over developmental scales by optimizing both leaf and root hydraulics.  相似文献   

15.
A coupled model of stomatal conductance, photosynthesis and transpiration   总被引:18,自引:1,他引:17  
A model that couples stomatal conductance, photosynthesis, leaf energy balance and transport of water through the soil–plant–atmosphere continuum is presented. Stomatal conductance in the model depends on light, temperature and intercellular CO2 concentration via photosynthesis and on leaf water potential, which in turn is a function of soil water potential, the rate of water flow through the soil and plant, and on xylem hydraulic resistance. Water transport from soil to roots is simulated through solution of Richards’ equation. The model captures the observed hysteresis in diurnal variations in stomatal conductance, assimilation rate and transpiration for plant canopies. Hysteresis arises because atmospheric demand for water from the leaves typically peaks in mid‐afternoon and because of uneven distribution of soil matric potentials with distance from the roots. Potentials at the root surfaces are lower than in the bulk soil, and once soil water supply starts to limit transpiration, root potentials are substantially less negative in the morning than in the afternoon. This leads to higher stomatal conductances, CO2 assimilation and transpiration in the morning compared to later in the day. Stomatal conductance is sensitive to soil and plant hydraulic properties and to root length density only after approximately 10 d of soil drying, when supply of water by the soil to the roots becomes limiting. High atmospheric demand causes transpiration rates, LE, to decline at a slightly higher soil water content, θs, than at low atmospheric demand, but all curves of LE versus θs fall on the same line when soil water supply limits transpiration. Stomatal conductance cannot be modelled in isolation, but must be fully coupled with models of photosynthesis/respiration and the transport of water from soil, through roots, stems and leaves to the atmosphere.  相似文献   

16.
17.
In laboratory and greenhouse experiments with potted plants, shoots and roots are exposed to temperature regimes throughout a 24 h (diel) cycle that can differ strongly from the regime under which these plants have evolved. In the field, roots are often exposed to lower temperatures than shoots. When the root‐zone temperature in Ricinus communis was decreased below a threshold value, leaf growth occurred preferentially at night and was strongly inhibited during the day. Overall, leaf expansion, shoot biomass growth, root elongation and ramification decreased rapidly, carbon fluxes from shoot to root were diminished and carbohydrate contents of both root and shoot increased. Further, transpiration rate was not affected, yet hydrostatic tensions in shoot xylem increased. When root temperature was increased again, xylem tension reduced, leaf growth recovered rapidly, carbon fluxes from shoot to root increased, and carbohydrate pools were depleted. We hypothesize that the decreased uptake of water in cool roots diminishes the growth potential of the entire plant – especially diurnally, when the growing leaf loses water via transpiration. As a consequence, leaf growth and metabolite concentrations can vary enormously, depending on root‐zone temperature and its heterogeneity inside pots.  相似文献   

18.
Summary A greenhouse study in which 24, 54 and 71 per cent roots of wheat (Triticum aestivum L.) were pruned on the 73rd day from the date of planting (anthesis stage) showed that during a 7-day period following root pruning, total transpiration and leaf water potential were significantly lower (P=0.05) and the stomatal resistance was significantly higher (P=0.05) where 54 and 71 per cent roots were pruned, as compared to no root pruning or 24 per cent root pruning. The leaf relative water content, however, showed no significant differences. Thus about one-fourth root sytem could be reduced without adversely affecting the plant-water status.  相似文献   

19.
Shimizu M  Ishida A  Hogetsu T 《Oecologia》2005,143(2):189-197
We hypothesized that pioneer and late successional species show different morphological and physiological responses in water use after gap formation. The magnitude of the responses was compared between two pioneer species (Macaranga gigantea and Trema orientalis) and four late successional species (Shorea sp.), in an experiment in which saplings were transferred from shade to sun. Although transpiration demand increased following the transfer, root hydraulic conductivity (Lpr) decreased. Lpr was sensitive to brief treatments with HgCl2 (a specific inhibitor of aquaporins). This allows Lpr to be divided into two components: cell-to-cell and apoplastic pathways. The Lpr of cell-to-cell pathway decreased in all species following the transfer, relating to aquaporin depression in roots. Following the transfer, leaf osmotic potentials at full hydration decreased and both leaf mass per area [leaf mass/leaf area (LMA)] and fine-root surface area/leaf surface area (root SA/leaf SA) increased in almost all species, allowing saplings to compensate for the decrease in Lpr. Physiologically, pioneer species showed larger decreases in Lpr and more effective osmotic adjustment than late successional species, and morphologically, pioneer species showed larger increases in root SA/leaf SA and LMA. Water balance at the whole-plant level should be regulated by coupled responses between the aboveground and the belowground parts. Interspecific differences in responses after gap formation suggest niche differentiation in water use between pioneer and late successional species in accordance with canopy-gap size.  相似文献   

20.
As competition for the limited water supply available for irrigation of horticultural crops increases, research into crop management practices that enhance drought resistance, plant water-use efficiency and plant growth when water supply is limited has become increasingly essential. This experiment was conducted to determine the effect of potassium (K) nutritional status on the drought resistance of Hibiscus rosa-sinensis L. cv. Leprechaun (Hibiscus). All the treatments were fertilized with Hoagland's nutrient solution, modified to supply K as K2SO4, at 0 mM K (K0), 2.5 mM K (K2.5), and 10 mM K (K10), under two irrigation regimes (drought stressed [DS] and non-drought stressed [non-DS]). Regular irrigation and fertigation were adopted for 54 days, and drought stress treatment (initiated on day 55) lasted for 21 days; while non-DS control plants continued to receive regular irrigation and fertigation. Following the 21-day drought stress period, plants were labeled with 86Rb+ to determine the percentage of post-drought stress live roots. Both K deficiency (K0) and drought stress reduced shoot growth, but drought stress increased root growth and thus the root:shoot ratio. At K0, plants were K-deficient and had the lowest leaf K, Fe, Mn, Zn, Cu, B, Mo and Al, and highest Ca concentrations. Although the percentage of live roots was decreased by drought stress, K2.5 and K10 plants (with similar percent live roots) had greater root survival ratio after drought treatment than the K-deficient plants. These observations indicate that adequate K nutrition can improve drought resistance and root longevity in Hibiscus rosa-sinensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号